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Abstract

A q-locally correctable code (LCC) C : {0, 1}k → {0, 1}n is a code in which

it is possible to correct every bit of a (not too) corrupted codeword by making

at most q queries to the word. The cases in which q is constant are of special

interest, and so are the cases that C is linear.

In a breakthrough result Kothari and Manohar (STOC 2024) showed that

for linear 3-LCC n = 2Ω(k1/8). In this work we prove that n = 2Ω(k1/4). As

Reed-Muller codes yield 3-LCC with n = 2O(k1/2), this brings us closer to

closing the gap. Moreover, in the special case of design-LCC (into which

Reed-Muller fall) the bound we get is n = 2Ω(k1/3).
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1 Introduction

A q-locally correctable code (q-LCC) is a code in which every bit of the codeword - veiled

by access to a noisy version of it - can be corrected by making at most q queries to the

noisy word. A q-locally decodable code (q-LDC) is a code in which every bit of the message

can be decoded by making at most q queries to the accessible word. More formally,

Definition 1.1. An injective C : {0, 1}k → {0, 1}n is a (q, δ, ε)-LCC ( (q, δ, ε)-LDC), for

ε < 1/2, if there exists a randomized procedure that takes as input j ∈ [n] (respectively,

i ∈ [k]), gets oracle access to z ∈ {0, 1}n at relative Hamming distance at most δ from

C(x) for some x, and in making at most q queries to z, and with probability at least 1−ε:

its output is equal to C(x)j (respectively, xi). We say that C is linear if it is a linear map.

LCCs in the regime in which q and δ are constant are of special interest, and the central

question is how small n can be compared to k. Within this regime, in the case that q = 2

there are tight upper and lower bounds [GKST02, KdW04], showing that n = 2Θ(k). For

every larger q ≥ 3, polynomial lower bounds are known [KT00, KdW04, Woo07] while the

best upper bounds are exponential. In an exciting development, [KM23] proved a much

stronger lower bound in the case that q = 3, showing that

Theorem 1.2 ([KM23]). Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε). Then n =

2Ω(δ2k1/8).

Besides the strong bound their result also established a separation and 3-LCCs and

3-LDCs as 3-LDCs with n = 2k
o(1) are known [Yek08, Efr09].

The methods [KM23] use in obtaining the bound are based on spectral refutations

via Kikuchi matrices constructed from XOR formulas obtained by long chain derivations.

The Kikuchi matrix method was also used in obtaining a better bound in the case of

3-LDC [AGKM23].

As noted by [KM23] the state of the art upper bound for q = 3 LCC is achieved by

binary Reed-Muller codes, yielding

n = 2O(k1/2),

while having a constant δ.

1.1 Our result

In this work we prove the following.

Theorem 1.3. Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-LCC. Then n = 2Ω(δ1/2k1/4).
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We remark that besides k the expression has a stronger dependence on δ. The proof

only relies on elementary facts and the [GKST02] bound. While inspired by clever ideas

of [KM23] the viewpoint of the proof is different and diverging from [KM23], our approach

goes via constructing asymmetric decoding sequences.

1.1.1 The special case of designs

In the special case of design 3-LCCs we get a better bound. We define design LCC as

follows.

Definition 1.4. We say that a (q, δ, ε)-LCC is a design LCC if there exists a randomized

procedure satisfying the requirements in Definition 1.1 and further: For every distinct pair

of coordinates a, c ∈ [n], there are at most O(1) j’s such that a and c can both be queried

by invoking (once) the procedure to correct j.

In other words, design LCCs are LCCs in which learning about any pair of coordinates

sampled to be queried by the correction procedure almost reveals the identity of the

coordinate being corrected (upto O(1) options).1

Fact 1.5. Reed-Muller codes are design LCCs.2

Theorem 1.6. Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-design LCC. Then n =

2Ω(δ2/3k1/3).

Thus in the state of affairs we get, in the case of 3-design LCC, the gap is smaller.

1.2 Proof overview

We turn to give a high level overview of the elements of the proof. Assume that C :

{0, 1}k → {0, 1}n is a linear (3, δ, ε)-LCC.

Decoding sets. For a coordinate j ∈ [n] and a set Q ⊆ [n] we say that Q determines j

if C(x)j =
∑

j′∈QC(x)j′ ∀x ∈ {0, 1}k . It is well known that a linear (q, δ, ε)-LCC induces

m = δn
q
sets {Qj

w}j∈[n],[w∈m] such that for every j, {Qj
w}[w∈m] are disjoint subsets of [n] of

size at most q, which determine j. We call the sets {Qj
w}j∈[n],[w∈m] decoding sets.

1For fields with characteristic 0 (and fields with very large characteristic) there are strong bounds

[BDYW11, DSW14, DGOS18] on equivalents of linear design q-LCC, over these fields.
2In our definition: for constant q’s.
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Decoding sequences. We can use the decoding sets to generate many more decoding

sequences of any length s. We assume without loss of generality that every query set is

of size exactly 33, and we arbitrarily divide each query set Qj
w into three designated parts

Qj
w = {A(j;w), B(j;w), c(j;w)}. Given r ∈ [m]s, which is a “set of instructions”, we

construct two longer decoding sequences A(j; r) ∈ [n]s, B(j; r) ∈ [n]s, and c(j; r) ∈ [n] to

which we call a reminder. These are defined by A(j; r) = A(j; r1) ◦ A(c(j; r1); r2, . . . , rs),
B(j; r) = B(j; r1) ◦ B(c(j; r1); r2, . . . , rs) and c(j; r) = c(c(j; r1); r2, . . . , rs). It is easy to

see that because of the promise that the query sets {A(j;w), B(j;w), c(j;w)}w determine

j,

C(x)A(j;r) + C(x)B(j;r) + C(x)c(j;r) = C(x)j, ∀x ∈ {0, 1}k, (1.1)

where for a sequence D = (d1, . . . , ds) ∈ [n]s, C(x)D := C(x)d1 + . . . + C(x)ds . From

here on we fix some s to be the length of the sequences. We say that the sequences are

asymmetric because when using them A and c will be used as one part, and B will be the

other.

Extended decoding sequences. For the argument to work we will need the handle

the case of repeated suffixes. A suffix of a decoding sequence involves only the “A part”

decoding sequence and the reminder c. For any g ≥ 1, Ã ∈ [n]s−g and c ∈ [n], the degree

of the suffix (Ã; c) is the number of j′’s such that A(j′; r′) = Ã and c(j′; r′) = c for some

r′ ∈ [m]s−g. It can be checked that if the query sets are such that every pair of distinct

a, c ∈ [n] is contained in at most one query set Qj
w, then the degree of every (Ã; c) is

at most 1, however this may not be the case with the query sets of C. The aim in the

proof is to argue that there are many “different” ways to deduce each j ∈ [n], and while

repeated suffixes may pose a problem, they can also be useful. If there is a specific decoding

sequence which contains a suffix (Ã; c) for Ã ∈ [n]s−g and c ∈ [n] with a high degree, we can

use this fact to generate on base of this decoding sequence - more decoding sequences - as

many more as the degree, having each one of them posses a different reminder (this raises

the probability that a random set of coordinates is useful for decoding j). More specifically,

if we start with the decoding sequence A = A(j; r), B = B(j; r), c = c(j; r), for r ∈ [m]s,

and A = (A1, . . . , Ag, Ag+1, . . . , As) where Ã = (Ag+1, . . . , As; c) is of high degree, then we

can take any j′ ∈ [n] for which there exists r′ ∈ [m]s−g such that A(j′; r′) = (Ag+1, . . . , As)

and c(j′; r′) = c, and replace in A(j; r) the part (Ag+1, . . . , As) with B(j′; r′), and replace

c(j; r) with j′. That is, part of the A-part of the suffix turns into a B-part of a different

decoding sequence, and the reminder is switched with the starting point of a sequence.

Note that the length of the sequence is unchanged. We see that every choice among the

3As we can add zero coordinates and use them to extend the sets, at most doubling n.
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different j′’s gives us a different reminder. It can be checked that as the suffix was shared,

we maintained the property stated in (1.1) - that is, that the obtained sequence still

determines j. We remark, however, that there is some cost to doing this - if we do this

for suffixes with too low degree, we may end up making the reminder more predictable

rather than less, and so there is benefit in doing this only if the degree is above a certain

threshold.

The asymmetric graph. For the high level explanation of this part we will ignore

and rest aside the problem of repeated suffixes and so we will assume decoding sequences

rather than extended decoding sequences. Let ℓ be a parameter. For every j ∈ [n] we

construct a bipartite graph Gj which on the left side has a vertex set
(
[n]
ℓ

)s × [n] and on

the right side has a vertex set
(
[n]
ℓ

)s
. The set of vertices will be the same for every j,

but the edges will be j-dependent. Fix some j. The edges of Gj are colored with colors

r ∈ [m]s4 and the total number of edges is the sum of the number of edges of each color.

