
Strong vs. Weak Range Avoidance and the Linear Ordering

Principle

Oliver Korten∗ and Toniann Pitassi†

April 10, 2024

Abstract

In a pair of recent breakthroughs [CHR24, Li24] it was shown that the classes SE2 ,ZPE
NP,

and ΣE
2 require exponential circuit complexity, giving the first unconditional improvements to a

classical result of Kannan [Kan82]. These results were obtained by designing a surprising new
algorithm for the total search problem Range Avoidance: given a circuit C : {0, 1}n → {0, 1}n+1,
find an n + 1-bit string outside its range. Range Avoidance is a member of the class TFΣP

2 of
total search problems in the second level of the polynomial hierarchy, analogous to its better-
known counterpart TFNP in the first level. TFΣP

2 was only recently introduced in [KKMP21]
and its structure is not well understood. We investigate here the extent to which algorithms of
the kind in [CHR24, Li24] can be applied to other search problems in this class, and prove a
variety of results both positive and negative.

On the positive side we show that Li’s Range Avoidance algorithm [Li24] can be improved
to give a reduction from Range Avoidance to a natural total search problem we call the Linear
Ordering Principle or “LOP”: given a circuit ≺: {0, 1}n ×{0, 1}n → {0, 1} purportedly defining
a total order on {0, 1}n, find either a witness that ≺ is not a total order or else a minimal element
in the ordering. The problem LOP is quite interesting in its own right, as it defines a natural
syntactic subclass “LP2 ” of SP2 which nonetheless maintains most of the interesting properties of
SP2 ; in particular we show that LP2 contains MA and that its exponential analogue LE2 requires
2n/n size circuits. Both of these are consequences of our reduction from Range Avoidance to
LOP.

On the negative side we prove that the algorithms developed in [CHR24, Li24] cannot be
extended to Strong Range Avoidance, a problem considered in the same paper which first intro-
duced Range Avoidance [KKMP21]. In this problem we are given a circuit C : {0, 1}n \ {0n} →
{0, 1}n, and once again seek a point outside its range. We give a separation in the decision tree

(oracle) model showing that this problem cannot be solved in FP
ΣP

2

|| , which in particular rules

out all of the new kinds of algorithms considered in [CHR24, Li24]. This black box separation
is derived from a novel depth 3 AC0 circuit lower bound for a total search problem, which we
believe is of independent interest from the perspective of circuit complexity: we show that unlike
previous depth 3 lower bounds, ours cannot be proven by reduction from a decision problem,
and thus requires new techniques specifically tailored to total search problems. Proving lower
bounds of this kind was recently proposed by Vyas and Williams in the context of the original
(Weak) Avoid problem [VW23].

∗Columbia University. oliver.korten@columbia.edu
†Columbia University. tonipitassi@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 76 (2024)

mailto:oliver.korten@columbia.edu
mailto:tonipitassi@gmail.com

1 Introduction

One of the central problems in complexity theory is to prove strong lower bounds on the size of
boolean circuits computing some explicit function f : {0, 1}n → {0, 1}; by a classical result of
Shannon, most such functions f require circuits of size 2n/n. In the original formulation of this
problem, “explicit” meant f ∈ NP, since in this case case proving a lower bound nω(1) would
separate the classes P and NP. It was soon realized that this problem remains difficult even for
much weaker definitions of “explicit,” i.e. if we broaden our search for high circuit complexity
functions to a much larger uniform complexity class than NP.

Obviously there are decidable problems with maximal circuit complexity, since a Turing machine
with sufficient resources may search for the hardest function fn : {0, 1}n → {0, 1} by brute force
given n, and then compute that function fn on a given input of length n. Kannan [Kan82] was the
first to investigate the precise complexity upper bound of this brute-force construction of a hard
language: he observed that the class EΣP

2 , which denotes 2O(n)-time machines with access to an
oracle for a ΣP

2 complete language, contains a function of maximum circuit complexity, precisely
because this class possesses sufficient resources to diagonalize over all low-complexity functions of
a given input length. The question of finding the smallest uniform complexity class containing an
exponentially hard boolean function came to more prominence following the seminal works of Nisan,
Wigderson and Impagliazzo[NW94, IW97], who showed that if one could improve Kannan’s upper

bound from EΣP
2 to E, it would imply BPP = P, i.e. universal derandomization of all polynomial

time algorithms.
A recent line of work on the Range Avoidance problem (“Avoid”) has reformulated this topic

in the language of search problems [Kor21, CHR24]. Consider the so-called “truth table generator”
TTn : {0, 1}ℓ → {0, 1}2n which takes as input the description of a circuit C : {0, 1}n → {0, 1} of size
s, and outputs the truth table of the function it computes. If s << 2n, then a standard argument
shows that we may encode C in a direct way using < 2n bits, so that ℓ < 2n and the function
TTn is computable in 2O(n) time. Therefore, to produce a function of high circuit complexity, it
suffices to find a string y ∈ {0, 1}2n outside the range of C. This general problem, where we are
given a circuit with more output bits then input bits and wish to find a string outside its range,
is called Range Avoidance. By the pigeonhole principle, it is a total search problem, meaning it
always has solutions. Viewing TTn as an instance of the Range Avoidance problem we can observe
that if Avoid has a polynomial time algorithm then E requires exponential-size circuits. For larger
complexity classes, it was shown in [Kor21] (based on an earlier result in [Jeř04]) that solving Avoid
and proving circuit lower bounds are actually equivalent problems: for exponential-time classes at
least as large as ENP, proving an exponential circuit lower bound is equivalent to solving Avoid in the
polynomial-time analogue of that class. Beyond constructing hard boolean functions, algorithms
for Range Avoidance have a host of further applications in explicit constructions of pseudorandom
objects [Kor21, GLW22].

This perspective was crucially used in recent breakthrough works of Chen, Hirahara, Ren and Li
[CHR24, Li24], who gave the first unconditional improvement to Kannan’s classical result1. These
works showed that the classes SP2 ⊆ ZPENP ⊆ ΣE

2 all contain a function of circuit complexity 2n/n,
which is within a (1±o(1)) factor of the maximum possible circuit complexity of a boolean function.
The results are established by giving a new algorithm for Avoid which runs in the class FSP2 , the
functional variant of the decision class SP2 .

1This is the first improvement on finding the smallest complexity class with an exponential circuit lower bound. If
the goal is to prove merely superpolynomial lower bounds, lower bounds for smaller classes can be established using
Karp-Lipton theorems [KL80], an approach pioneered in Kannan’s original paper [Kan82]. This method can at best
show “sub-half-exponential” lower bounds, and only for infinitely many input lengths.

2

The authors of [CHR24, Li24] made progress on a classical lower bound problem by discovering
a new kind of algorithm for the total search problem Range Avoidance. This search problem lies in
an unusual complexity class which was only first investigated a few years ago by [KKMP21]: it is a
member of TFΣP

2 , the class of total search problems in the second level of the polynomial hierarchy.
Since the introduction of TFΣP

2 in [KKMP21], there has been no follow up work developing a
structural classification of the problems therein, despite the considerable attention that has been
devoted to Range Avoidance [Kor21, CHR24, Kor22, CHLR23, ILW23, GGNS23, CL23, GLW22]
and explicit construction problems more generally. The work of [CHR24, Li24] indicates that
some problems in TFΣP

2 admit highly nontrivial algorithms, algorithms which have consequences in
seemingly unrelated areas of complexity. Do such algorithms exist for all search problems in TFΣP

2 ?
What more can we say about the relation of Avoid to other problems in this class? The purpose of
this work is to address these two questions in particular, and more broadly to further the systematic
study of TFΣP

2 beyond its introduction in [KKMP21], with an emphasis both on inclusions and
black box separations. Prior to our work, no non-trivial separations between problems in TFΣP

2

were known.
TFΣP

2 has a more famous cousin one level down in the polynomial hierarchy, the class TFNP of
total NP search problems. In contrast to TFΣP

2 , TFNP has received a thorough investigation over the
past three decades and its structure is rather well understood in comparison. A major distinction we
reveal between TFΣP

2 and TFNP is that the former has a plethora of resource-constained subclasses,
many of which can be separated from one another by explicit and natural search problems. By
“resource-constrained subclass” we mean a class of search problems characterized by the existence
of some resource-constrained algorithm which can find a solution. One example we will see is the
class psFZPPNP, the class of problems where for every input x, there is a canonical solution yx
which is output with high probability by some polynomial time NP-oracle algorithm. Another
class is FPΣNP

2 ∩ΠP
2 , consisting of those problems which can be solved in polynomial time with oracle

access to a language in ΣP
2 ∩ ΠP

2 . We will introduce and study several other such subclasses, and
exhibit four natural search problems which exhibit separations (in the decision tree model) between
them. This situation is in stark contrast to the known structure of TFNP: while FNP does contain
some intermediate resource-constrained classes, such as psFZPP and FPNP∩coNP (these are roughly

analogous to psFZPPNP and FPΣNP
2 ∩ΠP

2 mentioned above), it is known that in the decision tree model
all of these classes collapse to FP. As a result in the decision tree model, the only resource-based
distinctions amongst the standard TFNP problems is the distinction between FP and the rest of
TFNP.

1.1 Overview of Main Results

A search problem is defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗, where for each “instance” x we
say y is a “solution for x” if (x, y) ∈ R; the relevant task is to find a solution given an instance.
We say that a search problem is total if every instance has a solution. A defining feature of search
problems which distinguishes them from decision problems is that a given instance may have many
different solutions. Indeed, if a search problem has a unique solution on every instance, then it
may be equivalently phrased as a decision problem: given (x, i), output the ith bit of the unique
solution for x. For many search problems of interest it is not clear how to reduce them to a
decision problem of the same complexity. For example given total search problem R we may define
the decision problem LexFirstR, where given an instance (x, i) we must output the ith bit of the
lexicographically first solution to x. While LexFirstR is clearly at least as hard as R, in many cases
it will be much harder and a reduction does not seem to exist in the opposite direction.

Say that A is a deterministic algorithm solving some search problem R. Then A naturally

3

associates to each instance x a canonical solution yx := A(x) which it outputs. In particular we
can think of A as defining a second search problem R′ with (x, y) ∈ R′ iff A(x) = y; if A solves
the original search problem R, then R is reducible to R′ since (x, y) ∈ R′ → (x, y) ∈ R. Now,
if the algorithm A lies in some restricted complexity class, then this places the same complexity
upper bound derived search problem R′. The point of this is that when we have some nontrivial
deterministic algorithm solving a search problem R, we may think of it as giving a reduction from
R to a search problem with unique solutions.

For most of the classical problems in the class TFNP it is believed that there is no decision
problem which captures their complexity precisely, a conjecture supported by black box separations
[BCE+98a]. More generally it is believed that for most of the standard problems R ∈ TFNP, any
unique-solution problem R′ which we can reduce R to must lie outside of TFNP2. The new results in
[Li24, CHR24] reveal that the situation for Range Avoid is different: because their Range Avoidance
algorithms are deterministic and are upper bounded inside TFΣP

2 , they imply that Range Avoidance
is reducible to a problem in TFΣP

2 with unique solutions. To make this discussion more formal we
need to define the class TFΣP

2 and its unique solution subclass TFUΣP
2 :

Definition 1 (TFΣP
2 and TFUΣP

2). A polynomially-bounded3 search problem R lies in TFΣP
2 if

it is a total search problem, and there exists a coNP verifier V so that (x, y) ∈ R if and only if
V(x, y) = 1. We say R ∈ TFUΣP

2 if moreover every instance has a unique solution.

In this terminology Li’s result implies the following: Range Avoidance is polynomial-time re-
ducible to a problem in TFUΣP

2 . His result is in fact a significant strengthening of this, but for
now we focus on this particular consequence, which seems quite unintuitive on the surface: given
an instance f : {0, 1}n → {0, 1}n+1 of Range Avoidance, there are at least 2n distinct solutions,
and it is not clear how to narrow down to any particular solution which is “more special” then the
others. Our first contribution is to clarify this result in the following way: we introduce a natural
TFΣP

2 search problem, whose containment in TFUΣP
2 is obvious from the definition, and then show

that Range Avoidance reduces to this problem:

Definition 2 (Linear Ordering Principle (LOP)). Given ≺: {0, 1}n × {0, 1}n → {0, 1} specified by
a boolean circuit, find a witness that ≺ does not define a total ordering on {0, 1}n, or else find the
minimal element in the ordering it defines. A witness that ≺ does not define a total order consist
of x, y, z ∈ {0, 1}n such that one of the following holds: (a) x ≺ x; (b) x ̸= y, x ̸≺ y, and y ̸≺ x;
(c) x ≺ y ≺ z and x ̸≺ z.

While this problem does not literally have unique solutions as stated, it has a property which
we show is morally equivalent. Observe that one type of solution in this problem is easier to verify
then the other: a witness that ≺ fails to define a linear order can be verified in polynomial time,
whereas a candidate minimum element can only be verified in coNP. Moreover, if an instance has no
easily verifiable solutions, then it has a unique solution. This follows from the fact that every linear
order has a unique minimal element. We summarize this by saying that LOP has essentially unique
solutions; a very easy argument (Section 2, Lemma 3) shows that any problem with essentially
unique solutions is reducible to a problem in TFUΣP

2 . We then prove:

Theorem 1. Range Avoidance is polynomial time reducible to LOP.

2This is equivalent to saying that we believe these standard problems, e.g. PPAD or PPP, not to lie in FPNP∩coNP.
3The “polynomially bounded” condition just means we are restricting attention to search problems whose solutions

have polynomially bounded length.

4

We believe this result goes a long way in explaining the new upper bounds for Range Avoidance.
In particular our reduction isolates the two key steps in Li’s algorithm which allow us to single out
a special low complexity canonical solution for Range Avoidance: the first step prepares a special
subset of solutions using a certain tree-like iteration construction, and the second step singles out a
fixed canonical solution among these by defining a certain total ordering on these special solutions.
Recall our comment under Definition 1 that Li’s result is in fact stronger than a reduction from
Range Avoidance to a problem in TFUΣP

2 : more generally he shows that Range Avoidance lies
in the complexity class FSP2 (we will review the definition of this class in Section 2). Our result
subsumes this upper bound as well, since another very direct argument shows that LOP lies in FSP2 .
Thus our result gives the current best upper bound on the Range Avoidance problem, and hence
on the Kannan’s classical problem of constructing the truth table of a hard boolean function.

At this point we have seen that there are search problems in TFΣP
2 which seem on the surface

to have no distinguished solutions, but which nonetheless can be reduced to problems in TFUΣP
2 by

some highly non-obvious means. This naturally points to the following question: are all problems
in TFΣP

2 reducible to TFUΣP
2 ? We give a negative answer in the decision tree model. Our separa-

tion is exhibited by the following relative of Range Avoidance which was introduced originally in
[KKMP21].

Definition 3 (Strong Avoid). Given f : {0, 1}n \ {0n} → {0, 1}n, find y ∈ {0, 1}n \ range(f).

From now on we will refer to Range Avoidance as “Weak Avoid” to distinguish it from Strong
Avoid. Our black box separation will be significantly stronger than just showing that Strong Avoid
is not reducible to a problem in TFUΣP

2 ; we will show more generally that Strong Avoid cannot be
solved by making non-adaptive queries to any language in ΣP

2 , which is equivalent to proving size
lower bounds for depth-3 AC0 circuits solving Strong Avoid:

Theorem 2. In the decision tree model, Strong Avoid is not in FP
ΣP

2

|| . More specifically, let

C : {0, 1}(N−1) logN → {0, 1}Nϵ
be a depth-3 circuit of size 2N

ϵ
and let D : {0, 1}Nϵ → {0, 1}logN

be an arbitrary postprocessing function, where N = 2n = |{0, 1}n|. Then provided ϵ is sufficiently
small, D ◦ C cannot solve Strong Avoid: there must be some input f : [N − 1] → [N] so that
D(C(f)) fails to find a y /∈ range(f).

This immediately implies non-reducibility to TFUΣP
2 , since any problem R ∈ TFUΣP

2 with
unique solutions can be solved with non-adaptive queries to the language {(x, i) | (x, y) ∈ R →
yi = 1} which lies in ΣP

2 . The connection of these kinds of separations to depth 3 AC0 lower bounds
was spelled out in a recent paper of Vyas and Williams [VW23] for the case of Weak Avoid: their
work established that nontrivial upper bounds for Weak Avoid are equivalent to certain depth 3
circuits solving the so-called “Missing String” problem: given an explicit list of 2n−1 n-bit strings,
output a string not in the list. The input size here is ≈ N = 2n, and the question is whether a depth
3 circuit exists of size polynomial or quasipolynomial in N . Note that the Missing String problem is
simply the black-box variant of Weak Avoid. Li’s result showed that quasipolynomial size depth-3
circuits for this problem actually do exist, solving the original question of Vyas and Williams in the
positive. We show that if the problem is modified so that the list of strings has length N −1 rather
then N

2 , then depth-3 circuits require exponential size to solve this problem. We note that our lower
bound holds against a stronger class of circuits than what was originally considered by Williams
and Vyas: in their model the depth 3 circuit is of the form C : {0, 1}(N−1) logN → {0, 1}logN and
must output the exact solution to Avoid. Here we allow C to output an arbitrary string in {0, 1}Nϵ

,
which can then be postprocessed arbitrarily to construct a solution to Avoid.

5

By a simple reduction, we also obtain quasipolynomial depth-3 circuit size lower bounds even
for moderately weak Avoid instances with domain [N] and codomain [N+N/ logO(1)N]. This result
gives a complete characterization of the degree of “Weakness” necessary to obtain quasipolynomial
size depth 3 circuits: if the codomain has size N + N/ logO(1)N then circuits of quasipolynomial
size suffice, and if its size is N +N/ logω(1)N then they do not; see Lemma 9 for details.

Our last main result exhibits a more fine-grained separation amongst the subclasses of TFΣP
2 .

Above we have highlighted one important distinction, between the problems which are reducible
to TFUΣP

2 and those which aren’t. However both of the problems we’ve seen so far which reduce
to TFUΣP

2 also have an additional property: they are solvable by a polynomial time randomized
algorithm using a NP oracle. For Weak Avoid this follows from its definition, while for LOP it
follows from its containment in the class FSP2 . We show that this is not possible for all problems
reducible to TFUΣP

2 . Our separation is exhibited by the following natural search problem:

Definition 4 (Strong 1-1 Avoid). Given f : {0, 1}n \ {0n} → {0, 1}n, find a pair x ̸= y in
{0, 1}n \ {0n} such that f(x) = f(y), or else y ∈ {0, 1}n \ range(f),

Observe that Strong 1-1 Avoid enjoys the same property as LOP of having essentially unique
solutions: it is easy to verify the collision solutions f(x) = f(y) ∧ x ̸= y, and any instance with
no collision solutions has a unique solution. This follows from the fact that any injective function
f : [N] → [N + 1] misses exactly one point in its codomain. Hence, like Weak Avoid and LOP, the
problem Strong 1-1 Avoid is reducible to TFUΣP

2 . However we prove the following lower bound:

Theorem 3. In the decision tree model, Strong 1-1 Avoid is not solvable in FBPPNP.