For a certain color r ∈ [m]s, we put an edge of color r between (L, h) = ((L1, . . . , Ls), h)

of the left side and L′ = (L′
1, . . . , L

′
s) of the right side if A(j; r)1 ∈ L1, . . . , A(j; r)s ∈ Ls,

c(j; r) = h, B(j; r)1 /∈ L1, . . . , B(j; r)s /∈ Ls
5, and

L′ = ((L1 \ {A(j; r)1}) ∪ {B(j; r)1}, . . . , (Ls \ {A(j; r)s}) ∪ {B(j; r)s}).

Notice that such an edge (((L1, . . . , Ls), h), (L
′
1, . . . , L

′
s)) will satisfy that

C(x)L1 + . . .+ C(x)Ls + C(x)L′
1
+ . . .+ C(x)L′

s
+ C(x)h = C(x)j ∀x ∈ {0, 1}k (1.2)

by Equation (1.1).

We would like to argue that there are many edges in Gj and that they are “different”

in some way from one another. We cannot hope to show that there is a large matching,

since the graph is asymmetric. However, as a first step, we will argue that there are indeed

many edges, Θ
(
ms
(
ℓ
n

)s (n
ℓ

)s)
, and that a constant fraction among them are edges that

only touch two vertices whose degree is close to the average degree of their side. On the

left side the average degree is Θ(ms 1
n

(
ℓ
n

)s
) and on the right side it is Θ(ms

(
ℓ
n

)s
). Arguing

that there are many edges touching vertices with degree close to the average degree on

the left part will require care, and is where the problem with repeated suffixes arises. The

key to showing this is to argue that this holds separately within each color.

4In fact, if there are repeated suffixes, we also have colors that say which reminder we take when

“switching” according to the repeated suffix. But we ignore this in describing the graph in this overview.
5We can assume that the color satisfies A(j; r)t ̸= B(j; r)t so the condition can be true, but in fact

we do things a bit differently in the technical part and so this assumption will not be needed.
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Finally, we construct another bipartite graph G′
j from Gj, for every j ∈ [n], as follows.

We maintain the left vertices of G′
j, and for the right side - we duplicate every vertex

to have n copies - so that G′
j is balanced. As for the edges, we only consider edges of

Gj whose both endpoints have degrees close to the averages. For every vertex on the

right side, we distribute evenly its edges that we considered among its n copies. In that

way, a vertex which originally had degree close to ms
(
ℓ
n

)s
will now have degree close to

1
n
ms
(
ℓ
n

)s
, like the vertices on the left side which already had degree close to ms 1

n

(
ℓ
n

)s
.

Since we considered Θ
(
ms
(
ℓ
n

)s (n
ℓ

)s)
edges of Gj, we used each edge only once, it follows

that G′
j contains a large matching.

Bounding k. Recall that the vertices ofG′
j are the same for every j ∈ [n], on the left side

each vertex is of the form ((L1, . . . , Ls), h), on the right side each vertex is ((L′
1, . . . , L

′
s), t)

where t is the copy number, and that for every edge e in G′
j and every C(x), the total sum

of the coordinates of C(x) corresponding to both endpoints of e is equal to C(x)j (note

that t is just a copy number, not a coordinate, and it doesn’t affect the summation).

Hence, we will define a code C ′ : {0, 1}k → {0, 1}N “on” the vertices of {G′
j}j, with

N = 2
(
n
ℓ

)s
n, given by

C ′(x)(L1,...,Ls,h) = C(x)L1 + . . .+ C(x)Ls + C(x)h

and

C ′(x)(L′
1,...,L

′
s,t) = C(x)L′

1
+ . . .+ C(x)L′

s
.

As C is injective we can assume without loss of generality that for every i ∈ [k], C(x)i =

xi
6. Since there is a large matching in each G′

j for every j ∈ [n], there is in particular a

large matching in G′
i for every i ∈ [k]. And so, for every i ∈ [k] there is a large number

of disjoint pairs of coordinates of C ′ which determine i (and thus, xi), by Equation (1.2),

and it follows that C ′ is a 2-LDC. It is only left to apply the bound of [GKST02] to the

get the result.

1.3 Comparison with [KM23]

It is somewhat hard to compare exactly the proof of [KM23] and the proof we give here

since the two proofs differ in viewpoints. The [KM23] Kikuchi method proof utilizes some

tools that we do not use here (such representing via XOR instances, bounding the spectral

norm, computing some partial derivatives, etc). The proof in the viewpoint we give here

is combinatorical and only uses elementry facts. Yet there are similar points made in

6It is a well known fact that a linear code can be made systematic.
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both arguments and our argument is inspired by the clever ideas of [KM23]. The long

chain-derivation idea employed by [KM23] is of course similar to the decoding sequences

we use. The issue with heavy pairs which arises in the [KM23] argument is like the issue

with repeated suffixes here. The handling of [KM23] for the issue is by their constructing

of contiguously regular partitions, and while there are differences in the handling, we

employed a threshold check similar to the one incorporated there. We add that we do

not partition [k] into two sets as is done in [KM23] (in a part that could be interpreted

as partitioning the message into two sets and zeroing one of the sets). The “asymmetric”

part here is taking a different approach compared to [KM23].

1.4 Organization

In Section 3.1 we define Decoding sequences. In Section 3.2 we define Extended decoding

sequences and prove needed claims regarding them. In Section 3.3 we define the asymmet-

ric graph, and argue for the existence of a large matching in the final graph. In Section 3.4

we define a 2-LDC code on top of the constructed graph, and deduce the bound. In the

appendix, Appendix A, we analyze the case of 3-design LCC.

2 Preliminaries

Notations. All logarithms in this paper are taken to the base 2. The set of natural

numbers is N = {0, 1, 2, . . .}. For n ∈ N, n ≥ 1, we use [n] to denote the set {1, . . . , n}.
We denote by

(
[n]
ℓ

)
the set of subsets of [n] of size ℓ. We use Fq to denote a finite field

of size q. For a sequence D ∈ {0, 1}s and a set S = {h1, . . . , ht} ⊆ [s] for h1 < . . . < ht

we denote by DS the sequence at locations h1, . . . , ht. If S = ∅ then DS = ε is the

empty sequence. We will also write Dh1,...,ht as short for D{h1,...,ht}. We use ◦ to denote

the concatenation of two sequences. We use IA to denote an indicator random variable,

supported on {0, 1}, for the event A.

We will need the following fact, that says that for a linear code there is a systematic

encoding.

Fact 2.1. For every linear injective C : {0, 1}k → {0, 1}n there is a linear code C̃ :

{0, 1}k → {0, 1}n such that Img(C) = Img(C̃), and there are j1, . . . , jk ∈ [n] such that for

every i ∈ [k] C̃(x)ji = xi∀ x.

We will make use of the [GKST02] bound for 2-LDCs.
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Theorem 2.2 ([GKST02]). Let C : {0, 1}k → {0, 1}n be a linear map such that for

every i ∈ [k] there is a set of δcn disjoint pairs of coordinates {u, v} ⊆ [n] such that

xi = C(x)u + C(x)v ∀x. Then k = O( 1
δc
log n).

We will also need the following well known fact regarding LCCs.7

Fact 2.3. Let C : {0, 1}k → {0, 1}n be a linear (q, δ, ε)-LCC. Then there exist sets

{Qj
w}j∈[n],w∈[m] for m ≥ δn/q such that for every j ∈ [n] the sets Qj

w |w∈[m] are disjoint

subsets of [n] of size at most q, each satisfying that C(x)j =
∑

j′∈Qj
w
C(x)j′.

3 Proof

3.1 Decoding sequences

We start by defining decoding sequences, which are composed of two sequences of length

s, the A-part, the B-part, which are both sequences of n coordinates, and of a reminder

c which is a single coordinate.

First, we assume that we are given n ∈ N and m ≤ n and nm sets Qj
w ⊆ [n] |j∈[n],w∈[m],

such that each set is of size exactly 3.8 We will assume that it’s possible to order each

set such that it is composed of three designated elements, {A(Qj
w), B(Qj

w), c(Q
j
w)} = Qj

w,

satisfying the following guarantee:

(*) For every j ∈ [n], w ̸= w′ and D ∈ {A,B, c}, D(Qj
w) ̸= D(Qj

w′).

Note that if for every j the sets {Qj
w}w∈[m] are known to be disjoint, in particular the

guarantee is satisfied by any arbitrary ordering.

Definition 3.1 (Decoding sequences). For every s ≥ 0 we will define three functions

A : [n]× [m]s → [n]s,

B : [n]× [m]s → [n]s,

c : [n]× [m]s → [n].

7See a similar statement by [KT00] for the case of LDCs.
8In this part (and the two following) we only make structural definitions and claims based on the

given sets {Qj
w}. But it will be good to notice that the definition of decoding sequences that we give next

is tailored to be useful for decoding, assuming that {Qj
w} are.
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The definition is inductive. For s = 0, r ∈ [m]s and j ∈ [n]

A(j; r) = ε,

B(j; r) = ε,

c(j; r) = j,

where ε is the empty sequence. For s > 0, r ∈ [m]s and j ∈ [n]

A(j; r) = A(Qj
r1
) ◦ A(c(Qj

r1
); r2,...,s),

B(j; r) = B(Qj
r1
) ◦B(c(Qj

r1
); r2,...,s),

c(j; r) = c(c(Qj
r1
); r2,...,s).