Aside from revealing further the structure of TFΣP
2 , this result yeilds a new separation for

decision classes which was not previously known:

Theorem 4. In the decision tree model, ΣP
2 ∩ ΠP

2 ̸⊆ BPPNP. In particular ΣP
2 ∩ ΠP

2 ̸⊆ SP2 .

In the next two subsections we will describe these main results in some more technical detail.
A diagram of the structure of TFΣP

2 and our main results is given in Figure 1; some classes in this
diagram will not be defined until Section 2.1.

1.2 AC0 Lower Bounds and Class Separations

Our two main separations show that Strong Avoid has no non-trivial upper bound inside of TFΣP
2

(Theorem 2), and that Strong 1-1 Avoid has no randomized NP-oracle algorithm (Theorem 7).
The first lower bound is the more involved of the two, and requires proving a novel depth 3 AC0

circuit lower bound for a total search problem, which appears to be the first circuit lower bound of
this kind.

Theorem 2 yields a very fine-grained separation for the Strong Avoid problem. It is easy
to construct a depth 4 circuit C : {0, 1}(N−1)⌈logN⌉ → {0, 1}⌈logN⌉ solving Strong Avoid, where
moreover the bottom fan-in is only O(logN) [VW23]. More strongly, it is possible to construct a
depth O(logN) decision tree, which at each step queries a depth 3, poly(N) size circuit on the input
f , and at each leaf outputs a correct solution y /∈ range(f). Our lower bound can be interpretted
as saying that if such a decision tree is forced to be non-adaptive, then either the circuits it queries
at each step must grow to exponential size, or else the number of queries must grow to NΩ(1). This
also contrasts the situation with Weak Avoid, where as mentioned above, Li’s construction gives
depth-3 AC0 circuits of size NO(logN) for solving Weak Avoid.

We believe our lower bound is of independent interest in circuit complexity. In particular, we
give a very precise depth-3 lower bound for a total search problem. It is of course possible to

6

Figure 1: Inclusion diagram of relevant classes and search problems. Solid arrows represent the
inclusion of the class at the base of the arrow into the class at its tip. Dotted arrows indicate
non-inclusion of the base class into the tip class in the decision tree model. The main linear axis
of classes along the top are all included from left to right, indicated by the long solid arrow above
them. Our major results are the separations marked with ♠,♣ and the inclusion marked with ♦.
TFUΣP

2 essentially corresponds to FPΣP
2∩ΠP

2 , see Lemma 2.

construct contrived examples of total search problems which are hard for AC0 circuits, for example
“given x ∈ {0, 1}n output b ∈ {0, 1} such that Parity(x) = b;” in such examples we can derive
hardness of the search problem by reduction from a decision problem. In contrast, the lower bound
we show here cannot be established by reduction from any decision problem. This follows from the
fact that any decision problem which is reducible to a TFΣP

2 search problem lies in ΣP
2 ∩ ΠP

2 . In the
decision tree model, this means that any language which can be solved by a small depth decision
tree querying instances of Strong Avoid has both ΣP

2 and ΠP
2 circuits. However, the lower bound

we are trying to show for Strong Avoid rules out the existence of any FPΣP
2∩ΠP

2 algorithm for Strong
Avoid. Phrased more succinctly, our lower bound establishes that Strong Avoid is harder then any
decision problem which can be reduced to it, which by definition means we cannot establish the
lower bound itself by reduction from a decision problem. In light of this, to prove Theorem 2 we
must develop new AC0 lower bound techniques which are specially tailored to total search problems.

Our second main lower bound (Theorem 3) places Strong 1-1 Avoid outside of FBPPNP. Recall
that Strong 1-1 Avoid has the property of having essentially unique solutions and is thus reducible
to a problem in TFUΣP

2 . We will see (Lemma 2) that this means it is reducible to a decision
problem in ΣP

2 ∩ ΠP
2 . Combining this with the above lower bound we obtain Theorem 4, which

separates the decision tree class ΣP
2 ∩ ΠP

2 from BPPNP and in particular from SP2 . This is in contrast
to the situation for NP ∩ coNP, which is known to collapse to P in the decision tree model. This
improves a previous result of Fortnow and Yamakami [FY96] who showed that ΣP

2 ∩ ΠP
2 ̸⊆ PNP in

the decision tree model.

1.2.1 Lower Bound Methods

A main technical ingredient in both lower bounds is a new Switching Lemma (Lemma 6) specialized
for Avoid. Switching lemmas have been used for both circuit lower bounds for computing functions,

7

and in proof complexity to prove lower bounds on the size of proofs of hard tautologies (e.g.,
[Bea94, Raz93, BIK+92]). Between the two, our argument bears a stronger resemblance to the
second, however there are some key conceptual differences. The basic idea behind all switching
lemmas is to show that under a random restriction ρ (from a suitable distribution) a low-width
DNF is likely to be represented by a low-depth decision tree. Since a low-depth decision tree
representation for a function f implies that both f as well as its negation can be represented
by low-width DNFs, this in turn allows us to collapse an AND of low-width DNFs into a single
low-width DNF, thus reducing the circuit depth by 1.

A major difference between various switching lemmas is the choice of distribution over restric-
tions, and the way in which the decision tree represents a DNF. In the original Switching Lemmas
used to prove AC0 lower bounds for parity, the restrictions are simply uniformly random partial
restrictions, and the notion of represents is with respect to every input. That is, the decision tree
computes the same function as the DNF.

In the case of switching lemmas used in proof complexity to prove AC0-Frege lower bounds
for the [N] → [N + 1] pigeonhole principle, we think of the input as specifying a purported 1-1
function from [N] to [N + 1] (which cannot actually exist if N is finite). The chosen distribution
over restrictions are partial 1-1 matchings from [N] to [N + 1], and a low-depth “PHP decision
tree” in this context can make queries to a pigeon or to a hole at each vertex, and every path in the
tree corresponds to a partial matching. Since, in reality, no 1-1 function from [N] to [N +1] exists,
these trees do not represent the original DNF in any standard way. However, if the input variables
instead corresponded to a total 1-1 assignment from [N] to [N] (which do exist), then we can apply
the same PHP Switching Lemma to prove that under a random partial 1-1 restriction, a low-width
DNF is likely to convert to a low-depth PHP decision tree, which now represents the DNF in the
sense that it agrees with the DNF on all input assignments that correspond to 1-1 mappings from
[N] to [N].

In the case of Avoid, we have to modify the way of constructing a decision tree associated with
a DNF so that the decision tree represents the original DNF in the sense that they are truth-
functionally equivalent with respect to all 1-1 input functions from [N] to [M], where now M
is strictly larger than N . To achieve this, we modify the notion of pigeonhole decision trees as
follows. As in the original PHP Switching Lemma in proof complexity, each node of our decision
tree will query either a pigeon or a hole. When a pigeon is queried at a node, we allow edges for
all possible holes that it could be mapped to. But when a hole is queried, now we have to allow
for the possibility that this hole is unmapped: in addition to allowing edges for each pigeon that
could map to this hole, we allow an extra edge corresponding to the case where nothing maps to
this hole. With this modification, our pigeonhole decision trees will represent the original DNF
with respect to all 1-1 inputs from [N] to [M].

Another crucial distinction is how we use the Switching Lemma to reduce the depth of the
circuit by one. In the proof complexity setting for the pigeonhole principle lower bounds, we think
of N as infinite, and therefore with respect to 1-1 inputs, a DNF can be written as a low-width
matching disjunction, where each term in the disjunction corresponds to a partial 1-1 function
(or matching) from [N] to [N]. After applying the PHP Switching Lemma and a union bound,
each matching disjunction f (under ρ) becomes a low-depth “matching decision tree”, enabling
a reduction in the overall circuit depth by one. To summarize, in the classical PHP Switching
Lemma, the underlying depth-2 subcircuits are always low-width matching disjunctions, both before
and after each application of the PHP Switching Lemma. In our case, the underlying depth-2
subcircuits are not of the same type before and after applying our Pigeonhole Switching Lemma;
a consequence is that our Switching Lemma cannot be applied twice. This is not a defect of our
method, but rather a necessary feature of any technique here, since our search problem can be

8

solved by circuits of one higher depth. More specifically, we show that initially the bottom depth-
2 subcircuits of C can be expressed as low-width matching disjuncdtions. But after applying the
Pigeonhole Switching Lemma, and subsequent depth reduction, the new depth-2 subcircuits become
hole disjunctions which are a generalization of matching disjunctions, where now each term in the
DNF can specify not only a partial 1-1 matching, but also a subset of holes that are unmapped.
With these appropriate modifications, our proof of the switching lemma is similar to previous
proofs.

Equipped with the Pigeonhole Switching Lemma, we can give the high level view of both proofs.
We start with Theorem 2. To prove Theorem 2, we would like to restrict attention to the class
of 1-1 input functions from [N] to [N + 1]. However if we truly restrict ourselves to 1-1 functions,
then a lower bound is not possible by Lemma 4: for these inputs, there is a unique solution, and
therefore a polynomial-size depth-3 circuits can easily check whether the unique solution has its
ith bit equal to 1 or to 0 and hence solve the problem unconditionally. To circumvent this barrier,
we will prove a strengthening of Theorem 2, by giving a lower bound for Avoid on input functions
f : [N] → [M], where M is larger than N + 1. By enlarging the range of f , we can focus our
attention of f ’s that are 1-1 since now for every input, there are at least M −N distinct solutions.
Note that this implies the lower bound stated above (with M = N + 1), since there is a direct
reduction from Avoid on instances [N] → [M] to instances [N] → [N + 1]: we simply map every
element of [M] \ [N + 1] to the element N + 1. Observe that this reduction does not preserve
injectivity.

Now assume there exists small-size s depth-3 circuit C computing Strong Avoid on 1-1 functions
from [N] to [M], M >> N . We can first apply a standard argument (the Width Reduction Lemma
8) so that we can assume that the bottom-level fanin of C is at most O(log s). After this step, we
can assume that C is a size-s, depth-3 circuit, where the bottom depth-2 subcircuits are low-width
matching disjunctions. Next we apply our Pigeonhole Switching Lemma (as discussed above) which
will guarantee that there exists a matching restriction ρ such that under ρ, all depth-2 matching
disjunctions in C will convert to low-depth pigeonhole decision trees. This will allow us to reduce
the overall circuit depth by 1, and afterwards each output bit of C will be computed by a low-width
hole disjunction. As discussed above, a hole disjunction is a type of DNF that generalizes matching
disjunctions: each term t in the hole disjunction can be viewed as partial information about the
input f . The partial information consists of two parts: (i) first, t1 specifies a small partial matching,
pairing up some pigeons in [N] to some holes in [N + 1]; (ii) secondly, t2 specifies a small set of
holes (disjoint from the holes mentioned in t1 that are not in the range of f). It remains to prove
a lower bound for circuits C for solving Avoid, where each output bit is specified by a low-width
hole disjunction. This is also accomplished using a kind of restriction, but rather then choosing it
at random we apply a careful deterministic process involving a novel covering argument. This step
is somewhat reminiscent of early proofs of the Switching Lemma (e.g., [FSS84, Ajt83]).

The proof of Theorem 3 again uses the Pigeonhole Switching Lemma, together with a direct
argument. We want to prove depth lower bounds for FBPPNP, which informally are randomized
decision trees of small height which, instead of querying variables, are allowed to query the value
of an arbitrary low-width DNF over the inputs. By Yao’s minimax principle, it suffices to prove
that any low-depth PNP decision tree cannot solve Avoid with probability 2/3, with respect to
the uniform distribution of 1-1 functions. We think of this distribution in the following way:
first sample a uniform partial 1-1 assignment ρ, then sample a uniform extension of ρ to a total
assignment. Applying our Pigeonhole Switching Lemma and a union bound, we can argue that
with high probability over the first choice of ρ, all of the NP queries in our PNP decision tree T can
be simplified to small depth pigeonhole decision trees, which overall allows T to be replaced by a
low depth pigeonhole decision tree. It then remains only to argue that a pigeonhole decision tree

9

of low depth cannot solve 1-1 Strong Avoid with non-trivial probability on a uniform extension f
of ρ, which can be accomplished with a direct argument.

1.3 Linear Ordering Principle

We now discuss in more detail our results on the newly defined Linear Ordering Principle problem,
abbreviated LOP. Recall that our main result here is Theorem 1, which says that Weak Avoid is
polynomial time reducible to LOP. The proof follows much of the high level structure of Li’s result
placing Weak Avoid in FSP2 , with some key modifications. Roughly speaking, Li’s proof shows
that given an instance of Avoid f : {0, 1}n → {0, 1}n+1, we can define a comparison relation ⊏ on
{0, 1}poly(n), so that for some unique distinguished element π∗ ∈ {0, 1}poly(n) we have π∗ ⊏ π for
all π ̸= π∗, and π∗ contains a solution to the original Avoid instance. In our case we need to define
a similar comparison relation, which in addition globally acts as a total order on {0, 1}poly(n). To
explain the argument more clearly we split the reduction into two parts. We first introduce an
intermediate search problem called Forest Termination and reduce Weak Avoid to this problem,
then we reduce Forest Termination to LOP. We note that our proof, as well as Li’s, also bears
a strong resemblance to the work of [PWW88] who gave the first proof of the weak pigeonhole
principle in the bounded arithmetic theory T2.

Our subsequent results show some appealing structural properties of the complexity class defined
by reducibility to LOP. We start by proving closure under a broad class of reductions:

Theorem 5. Any search problem which has a polynomial time PNP Turing reduction to LOP also
has a polynomial time many-one reduction to LOP.

Combining this closure property with the fact that LOP has essentially unique solutions, we are
able to conclude that LOP is equivalent in complexity to a decision problem. In particular we can
define a decisional complexity class LP2 for which LOP is the “complete problem” (despite being a
search problem and not a language). We start by presenting a machine-based definition of LP2 :

Definition 5. A language L is in the complexity class LP2 if there is a polynomial time relation
R : ({0, 1}∗)3 → {0, 1} and a polynomial p, so that for all x, R(x, ·, ·) defines a total order on
{0, 1}p(n) whose minimal element a has a1 = L(x).

We then have the following equivalent characterizations:

Theorem 6. The following are equivalent for a language L:

1. L ∈ LP2

2. L is polynomial time many-one reducible to LOP.

3. L is PNP-Turing reducible to LOP.

Conversely, the search problem LOP is polynomial time truth table reducible4 to a language in LP2 .

We mentioned in passing before that LOP is easily shown to lie in the class FSP2 , the functional
analogue of the decision class SP2 (this will be shown in Lemma 5. The same reason shows that
LP2 ⊆ SP2 . For those unfamiliar with the somewhat unconvential class SP2 , this is a complexity
class introduced independently by Russell-Sundaram and Canetti [RS98, Can96]. Their goal was
to identify the smallest class in the polynomial hierarchy which is sufficient to capture randomized

4This is essentially the most restrictive reduction possible when reducing a search problem to a language.

10

algorithms, in particular BPP and MA. Beyond this purpose the class rarely appears, and so
far no natural problems have been exhibited which lie in SP2 and not one of its more traditional
subclasses (such as BPP or NP). In addition it seems that SP2 does not have a complete problem,
due to its definition involving a promise. We have identified here a subclass LP2 of SP2 , which is
characterized exactly by a simple and natural total search problem, and which nonetheless maintains
the interesting properties that motivated the original definition of SP2 :

Theorem 7.

1. PNP ⊆ LP2 and BPP ⊆ MA ⊆ LP2

2. LE2
5 contains a language of circuit complexity 2n/n.

In each case, the result stated for LP2 was previously known to hold for SP2 and is now shown
to be inherited by the more natural subclass LP2 . The only interesting property that is known
of SP2 which we were unable to prove for LP2 is the Karp-Lipton theorem; we discuss this further
Sections 1.4 and 4.

1.4 Open Problems

We conclude our introduction with a few interesting problems which remain open. The first is
rather broad:

Problem 1. Show any additional inclusions or black-box separations which are not implied by the
arrows in Figure 1.

We specifically highlight the following:

Problem 2. Is there an FPNP Turing reduction from LOP to Weak Avoid?

Our interest in this problem is the following observation:

Observation 1. Say that Linear Ordering Principle is FPNP Turing reducible to Weak Avoid.
Then there is a particular language L of circuit complexity ≥ 2n/n, and a deterministic NP oracle
algorithm A running in time 2O(n), such that given oracle access to any language L′ of circuit
complexity 2Ω(n), AL′

computes L.

This follows by composing the reduction of Weak Avoid to LOP, which produces a unique
solution, with the (purported) second reduction from LOP back to Weak Avoid. Such a consequence
would be rather surprising and interesting purely from the perspective of circuit complexity.

Next we highlight the problem of better clarifying the relationship between LP2 and SP2 :

Problem 3. Does LP2 = SP2 ? Can they be separated in the decision tree model? Does LP2 satisfy a
Karp-Lipton theorem?

For this problem, we would say LP2 “satisfies a Karp-Lipton theorem” if one could unconditionally
prove the implication “NP ∈ P/poly → PH = LP2 .” A notable property of SP2 is that it is the smallest
complexity class for which this statement is known to hold.

The next problem we highlight is in the realm of depth 3 circuits:

Problem 4. Does Weak Avoid have depth 3 circuits of polynomial size?

5LE
2 is the exponential-time analogue of LP

2 , where we replace “polynomial time” with 2O(n) time” in its definition

11

Recall that Li’s upper bound is only quasipolynomial, of size around N logN . This problem
seems intimately connected to the long-standing open question in proof complexity of whether the
Weak Pigeonhole Principle has polynomial size bounded depth Frege proofs; a quasipolynomial
upper bound was shown by Paris Wilkie and Woods [PWW88] using a very similar technique to
Li’s, and [MPW02] give a different bounded-depth Frege upper bound of lower depth, but still
quasipolynomial size. Despite the strong aesthetic similarities we do not know a formal connection
in either direction between these problems.