We will require the following easy claim which considers how many sequences satisfy

a set of constraints.

Claim 3.2. For every j ∈ [n], S ⊆ [s] and E ∈ [n]s,

|{r ∈ [m]s | A(j; r)S = ES}| ≤ ms−|S|.

|{r ∈ [m]s | B(j; r)S = ES}| ≤ ms−|S|.

In particular, for every j ∈ [n], A(j; ·) and B(j; ·) are injective.

Proof. Follows directly from Definition 3.1 and the guarantee (*).

3.2 Extended decoding sequences

We turn to define extended decoding sequences, in order to handle repeated suffixes. For

what comes next, we fix some s and some f ≥ 1. We will need the following definitions.

Definition 3.3. Let h ≥ 0, A ∈ [n]h and c ∈ [n]. We define

J(A; c) = {j ∈ [n] | ∃r ∈ [m]h A(j; r) = A, c(j; r) = c}

and

deg(A; c) = |J(A; c)|.

That is, J defines the set of indices for which there is a sequence whose A-part and c

are equal to a given suffix (A; c), and the degree of (A; c) is the number of these indices.

Definition 3.4. Define for every g ∈ [s]

Rg(j) =
{
r ∈ [m]s | deg(A(j;r)g+1,...,s;c(j;r))≥fs−g∧

∀g′∈{1,...,g−1}:deg(A(j;r)g′+1,...,s;c(j;r))≤fs−g′

}
.
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In words, Rg(j) is the set of instructions which result in a sequence with a common

suffix starting from position g+1, and for every location closer to the start of the sequence,

the suffix is uncommon. By common we mean that the degree of the suffix crosses a

threshold which depends on where the suffix starts: we check if the degree is at most

f s−g.

We argue that there is (at least) oneRg than contains many of the possible instructions.

That is, there is an Rg which induces many sequences.

Claim 3.5. For every j ∈ [n] there exists some g ∈ [s] such that |Rg(j)| ≥ 1
s
ms.

Proof. For every r ∈ [m]s, there is at least one g = g(r) ∈ [s] such that r ∈ Rg(j). This

holds as for g = 1 the second condition

∀g′ ∈ {1, . . . , g − 1} = ∅ : deg(A(j; r; )g′+1,...,s, c(j; r)) ≤ f s−g′

is always (trivially) met. Hence, if g = 1 also satisfies the first condition

deg(A(j; r; )g+1,...,s, c(j; r)) ≥ f s−g

we can take g(r) = 1. If otherwise, then g = 2 always satisfies the second condition, and

if it also satisfies the first we can take g(r) = 2. And so on. Notice that for g = s the first

condition is always met, since

1 = deg(ε; c(j; r)) = deg(A(j; r)g+1,...,s; c(j; r)) ≥ f s−g = 1,

and therefore the described procedure must halt.

Since there are ms r’s and each one is a member of at least one of the s Rg(j)’s, the

claim follows.

When we will use extended decoding sequences (which we have not yet defined), we

will do it with respect to one specific g (for each j ∈ [n]) that satisfies the above claim.

Before we turn to define extended decoding sequences we need to handle another

matter as set up. In the above we defined Rg(j) to correspond to sequences in which

that g-th suffix is repeated at least f s−g times (among suffix sequences of length s − g).

We wish to reduce to the case that each such suffix is repeated exactly f s−g times, and

towards that we will require the following definitions. We will later cut a part of J(A; c)

to achieve this - but we start with assuming that we are given a subset of J(A; c) which

is of size that is a multiple of f s−g (we will next denote this subset byJg(j;A; c)).
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A remark for first time reading. The next definition will make a few somewhat long

notations. A first time reader may be advised to only skim through this definition (and

the related claim Claim 3.7 that follows it) and to go back to it after reading Section 3.3.

For the reader who opts to doing so it should be helpful to know that in the claim

following the definition, Claim 3.7, we define a set of “good enough” instruction sets

R̃g(j) ⊆ Rg(j) ⊆ [m]s and argue that it is large enough - we will only consider sequences

induced by instructions r from this set (rather than [m]s).

Definition 3.6. Let j ∈ [n], g ∈ [s], A ∈ [n]s−g and c ∈ [n] be such that deg(A; c) ≥ f s−g,

and further let Jg(j;A; c) ⊆ J(A; c) be a subset (chosen specifically for j and g) of size

which is a multiple of f s−g.

• We arbitrarily partition Jg(j;A; c) into parts of size f s−g, and we assume that each

part has an arbitrary fixed order.

• For every c′ ∈ Jg(j;A; c), we define P (j; c′;A; c) to be the part of the partition to

which c′ belongs.

• Furthermore, for every z ∈ [f s−g] we denote by P (j; c′;A; c)z the z-th element of the

part P (j; c′;A; c).

• Lastly, we will denote by T (j; c′;A; c)z the (unique) sequence r ∈ [m]s−g for which

A(P (j; c′;A; c)z; r) = A(and c(P (j; c′;A; c)z; r) = c).

Intuitively, splitting each Jg(j;A; c) into parts {P (j; c′;A; c)}c′ of size exactly f s−g will

allow us to fall back to the case that J(A; c) had been of size f s−g to begin with. We

will need to be able to address a specific index within each such part, and so we set the

notation P (j; c′;A; c)z. As for the last defined notation T (j; c′;A; c)z, recall that the way

J(A; c) is defined is by taking all indices c′ for which there is some instruction sequence

r that results in a specific common suffix (A; c) - we want to be able to address this r by

virtue of which c′ is in J(A; c), and in P (j; c′;A; c).

We are almost done with the setup - it is only left to explain how we cut J(A; c) to

be of a right size, as we have assumed, without losing too many of our sequences: We

will assume that the subsets Jg(j;A; c) ⊆ J(A; c) mentioned in the previous definition are

such who satisfy the following claim.9

Claim 3.7. For every j ∈ [n] and g ∈ [s], there exist subsets Jg(j;A; c) ⊆ J(A; c) ∀A, c,
of sizes that are a multiple of f s−g, such that the set

R̃g(j) := {r ∈ Rg(j) | c(j; r1,...,g) ∈ Jg(j;A(j; r)g+1,...,s; c(j; r))}
9The reason that we “lose” sequences in cutting J(A; c) is that it will come with disallowing sequences

that pass through the cut indices (dependent on the suffix (A; c); see next definition).
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is of size at least 1
2
|Rg(j)| (Recall that by the definition of J(A; c) it is known that

c(j; r1,...,g) ∈ J(A(j; r)g+1,...,s; c(j; r))).

Proof. Fix j ∈ [n] and g ∈ [s]. For every A, c and every c′ ∈ [n] set countA,c(c
′) =

|{r ∈ Rg(j) | c(j; r1,...,g) = c′ ∧ A(j; r)g+1,...,s = A ∧ c(j; r) = c}|. For every A, c we

sort J(A; c) in descending order of countA,c(c
′) (for c′ ∈ J(A; c)) and take Jg(j;A; c)

to be the first |J(A; c)| − (|J(A; c)| mod f s−g) elements. Note that for every every

A, c such that |J(A; c)| ≥ f s−g, |Jg(j;A; c)| ≥ 1
2
|J(A; c)|. As for every r ∈ Rg(j),

|J(A(j; r)g+1,...,s; c(j; r))| ≥ f s−g, and as we sorted J(A; c) from the most used (as c(j; r1,...,g)

for r ∈ Rg(j) | A(j; r)g+1,...,s = A ∧ c(j; r) = c) to the least used, the claim follows.

We can now finally define extended decoding sequences, which are dependent on which

g is chosen to be used.

A remark for first time reading. A reader that only skimmed through Definition 3.6

(see previous remark) may also only skim through the definition of cg and Ag below (which

depend on Definition 3.6).

Definition 3.8 (Extended decoding sequences). We extend Definition 3.1 by defining

three more functions for every g ∈ [s]

Ag : [n]× R̃g(j)× [f s−g] → [n]s,

Bg : [n]× R̃g(j)× [f s−g] → [n]s,

cg : [n]× R̃g(j)× [f s−g] → [n].

as follows

cg(j; r; z) = P
(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z
,

Ag(j; r; z) = A(j; r)1,...,g ◦B
(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
Bg(j; r) = B(j; r).

10

10In words, opening up the definitions of P (·)z and T (·)z: cg and Ag take as input an extra instruc-

tion z ∈ [fs−g], beside the instructions r. This instruction determines which member j′ of the part

P
(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
is taken to be the new reminder. The new A-part is achieved by

maintaining the original A-part upto location g, and the locations g+1, . . . , s are replaced with the B-part

of the sequence starting from j′, using the same instruction sequence r′ for which A(j′; r′) = A(j, r)g+1,...,s

and c(j′; r′) = c(j; r). Bg remains the same as the original B and doesn’t take an extra instruction z.
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In our use of extended decoding seqeunces in the next section, we will need to be able

to bound the number of sequences that are “close” to some sequence, and for that we have

the following definitions and two claims. In the case of the A-part, we will specifically

consider the case that the sequence is close to some other sequence, and that the reminders

are equal.