Lastly, the search problems discussed here have other connections to bounded arithmetic. In
particular, the LOP principle has been studied in several papers, within the context of characterizing
the strength of Jerebek’s bounded arithmetic theory of approximate counting relative to weaker
theories, and also as a new avenue for approaching the longstanding problem of separating Buss’ T2
hierarchy by sentences of fixed complexity. Buss, Kolodziejczyk and Thapen [BKT14] observe that
the LOP principle is provable in both T 2

2 and in APC2, and ask whether or not LOP is provable in
the weaker theory T 1

2 + sWPHP , where sWPHP is the surjective weak pigeonhole principle, and
corresponds to the search problem Weak Avoid. Atserias and Thapen [AT13] resolve this question,
proving that in the relativized setting, sWPHP does not prove the LOP principle over T 1

2 . In fact
they prove a stronger result, that sWPHP cannot prove the HOP principle over T 1

2 , where HOP
is a Σb

1 version of LOP. It seems possible that the techniques here could be used to give a negative
answer to Problem 2. A relatively unexplored area that is likely to be fruitful is to discover more
relationships between natural search problems lying in the second level of the polynomial hierarchy
(and higher) and corresponding systems of bounded arithmetic.

2 Preliminaries

2.1 Search Problems, Complexity Classes, and Basic Inclusions

We define here a variety of subclasses inside of TFΣP
2 , classified according to the computational

resources necessary to solve a search problem. We then prove some of the more basic results relating
these classes to eachother and to the four main search problems of interest in this work.

Definition 6 (FPNP, FPΣP
2∩ΠP

2 , FP
ΣP

2

||). Let R be a search problem and C a class of decision problems.

We say R ∈ FPC if there is a language L ∈ C and a polynomial time algorithm making queries to
L which “solves R:” given x it outputs y such that (x, y) ∈ R. We say R ∈ FPC

|| if there is such
an algorithm, which moreover makes its queries nonadaptively: given an input x it computes in
polynomial time a list of queries z1, . . . , zm, uses its L-oracle to test in unit time the membership
of each zi in L, and then uses the oracle responses to output an answer in polynomial time.

We include for reference the following class considered in [Li24, CHR24]:

Definition 7 (svFΣP
2). svFΣP

2 is the class of search problems having“singled-valued” FΣP
2 algo-

rithms. We say R lies in this class if there is a choice of canonical solution {(x, yx) ∈ R | x} for
each input x, a second relation R′ ∈ TFΣP

2 , and a polynomial time function f so that whenever
(x, z) ∈ R′, f(z) = yx.

In Lemma 1 we relate this class to the others we have defined here. Beyond this we will not
need to reference this class further: every time we prove an upper bound for a search problem it
will be in a class lower then svFΣP

2 , and our separation for Strong Avoid will hold even against the

larger class FP
ΣP

2

|| ⊇ svFΣP
2 . We next review the randomized classes:

12

Definition 8 ((ps)FZPPNP, (ps)FBPPNP). A relation R is in FBPPNP if there exists a randomized
polynomial time algorithm with access to a SAT oracle which, given x, outputs y such that (x, y) ∈ R
with probability ≥ 2/3. If the algorithm always outputs a valid answer or ⊥ and answers ⊥ with
probability < 1

3 this places R in the subclass FZPPNP.
For a search problem R where each x may have many solutions y, it is possible that a randomized

algorithm outputs different correct answers on the same input x as a function of its random coin
tosses. If for each x there exists a canonical yx with (x, yx) ∈ R and some randomized algorithm
computes x 7→ yx with high probability, we say that algorithm is pseudodeterministic; we use the
prefix ps− to denote the pseudodeterministic analogue of a randomized class.

The last standard complexity class we examine is the functional analogue of SP2 , defined as
follows:

Definition 9 (FSP2). A search problem R is in FSP2 if there exists polynomial time algorithm V
taking three inputs, so that for all x there exists yx with (x, yx) ∈ R so that:

1. There exists π1 such that for all π2, V(x, π1, π2) = yx.

2. There exists π2 such that for all π1, V(x, π1, π2) = yx.

Search Problems vs. Function Problems: As discussed in the introduction, some kinds of
algorithms for search problems have the property that they associate to each input a fixed solution
which the algorithm produces on that input. With the exception of the non-pseudodeterministic
randomized classes FBPPNP and FBPPNP, each of the classes we have just defined describes algo-
rithms of this sort. These classes are arranged nicely in the following hierarchy, as indicated in
Figure 1:

Lemma 1. FP ⊆ FPNP ⊆ FSP2 ⊆ psFZPPNP ⊆ FPΣP
2∩ΠP

2 ⊆ svFΣP
2 ⊆ FP

ΣP
2

||

Proof. All inclusions follow directly from the definition, with the exceptions of FPNP ⊆ FSP2 which
is due to Russell-Sundaram [RS98] and FSP2 ⊆ psZPPNP which is due to Cai [Cai07].

Recall the class TFUΣP
2 , referenced heavily in the introduction, consisting of those TFΣP

2 search

problems with unique solutions. This class is directly associated to FPΣP
2∩ΠP

2 in this hierarchy:

Lemma 2. The following are equivalent for any R ∈ TFΣP
2 :

1. R is polynomial time reducible to a problem in TFUΣP
2 .

2. R ∈ FPΣP
2∩ΠP

2 .

Proof. Say R is polynomial time reducible to R′ ∈ TFUΣP
2 . So there are polynomial time functions

so that for all x, if (f(x), y) ∈ R′ then (x, g(x, y)) ∈ R. Consider the language L defined as follows:
(x, i) ∈ L iff for the unique y with (f(x), y) ∈ R′, we have yi = 1. Then L ∈ ΣP

2 ∩ ΠP
2 and g yeilds

a reduction from R to L.
In the other direction note that any language L ∈ ΣP

2 ∩ ΠP
2 defines a search problem in TFUΣP

2 :
given x find b ∈ {0, 1} so that L(x) = b. The result follows directly from this fact.

Recall from the introduction that the problems LOP and Strong 1-1 Avoid do not quite have
unique solutions, but come very close. We define this property of having essentially unique solutions
as follows:

13

Definition 10 (Essentially Unique Solutions). We say that a total search problem R ∈ TFΣP
2 has

“essentially unique solutions” if there are verifiers V1,V2 such that:

1. V1 is testable in polynomial time, while V2 is testable in coNP.

2. For all x, either there exists y so that V1(x, y) = 1 and (x, y) ∈ R, or else there exists a
unique y such that V2(x, y) = 1 and (x, y) ∈ R.

We then have:

Lemma 3. If R has essentially unique solutions then it is polynomial time reducible to a search
problem R′ ∈ TFUΣP

2 which actually has unique solutions. By Lemma 2 this is equivalent to the

statement R ∈ FPΣP
2∩ΠP

2 .

Proof. Let V1,V2 witness that R has essentially unique solutions. Consider the search problem R′:
given x, output either the lexicographically first y such that V1(x, y) = 1, or else the unique y such
that V2(x, y) = 1. By the definition of V1,V2 we see that R′ is a total search problem with unique
solutions. Clearly R is polynomial time reducible to R′. We need to show that R′ ∈ FΣP

2 . For a
fixed x, say that there exists y with V1(x, y) = 1, and let y0 be the lexicographically first such y.
Then we can confirm that (x, y0) ∈ R′ in coNP by confirming V1(x, y0) = 1 and that for all y′ < y0
we have V1(x, y

′) = 0. On the other hand say that there is no y with V1(x, y) = 1, and let y∗ be
the unique element with V2(x, y

∗) = 1. Then we can confirm that (x, y∗) ∈ R′ in coNP by checking
that for all y we have V1(x, y) = 0, and using V2 to confirm V2(x, y

∗) = 1 (recall that V2 is in coNP
by definition).

We now state formally the claim made in the introduction that LOP and Strong 1-1 Avoid have
essentially unique solutions:

Lemma 4. Linear Ordering Principle and Strong 1-1 Avoid have essentially unique solutions;
hence both problems lie in FPΣP

2∩ΠP
2 .

Proof. Any injective function f : [N] → [N + 1] leaves a unique point in [N + 1] out of its range.
Every total linear order on a finite set has a unique minimal element.

We next prove formally that LOP is contained in the class FSP2 , which follows quite directly
from the definitions:

Lemma 5. Linear Ordering Principle is in FSP2 .

Proof. Let ≺: {0, 1}n×{0, 1}n → {0, 1} be an instance of Linear Ordering Principle. We construct
the FSP2 solver V for ≺ as follows. Let X = {0, 1}3n+1 be partitioned so that the first 2n elements
A are identified with {0, 1}n, and the remaining > 23n elements B are identified with potential
witnesses that ≺ fails to define a linear order. Given π1, π2 ∈ X, V(≺, π1, π2) behaves as follows:

1. If πi ∈ B codes a witness that ≺ does not define a linear order for some i ∈ {1, 2}, we output
πi; if both do then we output the lexicographically first between them.

2. Say πi ∈ B and πi′ ∈ A for {i, i′} = {1, 2}, and πi is not a witness that ≺ fails to define a
linear order. In this case we output πi′ .

3. If both π1, π2 ∈ A, we think of them as representing elements a1, a2 of {0, 1}n and compare
them according to ≺. If a1 ≺ a2 we output π1, otherwise we output π2.

14

First say that ≺ is not a total order. Among all witnesses to this let π ∈ B be the lexicographically
first. Then for all π′ ∈ X, we have V(≺, π, π′) = V(≺, π′, π) = π. On the other hand say ≺ is a
total order and let π ∈ A correspond to its unique minimal element. Then again for all π′ ∈ X, we
have V(≺, π, π′) = V(≺, π′, π) = π. Thus in all cases V gives an FSP2 algorithm solving the Linear
Ordering Principle problem on input ≺.