Definition 3.9. For j ∈ [n], g ∈ [s], A ∈ [n]s, B ∈ [n]s, c ∈ [n] and S ⊆ [s] define

Rg(j, A, S, c) = {(r, z) ∈ R̃g(j)× [f s−g] | Ag(j; r; z)S = AS ∧ cg(j; r; z) = c},
Rg(j, B, S) = {r ∈ R̃g(j) | Bg(j; r)S = BS}.

That is, given a set S of “constraints” we count either how many sequences there are

that agree with a given A on S, and have specific reminder, or how many sequences there

are whose B-part agrees with a given sequence on B on S (without a requirement on the

reminder).

Claim 3.10.

|Rg(j, A, S, c)| ≤

ms−|S| if [g] ⊆ S

ms−|S|−1f s−max([g]\S) else.

A remark for first time reading. A reader that only skimmed through Definition 3.6

and the definitions of cg and Ag may also only skim through the proof for Claim 3.10. After

reading Section 3.3 the motivation for Claim 3.10 should be clear - and so Definition 3.6,

the definitions of cg and Ag and the proof Claim 3.10 can be thoroughly read afterwards.

Proof for Claim 3.10. Consider r ∈ R̃g(j), z ∈ [f s−g] such that Ag(j; r; z)S = AS and

cg(j; r; z) = c. Note that it is enough to bound the number of options for r, since for

every possible r, the constraint cg(j; r; z) = c determines z.

Note first that:

(**) There are at most ms−g−|S∩{g+1,...,s}| options for

B

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
and A(j; r)g+1,...,s.

Indeed, this follows by Claim 3.2, as we have a B-part sequence of length s− g, subjected

to |S ∩ {g + 1, . . . , s}| constraints, and cg(j; r; z) = c is fixed. Moreover, for every such

option for B

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
there is only one option

for A(j; r)g+1,...,s = A

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
and c(j; r) =

c

(
cg(j; r; z);T

(
j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r)

)
z

)
.

We proceed by analyzing the two cases of the argued inequality.
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1. If [g] ⊆ S. Since A(j; r)[g] is fixed, every option for A(j; r)g+1,...,s determines A(j; r),

and by Claim 3.2, it also determines r. Hence in this case by (**)

|Rg(j, A, S, c)| ≤ ms−g−|S∩{g+1,...,s}| = ms−|S|.

2. If [g] ⊈ S, set g′ = max([g] \ S). First, note that again by Claim 3.2, there are at

most mg′−1−|S∩{1,...,g′−1}| options for A(j; r)1,...,g′−1 = Ag(j; r; z)1,...,g′−1 as it is an A-

part sequence of length g′−1 subjected to |S∩{1, . . . , g′−1}| constraints. Secondly,
we argue that for every option for A(j; r)g+1,...,s and c(j; r) (and recall that by (**)

there are at most ms−g−|S∩{g+1,...,s}| such) the number of options for c(j; r1,...,g′) is at

most f s−g′ .

To see this, we first note that by the choice of g′, A(j; r)g′+1,...,g = Ag(j; r; z)g′+1,...,g

is fixed as {g′ + 1, . . . , g} ⊆ S, and so every option for A(j; r)g+1,...,s determines

A(j; r)g′+1,...,s. Secondly we, again, consider two cases - for the location of g′, and

see that the number of options for c(j; r1,...,g′) is at most f s−g′ in both of them:

(a) If g′ < g. Since R̃g(j) ⊆ Rg(j), deg(A(j; r)g′+1,...,s; c(j; r)) ≤ f s−g′ , by the

definition of Rg(j). Furthermore, c(j; r1,...,g′) ∈ J(A(j; r)g′+1,...,s; c(j; r)) which

is of size deg(A(j; r)g′+1,...,s; c(j; r)). Hence, there are at most f s−g′ options for

c(j; r1,...,g′).

(b) If g′ = g. Since c(j; r1,...,g) ∈ P (j; c;A(j; r)g+1,...,s; c(j; r)) (since it is a part of a

partition to which both c and c(j; r1,...,g) belong), and |P (j; c;A(j; r)g+1,...,s; c(j; r))| =
f s−g, there are at most f s−g options for c(j; r1,...,g).

Thus, we conclude that there are at mostmg′−1−|S∩{1,...,g′−1}| options forA(j; r)1,...,g′−1,

at most ms−g′−|S∩{g′+1,...,s}| options for A(j; r)g′+1,...,s - and for every fixing of these

options - at most f s−g′ options for c(j; r1,...,g′). Notice that if A(j; r)1,...,g′−1 is given,

then c(j; r1,...,g′−1) is known (as r1,...,g′−1 is known). If c(j; r1,...,g′−1) is known then for

every option for c(j; r1,...,g′) there is one option for A(j; r)g′ (since knowing c(j; r1,...,g′)

further determines rg′). Hence, there are at most mg′−1−|S∩{1,...,g′−1}| options for

A(j; r)1,...,g′−1, at most ms−g′−|S∩{g′+1,...,s}| options for A(j; r)g′+1,...,s - and for every

fixing of these - at most f s−g′ options for A(j; r)g′ . We conclude that in the case

that [g] ⊈ S:

|Rg(j, A, S, c)| ≤ mg′−1−|S∩{1,...,g′−1}|ms−g′−|S∩{g′+1,...,s}|f s−g′

=ms−1−|S∩{1,...,s}|f s−g′

ms−1−|S|f s−g′ ,

where we used the fact that g′ /∈ S by its definition.
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We have thus shown the two cases of the inequality, and the claim follows.

The following claim bounds the sequences that are close to the B-part.

Claim 3.11.

|Rg(j, B, S)| ≤ ms−|S|.

Proof. follows directly from Claim 3.2.

3.3 Decoding sequences and random sets

In this part we will define a bipartite graph for every j ∈ [n], whose edges will correspond

to extended decoding sequences of j and so they can be used in correcting j. The aim is

to show that each such graph contains a large matching.

Before we define these graphs, we require some set up. Again in this subsection we

assume n ∈ N and m ≤ n. We will also assume nm sets {Qj
r}j∈[n],r∈[m] which are as in

Section 3.1, and satisfy guarantee (*). Further, we fix s and ℓ to be some parameters to

be chosen later, and we will assume that ℓ = o(n) and

s = O
(n
ℓ

)
. (3.1)

We set

f = e0

(
1 +

mℓ

n

)
(3.2)

for a small enough universal constant e0 < 1. Moreover we will assume that s, ℓ satisfy(
e0

(
1 +

mℓ

n

))s

> m. (3.3)

For every j ∈ [n] we choose g(j) ∈ [s] to be one that satisfies Claim 3.5 with respect to s,

f (and j). In a slight abuse of notation we will write g as short for g(j) but it will always

be in contexts where j is specific.

We now define a relation which we will use in defining the edges of the graphs, and a

couple of notations.

Definition 3.12. Let

A = (a1, . . . , as) ∈ [n]s, B = (b1, . . . , bs) ∈ [n]s, c ∈ [n],

L = (L1, . . . , Ls, Ls+1) ∈
(
[n]

ℓ

)s

× [n], L′ = (L′
1, . . . , L

′
s) ∈

(
[n]

ℓ

)s

.
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We write A ⊆ L if a1 ∈ L1, . . . , as ∈ Ls, B ⊆ L′ if b1 ∈ L′
1, . . . , bs ∈ L′

s; c ⊆ L if Ls+1 = c.

Further, we write L ∼A,B,c L
′ if A, c ⊆ L and

L′
1 = (L1 \ {a1}) ∪ {b1}, . . . , L′

s = (Ls \ {as}) ∪ {bs} (3.4)

(which implies B ⊆ L′). Moreover, we write (B \ A) ∩ L = ∅ if for every h ∈ [s], if

ah ̸= bh, bh /∈ Lh, and (A \B) ∩ L′ = ∅ if for every h ∈ [s], if ah ̸= bh, ah /∈ L′
h. We note

that if L ∼A,B,c L
′ and L,L′ are from the above sets, it follows that (B \ A) ∩ L = ∅ as

otherwise some L′
h would have been of size smaller than ℓ, and also that (A \B)∩L′ = ∅

(which follows directly from Equation (3.4)).

We also define two probabilities.

Definition 3.13. For r ∈ R̃g(j), z ∈ [f s−g],

pgA(j; r; z) = Pr
L
[Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z)) ∩ L = ∅]

pgB(j; r; z) = Pr
L′
[Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅],

where L ∈
(
[n]
ℓ

)s × [n], L′ ∈
(
[n]
ℓ

)s
are uniformly random.

It is easy to bound these probabilities.

Claim 3.14. For any r ∈ R̃g(j), z ∈ [f s−g],

1

n

(
ℓ

n

)s

≥ pgA(j; r; z) ≥
1

n

(
ℓ

n

)s(
1− ℓ− 1

n− 1

)s

,(
ℓ

n

)s

≥ pgB(j; r) ≥
(
ℓ

n

)s(
1− ℓ− 1

n− 1

)s

.