Finally, amongst the 4 search problems studied here we have the two following obvious inclusions
which we haven’t mentioned yet:

Observation 2. Weak Avoid and Strong 1-1 Avoid are polynomial time reducible to Strong Avoid.

2.2 Oracle Separations and the Decision Tree Model

All of the upper bounds and inclusions we show in this paper are unconditional and hold relative to
every oracle. Since showing any unconditional separations amongst the classes we have identified
would imply P ̸= NP, we can only hope to establish separations in a restricted model. As is
standard, our restricted model will correspond to the “decision tree model” of complexity classes,
which can be framed either in terms of oracles and Turing machines, or more directly in terms of
decision trees and bounded depth circuits, c.f. [CIY97]. We choose here the latter terminology.

All of our search problems are defined in terms of a function or relation specified by a boolean
circuit. Take for example the Weak Avoid problem, whose instance is a boolean circuit computing
f : {0, 1}n → {0, 1}n+1. Clearly this problem remains total if f were not represented by a small
circuit, but instead was an arbitrary function f : [2n] → [2n+1]. In the decision tree model, the
relevant search problem has as its input an arbitrary function f : [N] → [2N] where N = 2n.
For example, the decision tree variant of the simplest complexity class FP then corresponds to
algorithms which can access f only by querying its on poly(n) = poly(logN) different inputs
x ∈ [N]. If we imagine f : [N] → [2N] is specified by an assignment α : {0, 1}[2n]×[n+1], where
αx,i = f(x)i, then this is equivalent to allowing the algorithm to query poly(n) = poly(logN)
variables of the assignment α.

Decision tree analogues of other complexity classes can be defined similarly. It is a standard
result that a decision tree separation implies a a separation of the associated Turing machine classes
relative to an oracle; more specifically it is equivalent to a separation relative to a so-called “generic
oracle” [BCE+98b].

Most of the definitions in our decision tree models will be standard, e.g. bounded depth formulae
and DNFs. One decision tree model we study whose definition and notation is less standardized is
a FPNP decision tree:

Definition 11 (FPNP Decision Trees). Let f : {0, 1}n → A be a function where A is some set. A
PNP decision tree T computing f is defined by a binary tree, with each internal node labeled by a
DNF formula on the variables {xi | i ≤ n} and each leaf labeled by a value y ∈ A. On an input
x ∈ {0, 1}n, we traverse T starting at the root. At each internal node associated to a DNF D, we
test if D(x) = 1; if so we proceed to the right child of the current node, otherwise we proceed to the
left. When we reach a leaf we output the value associated to it; T computes f if the value reached is
f(x). We say that T has complexity ≤ r if its depth as a tree is at most r, and each DNF associated
to its nodes has width at most r.

We next define the decision tree variant of FP
ΣP

2

|| which is the subject of our main lower bound
Theorem 2:

15

Definition 12. Let R ⊆ {0, 1}N × [M] black-box (relativized) search problem. We say that R is

in FP
ΣP

2

|| if there exist ΣP
2 circuits Φ1, . . . ,Φk with k ≤ poly log(N) and an arbitrary post-processing

function S : {0, 1}k → [M] so that for all inputs f ∈ {0, 1}N , (f, S(Φ1(f), . . . ,Φk(f))) ∈ R. A ΣP
2

circuit is a 2poly logN -size depth 3 circuit with bottom fanout ≤ poly logN .

In our case the input will be some f ∈ {0, 1}N logN representing a function f : [N] → [N + 1],
and the relevant search problem is to output some y ∈ [N +1] outside its range. The fact that this

captures the relativized version of FP
ΣP

2

|| is based on the well known equivalence between relativized

levels of the polynomial hiearchy and quasipolynomial size bounded depth circuits [FSS84]; in
particular the ΣP

2 circuits Φ1, . . . ,Φk above correspond to a sequence of non-adaptive ΣP
2 oracle

queries.

Note on bottom fanin: The depth 3 circuit model which captures FP
ΣP

2

|| has the additional
restriction that the bottom level of each depth 3 circuit has fanin poly logN . Our lower bound will
apply also to the stronger model in which the depth 3 circuits are only constrained in their size
and not their bottom fanin.

Finally, we make note of one separation indicated in Figure 1 which was shown prior to our
work:

Lemma (Wilson and Vyas-Williams[Wil83][VW23]). In the decision tree model, Weak Avoid is
not in FPNP.

3 Lower Bounds for Pigeonhole Principles

3.1 Pigeonhole Principle Basics

We will be concerned here with search problems where the input is a function f : [N] → [M] with
M > N , and the goal is to find an empty pigeonhole of f .

Definition 13. We use [M][N] to refer to the set of all functions f : [N] → [M]. We define a set
of propositional variables, referred to as “bit variables”, given by

BITSN,M := {fx,i | x ∈ [N], i ∈ [⌈logM⌉]}

We associate each truth assignment α : BITSN,M → {0, 1} with the function fα : [N] → [M], where
where the value α assigns to fx,i indicates the ith bit of fα(x) in binary; if M is not a power of
two then we think of all strings in {0, 1}⌈logM⌉ of binary value exceeding M as being redundant
representations of the element M . Similarly we associate every function f : [N] → [M] with the
assignment αf : BITSN,M → {0, 1} using the same correspondence.

From now on we will often not refer explicitly to assignments α : BITSN,M → {0, 1}, only to
functions f : [N] → [M]. The relevance of this definition is that, when defining circuits/computational
devices whose input is a function f : [M] → [N], we must specify how the device is able to ac-
cess/read the input f : typically this will correspond to the ability to read the bits BITSN,M .

For the vast majority of this section we will restrict our attention to functions f : [N] → [M]
which are 1-1 (injective): consequently when we speak about the evaluation of a formula which
takes f as an input, we will typically only care about the behavior of that formula on this special
class of inputs. We use the following notation to express this:

16

Definition 14. Let FN,M ⊂ [M][N] denote the set of all 1-1 functions [N] → [M]. For two
predicates F,G : [M][N] → {0, 1}, we say that F is equivalent to G (with respect to all 1-1 functions),
denoted by F ≡ G, if F (f) = G(f) for all f ∈ FN,M .

We now introduce notation for describing partial information about an input f . A natural
such unit of partial information is a partial assignment ρ : BITSN,M → {0, 1, ⋆}, however for our
purposes it will be useful to define additional types of partial information as well:

Definition 15 (Matchings and Hole Restrictions). A partial matching π is a partially defined 1-1
function from [N] to [M]. We use dom(π), range(π) to refer to the domain and range of π, and
nodes(π) = dom(π)⊔ range(π). More generally a “hole restriction” τ = ⟨π,E⟩ consists of a partial
matching π and a set E ⊆ [M] satisfying range(π)∩E = ∅. Let nodes(τ) = nodes(π)∪E. We use
|τ | to refer to the value |π|+ |E|. We think of the hole restriction ⟨π,E⟩ as describing the following
partial information about a function f : [N] → [M]: “f(x) = π(x) for all x ∈ dom(π), and
y /∈ range(f) for all y ∈ E.” For a total assignment f ∈ FN,M , we say f is compatible with ⟨π,E⟩,
written f∥⟨π,E⟩, if the above statement holds. For two hole restrictions τ1 = ⟨π1, E1⟩, τ2 = ⟨π2, E2⟩,
we say they are consistent, written τ1∥τ2, if there is a total assignment f which is compatible with
both. We say τ1 extends τ2, written τ1 ⊇ τ2, if π1 ⊇ π2 and E1 ⊇ E2. We will think of a partial
matching π as a special kind of hole restriction of the form ⟨π, ∅⟩, and a total 1-1 assignment f as
a special hole restriction of the form ⟨f, range(f)⟩, where range(f) = [M] \ range(f). In this way
we will use the above terminology to define relations between matchings, hole restrictions and total
1-1 assignments, e.g. f∥π and π ⊆ τ .

The main subject of this section is circuits C : {0, 1}|BITSN,M | → {0, 1}⌈logM⌉ which solve Avoid,
in the sense that C(f) /∈ range(f) for all f , where C(f) denotes feeding C the representation of
f as an assignment to its bit variables. We thus need some notation for basic kinds of circuits
computing a function of f , which will be hole and matching disjunctions:

Definition 16 (Matching and Hole Disjunctions). A hole disjunction ϕ = ∨iτi over [M][N] is
defined by a collection of hole restrictions [N] → [M], which we refer to as the “terms” of ϕ. We
say ϕ(f) = 1, or “f satisfies ϕ,” if f∥τi for some term τi of ϕ. In this way each hole disjunction
is associated with a boolean function FN,M → {0, 1}. If |τi| ≤ w for all i we say that ϕ has width
w. We call ϕ a matching disjunction if all τi are partial matchings.

Recall that we are primarily concerned here with the values a formula takes on 1-1 assignments
f ∈ FN,M . In such a setting we can simplify any circuit so that the bottom two logical layers are
a set of matching disjunctions:

Observation 3. Let D be a DNF formula on the bit variables BITSN,M . Then there is a matching
disjunction ϕ so that D ≡ ϕ. Moreover if D has s terms and width w, then ϕ will have ≤Ms terms
and width ≤ ⌈logM⌉w.