The simple proof for Claim 3.14 is in the appendix. We continue with considering two

more conditional probabilities and bound them in the two following claims.

Definition 3.15. For A ∈ [n]s, B ∈ [n]s, c ∈ [n], r ∈ R̃g(j) and z ∈ [f s−g] define

pgA(j; r; z | A,B, c) = Pr
L
[Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z) ∩ L) = ∅

| A, c ⊆ L ∧ (B \ A) ∩ L = ∅],
pgB(j; r; z | A,B) = Pr

L′
[Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅

| B ⊆ L′ ∧ (A \B) ∩ L′ = ∅],

where L ∈
(
[n]
ℓ

)s × [n], L′ ∈
(
[n]
ℓ

)s
are uniformly random.
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Claim 3.16. Let A ∈ [n]s, c ∈ [n], r ∈ R̃g(j), z ∈ [f s−g], and S ⊆ [s] be such that for

h /∈ S, Ag(j; r; z)h ̸= Ah. Then

pgA(j; r; z | A,B, c) ≤


(
ℓ
n

)s−|S|
if cg(j; r; z) = c

0 if cg(j; r; z) ̸= c.

Claim 3.17. Let B ∈ [n]s, r ∈ R̃g(j) and S ⊆ [s] be such that for h /∈ S, Bg(j; r)h ̸= Bh.

Then for every z ∈ [f s−g]

pgB(j; r; z | A,B) ≤
(
ℓ

n

)s−|S|

.

The proofs for the two claims are in the appendix.

We can now define the graphs for every j ∈ [n].

Definition 3.18. For every j ∈ [n] we define two bipartite graphs. The first graph

Gj = (U, V,Ej) is defined as follows. The left and right vertices are U =
(
[n]
ℓ

)s × [n] and

the right vertices are V =
(
[n]
ℓ

)s
. For every r ∈ R̃g(j), z ∈ [f s−g], we define the following

set of edges

Ej,r,z = {(L,L′) ∈ U × V | L ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) L
′}.

We say that the edges in Ej,r,z are colored with r, z. The set of edges Ej of Gj is achieved

by appending all edges Ej,r,z of each color r, z, allowing multiple edges.

The second graph is G̃j = (U, Ṽ , Ẽj) and it is obtained by duplicating each right vertex

of Gj so that it will have n copies, duplicating each edge into as many copies as well.

Denote N = |U | = |Ṽ |.

We note that for every j ∈ [n] we can characterize the set of edges of each color r, z,

as we have the following claim.

Claim 3.19. For every r, z, Ej,r,z is a perfect matching between

Uj,r,z = {L | Ag(j; r; z), cg(j; r; z) ⊆ L ∧ (Bg(j; r) \ Ag(j; r; z)) ∩ L = ∅} ⊆ U

and

Vj,r,z = {L′ | Bg(j; r) ⊆ L′ ∧ (Ag(j; r; z) \Bg(j; r)) ∩ L′ = ∅} ⊆ V

of size pgA(j; r; z)n
(
n
ℓ

)s
= pgB(j; r)

(
n
ℓ

)s
.

Proof. Denote A = (a1, . . . , as) = Ag(j; r; z), B = (b1, . . . , bs) = Bg(j; r) and c =

cg(j; r; z). The claim follows immediately by the definitions as, first, for every L =

(L1, . . . , Ls+1) ∈ Uj,r,z there is exactly one L′ = (L′
1, . . . , L

′
s) such that (L,L′) ∈ Ej,r,z:
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L′ = ((L1 \ {a1}) ∪ {b1}, . . . , (Ls \ {as}) ∪ {bs}), and indeed L′ ∈ Vj,r,z, since B ⊆ L′,

and for every h ∈ [s] if ah ̸= bh then ah /∈ L′, and lastly L′ ∈
(
[n]
ℓ

)s
since for ev-

ery h we removed ah and added bh, and bh /∈ Lh if ah ̸= bh. Similarly, for every

L′ = (L′
1, . . . , L

′
s) ∈ Vj,r,z there is exactly one L = (L1, . . . , Ls+1) such that (L,L′) ∈ Ej,r,z:

L = ((L′
1 \ {b1}) ∪ {a1}, . . . , (L′

s \ {bs}) ∪ {as}, c), and indeed L ∈ Uj,r,z. Lastly, for every

(L,L′) ∈ Ej,r,z, L ∈ Uj,r,z and L′ ∈ Vj,r,z.

The claimed size of the matching follows as |Uj,r,z| = pgA(j; r; z)
(
n
ℓ

)s
n and |Vj,r,z| =

pgB(j; r)
(
n
ℓ

)s
by the definitions of pgA(j; r; z) and pgB(j; r).

Using this claim, we can see what are the average degrees of the graphs. Set for

j ∈ [n]11

∆(j) = f s−g

(
mℓ

n

)s

. (3.5)

We will write ∆ as short for ∆(j) but it will always be in contexts where j is specific. For

every j ∈ [n], Claim 3.19, Claim 3.14 with Equation (3.1) and Claim 3.5 imply that the

average degree of the left side of Gj is∑
r∈R̃g(j),z∈[fs−g ]

pgA(j; r; z) = |R̃g(j)|f s−gΘ

(
1

n

(
ℓ

n

)s)
∈
[
Ω

(
1

sn
∆

)
, O

(
1

n
∆

)]
, (3.6)

by Claim 3.5 and Claim 3.7, and the average degree of the right side is∑
r∈R̃g(j),z∈[fs−g ]

pgB(j; r; z) = |R̃g(j)|f s−gΘ

((
ℓ

n

)s)
∈
[
Ω

(
1

s
∆

)
, O(∆)

]
.

In what follows we argue that there are many edges that touch vertices whose degree

is close to the average degree (of their side).

Definition 3.20. For every j ∈ [n] we define

E ′
j =

{
(L,L′) ∈ Ej | degGj

(L) ≤ w0

(
1 +

n

mℓ

)s 1

m
∆

}
E ′′

j = {(L,L′) ∈ Ej | degGj
(L′) ≤ w0

(
1 +

n

mℓ

)s
∆}

for some large enough universal constant w0.

The fact that there are many edges touching vertices with degree close to average will

follow by the fact that this holds within each color.

11Recall that g = g(j) is j-specific.
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Proposition 3.21. Define for every r, z,

E ′
j,r,z =

{
(L,L′) ∈ Ej,r,z | degGj

(L) ≤ w0

(
1 +

n

mℓ

)s 1

m
∆

}
.

Then |E ′
j,r,z| ≥ 2

3
|Ej,r,z|.

Proposition 3.22. Define for every r, z,

E ′′
j,r,z = {(L,L′) ∈ Ej,r,z | degGj

(L′) ≤ w0

(
1 +

n

mℓ

)s
∆}.

Then |E ′′
j,r,z| ≥ 2

3
|Ej,r,z|.

Before we prove Proposition 3.21 and Proposition 3.22 we conclude that they imply

that there exists a large matching in G̃j. First we note that indeed the above bounds

for each color, and for each side separately, imply many such edges in Gj that satisfy the

requirement on both of their sides.

Claim 3.23. For every j, |E ′
j ∩ E ′′

j | ≥ 1
3
|Ej|.

Proof. For every r, z, by Proposition 3.21 and Proposition 3.22, |E ′
j,r,z ∩E ′′

j,r,z| ≥ 1
3
|Ej,r,z|.

As all edges in E ′
j,r,z ∩E ′′

j,r,z are in E ′
j ∩E ′′

j , and edges corresponding to different r, z have

different colors, the claim follows.

We conclude that there is indeed a large matching in each G̃j.

Lemma 3.24. G̃j contains a matching Mj ⊆ Ẽj of size Ω

(
1

(1+ n
mℓ)

s
m
sn
N

)
.

Proof. To show that it contains a large matching, we won’t use all the edges of G̃j.

Rather, we will consider a subset Ẽ ′
j ⊆ Ẽj, which is chosen as follows. Recall that every

edge of G̃j is induced by an edge of Gj. First, we will only consider edges induced from

an edge e in Gj such that e ∈ E ′
j ∩ E ′′

j . Secondly, we will only use one of the n copies

of e in G̃j. Specifically, for every L′ which is the right end of such edge, we have that

degGj
(L′) ≤ w0

(
1 + n

mℓ

)s
∆, and so we will arbitrarily split the set of edges touching L′

into at most n parts, indexed by 1, 2, . . . , of size at most 1
n
w0

(
1 + n

mℓ

)s
∆. For every such

part i we add to Ẽ ′
j the induced edges touching (i, L′) ∈ Ṽ . In that way, we ensure that

the maximal right degree in Ẽ ′
j is at most 1

n
w0

(
1 + n

mℓ

)s
∆. As we take every edge in

E ′
j ∩E ′′

j exactly once, |Ẽ ′
j| = |E ′

j ∩E ′′
j |, and the maximal left degree is, like in E ′

j, at most

w0

(
1 + n

mℓ

)s 1
m
∆. Notice that as m ≤ n, both the left and right degrees in Ẽ ′

j are at most
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w0

(
1 + n

mℓ

)s 1
m
∆. Hence, there is a matching Mj ⊆ Ẽ ′

j ⊆ Ẽj of size at least

Ω

(
|E ′

j ∩ E ′′
j |(

1 + n
mℓ

)s 1
m
∆

)
= Ω

(
1
3
|Ej|(

1 + n
mℓ

)s 1
m
∆

)

= Ω

(
1
sn
∆N(

1 + n
mℓ

)s 1
m
∆

)

= Ω

(
1(

1 + n
mℓ

)s m
sn

N

)
by Equation (3.6) and Claim 3.23. As required.

We now prove Proposition 3.21 and Proposition 3.22.

Proof for Proposition 3.21. Denote A = Ag(j; r; z), B = Bg(j; r) and c = cg(j; r; z).

Using Claim 3.19 |Ej,r,z| = |Uj,r,z| for Uj,r,z = {L | A, c ⊆ L ∧ (B \ A) ∩ L = ∅},
and |E ′

j,r,z| = |{L ∈ Uj,r,z | degGj
(L) ≤ w0

(
1 + n

mℓ

)s 1
m
∆}|, where w0 is a large enough

constant. Thus, by Markov’s inequality, to conclude the proposition it is enough to show

that

E
L|A,c⊆L∧(B\A)∩L=∅

[degGj
(L)] = O

((
1 +

n

mℓ

)s 1

m
∆

)
.

Indeed, using Claim 3.16,

E
L|A,c⊆L

∧(B\A)∩L=∅

[degGj
(L)] = E

L|A,c⊆L
∧(B\A)∩L=∅

 ∑
r∈R̃g(j),z∈[fs−g ]

I Ag(j;r;z),cg(j;r;z)⊆L
∧(Bg(j;r)\Ag(j;r;z))∩L=∅


=

∑
r∈R̃g(j),z∈[fs−g ]

pgA(j; r; z | A,B, c)

=
∑
S⊆[s]

( ∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

pgA(j; r; z | A,B, c)

+
∑
c′ ̸=c

∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

pgA(j; r; z | A,B, c)

)

≤
∑
S⊆[s]

∑
r,z∈{r,z|{h∈[s]|Ag(j;r;z)h=Ah}=S,

cg(j;r;z)=c}

(
ℓ

n

)s−|S|

≤
∑
S⊆[s]

|Rg(j, A, S, c)|
(
ℓ

n

)s−|S|

,

where recall that the definition of Rg(j, A, S, c) as per Definition 3.9 is all the instructions

that result in agreement on the reminder c, and on AS (the last transition is an inequality
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because in Rg(j, A, S, c) we don’t insist on disagreement outside S). We invoke Claim 3.10

to bound the above sum. We first consider the part of the sum, which is over sets that

contain [g], that is S = [g] ∪ S ′ for some S ′ ⊆ [s] \ [g],

∑
S′⊆[s]\[g]

(
|Rg(j, A, [g] ∪ S ′, c)|

(
ℓ

n

)s−g−|S′|
)

≤
∑

S′⊆[s]\[g]

ms−g−|S′|
(
ℓ

n

)s−g−|S′|

=

(
1 +

mℓ

n

)s−g

.

The other part of the sum, over sets which don’t contain [g], again by Claim 3.10, is

bounded by

∑
[g]⊈S⊆[s]

(
|Rg(j, A, S, c)|

(
ℓ

n

)s−|S|
)

≤
∑

[g]⊈S⊆[s]

ms−|S|−1f s−max([g]\S)
(
ℓ

n

)s−|S|

=
1

m

∑
[g]⊈S⊆[s]

f s−max([g]\S)
(
mℓ

n

)s−|S|

:=α(g).

We continue by bounding α(g) for g ∈ [s]. This time, splitting the sets according to

b = max([g] \ S), that is writing S = S ′ ∪ {b+ 1, . . . , g} for some S ′ ⊆ [b− 1] ∪ ([s] \ [g]).
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Writing α(g) in such manner we get that

α(g) =
1

m

∑
b∈[g]

∑
S′⊆[b−1]∪([s]\[g])

f s−b

(
mℓ

n

)s−(g−b)−|S′|

=
1

m

(
mℓ

n

)∑
b∈[g]

f s−b
∑

S′′⊆[s−(g−b+1)]

(
mℓ

n

)|S′′|

=
1

m

(
mℓ

n

)∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)−1

=
1

m

(
mℓ
n

1 + mℓ
n

)∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)

≤ 1

m

∑
b∈[g]

f s−b

(
1 +

mℓ

n

)s−(g−b)

=
1

m
f s−g

(
1 +

mℓ

n

)s∑
b∈[g]

f g−b

(
1 +

mℓ

n

)−(g−b)

=
1

m
f s−g

(
1 +

mℓ

n

)s g−1∑
b=0

f b

(
1 +

mℓ

n

)−b

.

And, we continue by plugging Equation (3.2), and we see that

α(g) ≤ 1

m
f s−g

(
1 +

mℓ

n

)s

·O(1),

We conclude that, recalling ∆’s definition in Equation (3.5),

E
L|A,c⊆L∧(B\A)∩L=∅

[degGj
(L)] ≤

(
1 +

mℓ

n

)s−g

+ α(g)

=

(
1 +

mℓ

n

)s−g

+
1

m
f s−g

(
1 +

mℓ

n

)s

·O(1)

=
1

m
f s−g

(
1 +

mℓ

n

)s

·O(1)

= O

((
1 +

n

mℓ

)s 1

m
∆

)
,

where the second equality is by Equation (3.3). The proposition follows.

Proof for Proposition 3.22. Denote A = Ag(j; r; z) and B = Bg(j; r). Using Claim 3.19

|Ej,r,z| = |Vj,r,z| for Vj,r,z = {L′ | B ⊆ L′ ∧ (A \ B) ∩ L′ = ∅}, and |E ′′
j,r,z| = |{L′ ∈ Vj,r,z |

degGj
(L′) ≤ w0

(
1 + n

mℓ

)s
∆}|, where w0 is a large enough constant. Thus, by Markov’s
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inequality, to conclude the proposition it is enough to show that

E
L′|B⊆L′∧(A\B)∩L′=∅

[degGj
(L′)] = O

((
1 +

n

mℓ

)s
∆
)
.

Indeed,

E
L′|B⊆L′∧(A\B)∩L′=∅

[degGj
(L)] = E

L′|B⊆L′∧(A\B)∩L′=∅

 ∑
r∈R̃g(j),z∈[fs−g ]

I Bg(j;r)⊆L′

∧(Ag(j;r;z)\Bg(j;r))∩L′=∅


=

∑
r∈R̃g(j),z∈[fs−g ]

pgB(j; r; z | A,B)

∑
S⊆[s]

∑
z∈[fs−g ]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

pgB(j; r; z | A,B)

≤
∑
S⊆[s]

∑
z∈[fs−g ]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

(
ℓ

n

)s−|S|

= f s−g
∑
S⊆[s]

∑
r∈{r|

{h∈[s]|Bg(j;r)h=Bh}=S}

(
ℓ

n

)s−|S|

,

where the inequality follows by Claim 3.17. We continue, noting that the above is bounded

above by

f s−g
∑
S⊆[s]

|Rg(j, B, S)|
(
ℓ

n

)s−|S|

≤ f s−g
∑
S⊆[s]

ms−|S|
(
ℓ

n

)s−|S|

,

= f s−g

(
1 +

mℓ

n

)s

=
(
1 +

n

mℓ

)s
∆,

where the inequality is using Claim 3.11. The proposition follows.

3.4 Deducing the bound

Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-LCC. Set m = δn
3
. Without loss of generality,

by Fact 2.1 for every i ∈ [k], C(x)i = xi ∀x. By Fact 2.3 there exist sets Qj
r |j∈[n],r∈[m] of

size at most 3, such that for every j ∈ [n], the m sets Qj
w |w∈[m] are disjoint, and for every

w ∈ [m],

C(x)j =
∑
j′∈Qj

w

C(x)j′ . (3.7)
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Without loss of generality the sets Qj
r |j∈[n],r∈[m] are of size exactly 3 (we can add zero

coordinates, at worst doubling n).

Let s and ℓ be parameters. Set U = {0} ×
(
[n]
ℓ

)s × [n] and V = {1} ×
(
[n]
ℓ

)s × [n]. We

define a new code C ′ : {0, 1}k → {0, 1}U∪V as follows. For every x ∈ {0, 1}k

∀u = (0, L1, . . . , Ls, c) ∈ U : C(x)u = C(x)c +
∑

t∈[s],j∈Lt

C(x)j.

∀v = (1, L′
1, . . . , L

′
s, c

′) ∈ V : C(x)v =
∑

t∈[s],j∈L′
t

C(x)j.

That is, C ′ is defined on top two coordinate sets which are all the possibilities for s

subsets of [n] of size ℓ, and one more coordinate c in [n]. In each coordinate in the U side,

C ′(x) has the sum of the elements of C(x) which are contained in the chosen sets, and

the element of the extra coordinate. On the V side, C ′(x) has the sum of the elements of

C(x) which are contained in the chosen sets, and the extra coordinate is not used.