Proof. Say that D = ∨i ∧j ℓi,j is a DNF where each ℓi,j is a literal on BITSN,M . For each term
ti = ∧jℓi,j we may replace it by the matching disjunction:

θi =
∨

π∈match(ti)

π

where match(ti) is the set of minimal partial matchings π so that for each literal ℓi,j = (¬)ξfx,b in
ti (with ξ ∈ {0, 1}), there is an edge (x, y) ∈ π with yb = ¬ξ. Clearly we have that θi(f) = ti(f)
for all 1-1 assignments f , and thus we may replace D with the matching disjunction ∨iθi without
affecting its behavior on 1-1 assignments. Observe that |match(ti)| ≤M |ti| and its width is larger
by a factor of at most ⌈logM⌉.

17

Definition 17. Let ϕ = τ1 ∨ . . . ∨ τs be a hole disjunction with τi = ⟨πi, Ei⟩ and let κ = ⟨σ, U⟩ be
a hole restriction. We define ϕ restricted by τ , denoted by ϕ ↾ κ, as follows: (i) First, any term
τi ∈ ϕ that is inconsistent with κ is set to 0 by κ and thus these terms disappear from ϕ ↾ κ (we
also say they are “killed” by κ). If all terms are set to 0, then ϕ ↾ κ = 0. (ii) Otherwise for any
term τi consistent with κ, we replace τi with τi ↾ κ := ⟨πi \ σ,Ei \ U⟩. If τi ↾ κ = ⟨∅, ∅⟩ this means
κ already satisfies this term; if this happens for any of the τi then we set ϕ ↾ κ = 1.

The last basic computational model acting on inputs f ∈ FN,M we consider is a “pigeonhole
decision tree”:

Definition 18. A pigeonhole decision tree T over FN,M is defined by a rooted tree with fanout
≤ M , with leaves labeled by values from some finite set Z. Each internal node v ∈ T is labelled
by either a “pigeon query” or a “hole query”. Pigeon nodes (those that make a pigeon query) are
labeled by a query q(v) ∈ [N] and have ≤ M outgoing edges each labeled by a distinct element
(q(v), y) ∈ [N] × [M]. Hole nodes are labeled by a query q(v) ∈ [M] and have ≤ N + 1 outgoing
edges, which are either labelled by a distinct element (x, q(v)) ∈ [N]× [M] or by q(v) ∈ [M]. (The
label q(v) corresponds to nothing mapping to pigeon q(v).) In this way, we can associate each node
v ∈ T to some ⟨π,E⟩ with π ⊆ [N]× [M], E ⊆ [M], consisting of the labels of all edges on the path
from the root to v in T . We then require that this pair ⟨π,E⟩ associated to v is a hole disjunction.

T is said to be a complete pigeonhole decision tree if for every f ∈ FN,M there is a (unique)
root to leaf path in T that is consistent with f . In the case that T is complete we may associate
T with a function T : FN,M → Z, where T (f) is the value at the leaf of T consistent with f .
The depth of T is the length of the longest root to leaf path. We will sometimes define pigeonhole
decision trees without having specific associated leaf values in mind; in this case we refer to the tree
as “unlabeled.”

Note: The queries in a pigeonhole decision tree do not correspond directly to queries of the
underlying bit variables BITSN,M . While it is possible to query logM of the variables BITSN,M

to determine f(x) for some x ∈ [N], if we want to determine the preimage of y ∈ [M] under f
(or determine it has no preimage), we would need to query ≈ N logM variables of BITSN,M to
make this determination directly. Instead, a pigeonhole decision tree corresponds more directly to
a special kind of PNP decision tree on the bit variables.

We next observe that if T is a complete depth d pigeonhole decision tree with binary leaf values,
then we may represent both T and ¬T by a width d hole disjunction:

Observation 4. Let F : FN,M → {0, 1} be some predicate. If F ≡ T for some complete pigeonhole
decision tree T of depth d, then there exist hole disjunctions ϕ1, ϕ2 of width ≤ d so that F ≡ ϕ1
and ¬F ≡ ϕ2.

We will need the following variant of the Switching Lemma, which says that for any low-width
matching disjunction ϕ, is we sample a random partial matching ρ, then with high probability
ϕ ↾ ρ will have a low-depth, complete pigeonhole decision tree. We defer the proof of the Switching
Lemma to Section A.

Definition 19 (Distribution of Partial Restrictions). Let MN,M
K be the set of all partial matchings

[N] → [M] with exactly N − K edges. We use ρ ∼ MN,M
K to denote a sample from the uniform

distribution on this set. When N,M are clear from context we write MK as shorthand for MN,M
K .

Lemma 6 (Pigeonhole Switching Lemma). Let M,N, d ∈ N. Let ϕ be a width-w matching dis-
junction over [M][N]. If M −N ≤ K ≤ N

4 and N,K, d, w sufficiently large, then

Pr
ρ∼MK

[ϕ ↾ ρ has no depth ≤ d pigeonhole decision tree] ≤ exp
(
d(logwK5 − logN1/2 +O(1))

)
18

3.2 Depth 3 Lower Bound for Strong Avoid

In this section we prove the following circuit lower bound, which is a restatement of Theorem 2.

Theorem 2 (Restated). There is some absolute constant ϵ > 0 so that the following holds.
Let Φ1, . . . ,Φk be depth 3, size ≤ s unbounded fanout formulas over the bit variables BITSN,N+1.
Provided k ≤ N ϵ and s ≤ 2N

ϵ
, there exists a string z ∈ {0, 1}k so that for all y ∈ [N + 1], there

exists an assignment f : [N] → [N + 1] such that:

1. Φi(f) = zi for all i

2. y ∈ range(f)

In particular it is not possible to determine an empty pigeonhole of f by reading the values of
Φ1(f), . . . ,Φk(f).

Overview of Proof. As mentioned in Section 1.2.1, we want to prove Theorem 2 by restricting
attention to the class of inputs that correspond to 1-1 functions, and in order to do this we will need
to prove a strengthening of Theorem 2, by proving the lower bound for Avoid on input functions
f : [N] → [M], where M is larger than N +1. As discussed in Section 1.2.1, this implies the lower
bound stated above (with M = N + 1).

Thus we assume for sake of contradiction that there exist depth-3 AND-of-OR-of-AND circuits
Φ1, . . . ,Φk of total size at most s that solves Avoid on all one-to-one instances f : [N0] → [M0],
where M0 = N0 + N ϵ

0, for some 0 < ϵ < 1. Since we will prove the lower bound with respect to
all 1-1 inputs, by Observation 3 we can assume without loss of generality that the bottom level of
ANDs are partial matchings. Therefore, each circuit Φi is without loss of generality an AND of
matching disjunctions.

1. The first step is to argue that there exists a matching restriction ρ such that after applying ρ,
all depth-2 subcircuits (which are matching disjunctions) have width at most w ≈ log s. This
is accomplished in the Width Reduction Lemma (8) by a standard Chernoff argument and
a union bound. Thus after applying Lemma 8, we are left with depth-3 circuits Φ1, . . . ,Φk

which are ANDs of matching disjunctions of width at most w = c log s for some constant
c > 0. These circuits still solve Avoid but now with respect to 1-1 functions on the reduced
domain and range, [N1], [M1], where N1 = Ω(N0), and M1 ≈ N1 +N ϵ

1.

2. At this point each Φi is an AND of low-width matching disjunctions, i.e. we have Φi = ∧jϕi,j
where the ϕi,j are width w matching disjunctions. The next step is to apply our Pigeonhole
Switching Lemma (6) which will tell us that there exists a matching restriction ρ such that for
all i, j, ϕi,j ↾ ρ simplifies to a depth d pigeonhole decision tree. We will be able to choose the
parameters in our switching lemma so that after the second restriction, there are N2 remaining
pigeons and M2 = 2N2 remaining holes, with d2k2 < N2. By Observation 4, this allows us to
rewrite ¬ϕi,j as a width=d hole disjunction, and thus ¬Φi as width d hole disjunction. The
simplified circuits ¬Φ1, . . . ,¬Φk still solve Avoid, but now with respect to 1-1 functions on
the reduced domain and range leftover after this restriction, i.e. on instances [N2] → [2N2].

3. The final step is to prove that if ϕ1, . . . , ϕk are width-d hole disjunctions that solve Avoid
with respect to all 1-1 functions from [N2] to [2N2], then we must have d2k2 > N2. This is
accomplished by Lemma 7. The proof is a novel argument based on coverings. Recall that
our goal is to give some sequence of values z1, . . . , zk ∈ {0, 1}, so that for all y0 ∈ [2N2] we
can find a 1-1 instance f : [N2] → [2N2] so that ϕ1(f) = z1, . . . , ϕk(f) = zk, but y0 is not
an Avoid solution for f . This indicates that the values ϕ1(f), . . . , ϕk(f) are insufficient to

19

determine an Avoid solution. To construct z1, . . . , zk, we start by repeatedly searching for
some ϕi whose underlying terms have a small hitting set, which is a small set of pigeons and
holes so that every term of ϕi mentions at least one of them. If some ϕi is found, we apply
a partial restriction ρ to the hitting set variables, which reduces the width of ϕi by 1. Since
there are k ϕi’s, and each has width at most d, after dk iterations, each ϕi either has been set
to a constant, or is promised to have no small hitting set. We set zi = 1 or zi = 0 for all the
ϕi which have been forced to a constant by our restriction ρ in this process, and set zi = 1 for
all the unkilled ϕi. Then to finish the proof, we need to show that for any y0 we can find an
instance f∥ρ so that y0 ∈ range(f), and ϕi(f) = 1 for every ϕi which was unkilled in the first
step. Let y0 ∈ [2N2] be given. Starting with the partial assignment ρ, we extend it so some
unmapped pigeon x0 goes to y0, and then we iterate over each unkilled ϕi and try extend ρ
to satisfy one of its terms greedily. The correctness will follow from the fact that none of the
unkilled ϕi have a small hitting set.