Let A(j; r), B(j; r), c(j; r) and Ag(j; r; z), Bg(j; r), cg(j; r; z) |j,g,r,z be the decoding

sequences and extended decoding sequences considered in the previous sections. The

following claim can easily be verified, by inspecting the definition of decoding sequences

and extended decoding sequences, and relaying on Equation (3.7) (a proof is given in the

appendix).

Claim 3.25. For every j ∈ [n],
∑

h∈[s] C(x)A(j;r)h+
∑

h∈[s] C(x)B(j;r)h+C(x)c(j;r) = C(x)j.

Similarly,
∑

h∈[s] C(x)Ag(j;r;z)h +
∑

h∈[s] C(x)Bg(j;r)h + C(x)cg(j;r;z) = C(x)j.

We also observe the following direct implication.

Claim 3.26. Let u = (0, L1, . . . , Ls, c) ∈ U and v = (1, L′
1, . . . , L

′
s, c

′) ∈ U be such that

(L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) where the ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) relation

is as defined in the previous part in Definition 3.12. Then C ′(x)u + C ′(x)v = C(x)j for

every x.

Proof. We argue that

C ′(x)u + C ′(x)v =
∑
h∈S

C(x)Ag(j;r;z)h +
∑
h∈[s]

C(x)Bg(j;r)h + C(x)cg(j;r;z).

To see this, denote Ag(j; r; z) = (a1, . . . , as) and Bg(j; r) = (b1, . . . , bs). By the assump-

tion (L1, . . . , Ls, c) ∼Ag(j;r;z),Bg(j;r),cg(j;r;z) (L
′
1, . . . , L

′
s) we have that c = cg(j; r; z) and for

every h ∈ [s]

C(x)Lh
+ C(x)L′

h
= C(x)Lh

+ C(x)Lh\{ah} + C(x)bh = C(x)ah + C(x)bh

23



and so

C ′(x)u + C ′(x)v =
∑
h∈[s]

C(x)Lh
+ c+

∑
h∈[s]

C(x)L′
h
=
∑
h∈[s]

(ah + bh) + c

and so the claim follows by applying Claim 3.25.

For every j ∈ [n] let G̃j be the bipartite graph defined in the previous section. Note

that |U | = |V | = N and there is a natural isomorphism between the vertices of G̃j and

the coordinates of C ′, given by that every left side vertex L ∈
(
[n]
ℓ

)s × [n] corresponds to

the coordinate u = (0, L) ∈ U , and every right vertex (i, L′) for i ∈ [n] and L′ ∈
(
[n]
ℓ

)s
corresponds to the coordinate v = (1, L′, i) ∈ V . By the previous claim, for every edge

(L, (i, L′)) in G̃j and its corresponding coordinates (u, v), we have that C ′(x)u+C ′(x)v =

C(x)j for every x ∈ {0, 1}k.
We can now apply Lemma 3.24 and conclude that for every j ∈ [n] there is a set of

Ω

(
1(

1 + n
mℓ

)s m
sn

N

)
= Ω

(
1(

1 + 1
δℓ

)s δ
s
N

)

disjoint pairs of coordinates {u, v} of C ′ such that C ′(x)u + C ′(x)v = C(x)j ∀x.
We can now conclude the bound.

Theorem 3.27 (Theorem 1.3, rephrased). Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε)-

LCC. Then k = O
(

1
δ2
log4 n

)
.

Proof. Consider C ′ as defined according to C and note that it is a code of length 2N , where

N = n
(
n
ℓ

)s
. Set δC′ = 1

(1+ 1
δℓ)

s
δ
s
. For every i ∈ [k] there is a set Ω(δC′N) disjoint pairs of

coordinates {u, v} such that C ′(x)u + C ′(x)v = C(x)i = xi ∀x. Hence, by Theorem 2.2,

k = O

(
1

δC′
logN

)
= O

(
1

δC′
sℓ log n

)
.

Thus, if we set ℓ = Θ(1
δ
log n) and s = Θ(log n) then the assumption in Equation (3.3) is

met, and as
(
1 + 1

δℓ

)s
= O(1), δC′ = Ω( δ

s
). We get that

k = O

(
1

δ
s2ℓ log n

)
= O

(
1

δ2
log4 n

)
,

as required.
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A The case of design LCC

In this part we prove Theorem 1.6. We start by restating the definition of design LCC.

Definition A.1. We say that a (q, δ, ε)-LCC is a design LCC if there exists a randomized

procedure satisfying the requirements in Definition 1.1 and further: For every distinct pair

of coordinates a, c ∈ [n], there are at most O(1) j’s such that a and c can both be queried

by invoking (once) the procedure to correct j.

Let C : {0, 1}k → {0, 1}n be a linear (3, δ, ε) design LCC. Set m = δn
3
. It follows by

the proof for Fact 2.3 that there exist sets Qj
r |j∈[n],r∈[m] of size at most 3, such that for

every j ∈ [n], the m sets Qj
w |w∈[m] are disjoint, and for every w ∈ [m],

C(x)j =
∑
j′∈Qj

w

C(x)j′ ,

and further, for every distinct a, c ∈ [n],

|{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆ Qj
w}| ≤ O(1). (A.1)

We now notice the following fact, which takes more care in proving than in the non-

design case.

Claim A.2. We can assume without loss of generality that the sets Qj
r |j∈[n],r∈[m] are of

size exactly 3.

Proof. We show that we can add some O(n) coordinates to C and {Qj
w}, such that each

set is of size 3, without invalidating Equation (A.1) (and the other assumed properties).

We first wish to argue that by adding O(n) zero coordinates we can increase by 1 the

size of every Qj
w for which |Qj

w| < 3 while maintaining Equation (A.1). If indeed we can

do that, after doing it once we will do it once more, and be done.

Towards that, we first argue that we can add n′ ∈ [n, 4n] zero coordinates that satisfy

the requirements. We do this by adding n′ = 4⌈
1
2
logn⌉ zero coordinates, o1, . . . , on′ to
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C. We identify {o1, . . . , on′} with (F4)
⌈ 1
2
logn⌉ and we denote by L the set of all lines in

(F4)
⌈ 1
2
logn⌉12. For every j ∈ [n′], we construct {Qoj

w }w by taking all lines that pass through

oj, and for each such line ℓ = {oj, oj1 , oj2 , oj3} we define the set Q
oj
ℓ = {oj1 , oj2 , oj3}. We

then take the first m lines ℓ1, . . . , ℓm and for every w ∈ [m] we set Q
oj
w = Q

oj
ℓw
. Notice that

the number of such lines is n′−1
3

≥ n−1
3

> m and so there are enough lines. Thus, the zero

coordinates we added {o1, . . . , on′} have sets {Qoj
w } of size exactly 3, for every oj the sets

are disjoint since its lines are disjoint. Moreover, Equation (A.1) holds with regards to

{o1, . . . , on′} since every pair of coordinates is contained in one line ℓ = {oj1 , oj2 , oj3 , oj4}.
We use the n coordinates {o1, . . . , on} to increase the size of too small sets, as follows.

For every j, w such that |Qj
w| < 3 we arbitrarily choose a ∈ Qj

w (if |Qj
w| = 1 there is

only one choice, otherwise there are two13), and we set Q′j
w = Qj

w ∪ {o1+(j+a mod n)}. We

argue that in doing this, we maintained Equation (A.1). Indeed, every pair x, y such

that x, y /∈ {o1, . . . , on} satisfied Equation (A.1) before and still does. So is the case

if x, y ∈ {o1, . . . , on}. Now, for a pair x /∈ {o1, . . . , on} and y ∈ {o1, . . . , on} such that

{x, y} ⊆ Qj
w for some j and w, we have that either y = o1+(x+j mod n) or y = o1+(z+j mod n)

for z ∈ Qj
w. The first case can only occur for one j, since (x+j mod n) ̸= (x+j′ mod n)

if j ̸= j′. The second case can only occur for O(1) j’s, because for every j that satisfies

it, there is some w such that {x, z} ⊆ Qj
w, and so by Equation (A.1).

Thus we have shown that we can increase by 1 the size of too small sets, while main-

taining the properties, by adding O(n) zero coordinates. The claim follows.

The saving in the design case will follow by that we argue that we can reduce to the

case that for every g, A ⊆ [n]s−g, c ∈ [n], deg(A; c) ≤ 1. We first require the following

lemma which addresses the degree of suffixes of length 1.

Lemma A.3. Assume that for every distinct a, c ∈ [n], |{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆
Qj

w}| ≤ O(1). Then, given that m = ω(log n), there is a way to order each Qj
w as three

parts A(j;w), B(j;w), c(j;w) such that for every j ∈ [n], |{w ∈ [m] | deg(A(j;w); c(j;w)) =
1}| = Ω(m).14 15

Proof. The proof is by the probabilistic method.16 We assume that for every distinct

a, c ∈ [n], |{j ∈ [n] | ∃w ∈ [m] : {a, c} ⊆ Qj
w}| ≤ y0 for some constant y0. For every j ∈ [n]

12That is, L = {{At+B | t ∈ F4} | A,B ∈ (F4)
⌈ 1
2 logn⌉}.

13We can assume without loss of generality that there are no query sets of size 0 since without loss of

generality (the original) C doesn’t contain coordinates fixed to zero (removing such coordinates can only

improve the parameters of the LCC, so we first remove them and then apply the transformation in the

proof).
14This can be generalized for larger q’s as well.
15The Ω(m) bound can be meaningful only for m large enough.
16Note that a naive greedy approach could lead to some j’s losing many (or all) or their sets.
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and w ∈ [m] we choose a uniformly random ordering {A(j;w), B(j;w), c(j;w)} = Qj
w.

Notice that given that we chose a specific ordering {A(j;w), B(j;w), c(j;w)} for Qj
w, the

probability that deg(A(j;w); c(j;w)) > 1 is bounded above by a constant smaller then 1.

Indeed, there are at most y0 − 1 j′ ∈ [n] \ {j} such that {A(j;w), c(j;w)} ⊆ Qj′

w′ for some

w′. Note that deg(A(j;w); c(j;w)) > 1 only if for one of those we chose A(j′;w′) = A(j;w)

and c(j′;w′) = c(j;w), and the probability that this occurs for (j′, w′) is less than 1
q
(it is

1
6
in the case that q = 3). Since there are at most y0− 1 such j’s, and their corresponding

events are independent, the probability that deg(A(j;w); c(j;w)) > 1 is bounded by

α := 1− (1− 1
q
)y0−1 < 1, which is a constant.

Fix some j ∈ [n]. We bound the probability pj that |{w ∈ [m] | deg(A(j;w); c(j;w)) >
1}| >

√
αm. From the above, E[

∑
w∈[m] Ideg(A(j;w);c(j;w))>1] ≤ αm. Notice that for

w ̸= w′, the events deg(A(j;w); c(j;w)) > 1 and deg(A(j;w′); c(j;w′)) > 1 are not

necessarily independent, rather, they are negatively correlated, as A(j;w′) ̸= A(j;w) and

c(j;w′) ̸= c(j;w). By the Chernoff bound for negatively correlated random variables,

pj = Pr[
∑

w∈[m] Ideg(A(j;w);c(j;w))>1 >
1√
α
αm] ≤ 2−Ω(m).

Hence, taking a union bound over all j ∈ [n], the probability that for some j ∈ [n],

|{w ∈ [m] | deg(A(j;w); c(j;w)) > 1}| >
√
αm, is bounded by n2−Ω(m) = o(1) per the

assumption on m. The lemma follows.

Notice that we can indeed assume m = ω(log n) as in the hypothesis of the lemma,

since if m = O(log n) then δ = O( logn
n

) and the bound in Theorem 1.6 holds trivially.

Therefore, without loss of generality, we will assume that the ordering of {Qj
w} from which

the decoding sequences are defined satisfies Lemma A.3.

We now note that the above implies that the degree of every suffix is bounded by 1

(and not only for suffixes of length 1).

Claim A.4. If for every a, c ∈ [n], deg(a; c) ≤ 1, then for every g ∈ [s], A ∈ [n]s−g and

c ∈ [n], deg(A; c) ≤ 1.

Proof. The proof is by induction. The base case for g = s holds trivially by the defi-

nitions. As for the induction step, for every g < s, for every j such that there exists

r ∈ [m]s−g for which A(j; r) = A and c(j; r) = c, we have that for j′ = c(j; r1) it holds

that A(j′; r2,...,s−g) = A2,...,s−g and c(j′; r2,...,s−g) = c. By the induction hypothesis, there is

at most one j′ for which this holds. But, we also must have that A(j; r)1 = A(j; r1) = A1.

So j must satisfy A(j; r1) = A1 and c(j; r1) = j′, and so as deg(A1; j
′) ≤ 1 per the

assumption, there is at most one such j.

We can now deduce the theorem.
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Proof for Theorem 1.6. Exactly the same as the proof for Theorem 3.27, except for the

following. In the proof for Theorem 3.27 we got that there is a set of disjoint pairs of size

Ω

(
1

(1+ 1
δℓ)

s
δ
s
N

)
. The 1

s
factor in the expression was inherited from applying Claim 3.5

and Claim 3.7 by Section 3.3 to argue that |R̃g(j)| ≥ 1
2
|Rg(j)| = Ω(1

s
ms) for every j (in

Equation (3.6)). In our current case, we note that we can just take g = s for every j and

get larger R̃g(j)’s. Indeed, since deg(A; c) ≤ 1 for every suffix A; c, Rs = [m]s, where Rs

is as defined in Definition 3.4, and so |R̃s(j)| = Ω(ms).

Thus, in our case, we do not lose the 1
s
factor and for every i ∈ [k] there is a set

of disjoint pairs of size Ω

(
1

(1+ 1
δℓ)

s δN

)
. Setting the same ℓ and s as in the proof for

Theorem 3.27, we get that

k = O

(
1

δ
sℓ log n

)
= O

(
1

δ2
log3 n

)
.

The theorem follows.

B Easy claims - proofs

Proof for Claim 3.14. Denote Ag(j; r; z) = (a1, . . . , as), B
g(j; r) = (b1, . . . , bs) and

cg(j; r; z) = c. Since L = (L1, . . . , Ls, Ls+1) ∈
(
[n]
ℓ

)
× [n] is a product we can bound

separately for h ∈ [s] that probability ph that ah ∈ Lh and bh /∈ Lh if ah ̸= bh. We

see that ℓ
n

(
1− ℓ−1

n−1

)
≤ ph ≤ ℓ

n
: the probability that ah ∈ Lh is ℓ

n
and if ah ̸= bh,

ph = ℓ
n
· PrLh

[bh /∈ L \ {ah} | ah ∈ L] = ℓ
n
·
(
1− ℓ−1

n−1

)
. Hence, as the probability that

Ls+1 = c is 1
n
, 1

n

(
ℓ
n

)s · (1− ℓ−1
n−1

)s ≤ pgA(j; r; z) ≤ 1
n

(
ℓ
n

)s
. Similarly for pgB(j; r; z).

Proof for Claim 3.16. Clearly if cg(j; r; z) ̸= c the conditional probability is zero since we

conditioned on Ls+1 = c. If cg(j; r; z) = c, then pgA(j; r; z | A,B, c) ≤
∏

h∈[s]\S ph where

for h ∈ [s] \ S, ph := PrLh
[Ag(j; r; z)h ∈ Lh | Ah ∈ Lh] =

ℓ−1
n−1

< ℓ
n
, as Ag(j; r; z)h ̸= Ah

for h /∈ S. Thus pgA(j; r; z | A,B, c) ≤
(
ℓ
n

)|S|−s
.

Proof for Claim 3.17. Identical to the case that cg(j; r; z) = c in the previous proof.

Proof for Claim 3.25. The proof that
∑

h∈[s] C(x)A(j;r)h +
∑

h∈[s] C(x)B(j;r)h +C(x)c(j;r) =

C(x)j is by inspecting Definition 3.1 and by induction on s. For s = 0, the two summations
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are zero and C(x)c(j;r) = C(x)j. For s > 0,∑
h∈[s]

C(x)A(j;r)h +
∑
h∈[s]

C(x)B(j;r)h + C(x)c(j;r)

=C(x)A(j;r)1 + C(x)B(j;r)1 +
∑

h∈{2,...,s}

C(x)A(j;r)h +
∑

h∈{2,...,s}

C(x)B(j;r)h + C(x)c(j;r)

=C(x)A(j;r1) + C(x)B(j;r1)+∑
h∈[s−1]

C(x)A(c(j;r1);r2,...,s)h +
∑

h∈[s−1]

C(x)B(c(j;r1);r2,...,s)h + C(x)c(c(j;r1);r2,...,s)

= C(x)A(j;r1) + C(x)B(j;r1) + C(x)c(j;r1)

= C(x)j,

where the penultimate equality is by the induction hypothesis, and the last equality is as

{A(j; r1), B(j; r1), c(j; r1)} = Qj
r1

and by Equation (3.7).

The proof that
∑

h∈[s] C(x)Ag(j;r;z)h +
∑

h∈[s]C(x)Bg(j;r)h + C(x)cg(j;r;z) follows by in-

specting Definition 3.8 noting that for j′ = P (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z and

r′ = T (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z we have that∑
h∈[s]

C(x)Ag(j;r;z)h + C(x)cg(j;r;z)

=
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)B(j′;r′)h + j′

=
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)A(j′;r′)h +
∑

h∈[s−g]

C(x)B(j′;r′)h + C(x)c(j′;r′)h + j′

−
∑

h∈[s−g]

C(x)A(j′;r′)h − C(x)c(j′;r′)

=
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈[s−g]

C(x)A(j′;r′)h + C(x)c(j′;r′)

=
∑
h∈[g]

C(x)A(j;r)h +
∑

h∈{g+1,...,s}

C(x)A(j;r)h + C(x)c(j;r)

= C(x)j,

where the penultimate equality is by the definitions of P (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z

and T (j; c(j; r1,...,g);A(j; r)g+1,...,s; c(j; r))z.
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