We now formalize the above, which relies on the three Lemmas mentioned in the proof overview.
Two of these Lemmas (Lemmas 8 and 7) will then be proven, while the more involved Lemma 6
is postponed to Appendix A.

Proof of Theorem 2. Fix some ϵ, δ to be specified later. Let N0 be sufficiently large, and let
M0 = N0 +N ϵ

0. Assume towards a contradiction that Φ1, . . . ,Φk are depth-3, size s = 2N
ϵ
0 circuits

so that for all assignments f : [N0] → [M0], we may determine an empty pigeonhole for f by reading

the values Φ1(f), . . . ,Φk(f), and that k ≤ N
ϵ/5
0 . Without loss of generality we may assume:

Φi =
∧
j

Di,j

where Di,j is a DNF over the variables BITSN0,M0 . Obviously if Φ1(f), . . . ,Φk(f) could determine
an empty pigeonhole on all assignments f then it would do so on all 1-1 assignments; we will derive
a contradiction already from this fact. Therefore by Observation 3 we may assume

Φi =
∧
j

ϕi,j

where ϕi,j is a matching disjunction, at the cost of increasing the overall size of Φ from s to M0s,
while preserving the behavior of the Φi on 1-1 assignments.

Applying the width reduction lemma (Lemma 8) with w = c log s for a sufficiently large constant
c > 1, and a union bound over i, j, we can find a partial matching ρ0 leaving N1 pigeons unmapped,
where N1 = δN0, such that for all i, j, ϕi,j ↾ ρ0 has width w. Thus we have reduced the bottom
gate fanin of each circuit Φi to w, and the reduced circuits still solve Avoid with respect to all 1-1
functions f with domain N1 = δN0 and range M1 = N1 +N ϵ

0.
Next we apply our Switching Lemma (Lemma 6) with the following choice of parameters:

N := N1

M :=M1 = N1 +N ϵ
0

K := N ϵ
0

w = c log s = cN ϵ
0

d := K1/5 = N
ϵ/5
0

20

Choosing ϵ sufficiently small, it follows that for all i, j:

Prρ∼MK
[Tϕi,j↾ρ has depth ≥ d] <

1

ks

Thus by a union bound over i, j, we conclude that there exists a partial matching ρ so that for each
i, j there is a pigeonhole decision tree Ti,j of depth d such that ϕi,j ≡ρ Ti,j .

Applying Observation 4 we can find hole disjunctions ψi,j of width d so that ¬ϕi,j ≡ρ ψi,j , and
therefore ¬Φi ≡ρ

∨
j ψi,j which is a width d hole disjunction. By the conditions on the original

Φ1, . . . ,Φk, for all 1-1 assignments f extending ρ we must be able to determine an empty pigeonhole
of f by reading the values ¬Φ1(f), . . . ,¬Φk(f).

After applying ρ, we are left with a reduced domain and range [N2] and [M2], where N2 = K =
N ϵ

0, and M2 =M1− (N1−K) = 2K = 2N2. Therefore on the smaller input size [2N2]
[N2], we have

found a sequence of k width-d hole disjunctions such that on all 1-1 assignments g : [N2] → [2N2],
we can determine an empty pigeonhole of g by reading the values of these hole disjunctions applied
to g. At this point we reach a contradiction with Theorem 7, since by our choice of parameters we

have 4k2d2 < N2 is satisfied (recall that k ≤ N
ϵ/5
0 by assumption).

Equipped with the Pigeonhole Switching Lemma (Lemma 6, proof in Section A), it is left to
prove Lemmas 8 and 7. We will first prove Lemma 7 followed by a proof of Lemma 8.

Lemma 7. Let ϕ1, . . . , ϕk be hole disjunctions of width w over [2N][N]. Then provided N > 4k2w2,
there exists a string z ∈ {0, 1}k so that for all y ∈ [2N], there exists a 1-1 function f : [N] → [2N]
such that:

1. ϕi(f) = zi for all i

2. y ∈ range(f)

In particular it is not possible to determine an empty pigeonhole of f from ϕ1(f), . . . , ϕk(f) for all
1-1 assignments f .

To prove this we need the following definition:

Definition 20 (Hitting Sets). If ϕ is a hole disjunction and A ⊆ [N] ⊔ [M], we say that A is a
hitting set for ϕ if A ∩ nodes(τ) ̸= ∅ for all terms τ ∈ ϕ.

We can observe the following property of hitting sets:

Observation 5. Let π : [N] → [M] be a partial matching, ϕ a nonempty hole disjunction, and
A ⊆ [N] ⊔ [M] a non-empty hitting set for ϕ ↾ π. Say that π′ is an extension of π such that
A ⊆ nodes(π′). Then for each term τ ∈ ϕ ↾ π, τ has strictly smaller width in ϕ ↾ π′ then it
originally did in ϕ ↾ π.

We can now prove the main claim:

Proof. To prove this we will construct partial matching π : [N] → [2N], a set I ⊆ [k], and values
{zi ∈ {0, 1} | i ∈ I} so that:

1. For all total 1-1 assignments f extending π, ϕi(f) = zi for all i ∈ I.

2. For all y0 ∈ [2N], there exists a total 1-1 assignment f extending π so that ϕi(f) = 1 for all
i /∈ I, and y0 ∈ range(f).

21

We will initialize π = ∅ and expand it in stages by the following procedure:

1. If there exists a nonempty A ⊆ [N] ⊔ [2N], |A| ≤ 2kw + 2 and some i ∈ [k] so that A is a
hitting set for ϕi ↾ π, then extend π to a 1-1 map π′ so that A ⊆ nodes(π′). If none exist then
halt the procedure and output the current π.

2. Set π := π′ and return to the previous step.

We claim that we will always be able to extend π in the appropriate way until no further hitting
sets can be found, and that at the end we will have |π| ≤ kw(2kw + 2) = 2k2w2 + 2kw. To see
this, observe that if ϕ is a hole disjunction of width w and nodes(π) is a hitting set for ϕ, then
every term in ϕ will either be killed in ϕ ↾ π or else have its width decreased by 1 by Observation 5.
Therefore the above procedure can only repeat kw times before all the ϕi have been killed. In each
step at most 2kw + 2 edges need to be added to π in order to cover A, so the total size of π at
any step is at most kw(2kw + 2) = 2k2w2 + 2kw, and therefore there are always enough available
pigeons/holes to extend π in the appropriate way at each step since N > k2w2.

Now we can choose I ⊆ [k], which will consist of those indices i so that ϕi ↾ π is forced to a
constant (i.e. one of its terms is already satisfied by π in which case it is forced to one, or else all
of its terms are killed and it is forced to 0). For i ∈ I we denote by zi ∈ {0, 1} the value it is forced
to. It remains to show that for any given y0 ∈ [2N], we can find a total 1-1 assignment f extending
π so that y0 ∈ range(f) and ϕi(f) = 1 for all i /∈ I. To do this we will construct a hole restriction
⟨ρ, U⟩, where ρ is another partial matching disjoint consistent with π, and U ⊆ [2N] satisfying:

1. y0 ∈ range(π ∪ ρ)

2. |ρ| ≤ kw, |U | ≤ kw

3. U ∩ range(π ∪ ρ) = ∅

4. For each i ∈ [k] \ I there is a term ⟨σ,E⟩ ∈ ϕi, so that for all x ∈ dom(σ) we have π ∪ ρ(x) =
σ(x), and E ⊆ U .

If we can accomplish this then the proof is complete. We simply extend π ∪ ρ to a total 1-
1 assignment f which leaves U out of its range. By the assumption N > 4k2w2 such a total
assignment exists; here we are using the fact that the total number of holes 2N is larger then the
size of U plus the number of holes filled thus far by π ∪ ρ. By construction we then have ϕi(f) = 1
for all i /∈ I and y ∈ range(f).

Observe that by construction of π, for each i /∈ I we have that ϕi ↾ π has no hitting set of size
≤ 2kw+2. We will construct ρ, U in stages. Initially we check if y0 ∈ range(π), if not we initialize
ρ = {(x0, y0)} where x0 is an arbitrary element unmapped in π, otherwise we initialize ρ = ∅. In
addition we initialize U = ∅. Now we go through each i ∈ [k] \ I in order and do the following. We
search for some term τ = ⟨σ,E⟩ ∈ ϕi ↾ (π ∪ ρ) so that nodes(τ) ∩ nodes(⟨ρ, U⟩) = ∅. If found, then
we add the nodes in E to U and the edges in σ to ρ. We claim that it is always possible to find
such a term while maintaining that π ∪ ρ is 1-1 and U ∩ range(π ∪ ρ) = ∅. In particular say that
we have gotten to some step i ∈ [k] \ I where this is not possible. Let A = nodes(⟨ρ, U⟩). Observe
that by construction |A| ≤ 2kw + 2. Recall that by construction of π we have that A cannot be a
hitting set for ϕi ↾ π. By definition of a hitting set this implies the existence of the required term
τ ∈ ϕi.

Next, we prove the Width Reduction Lemma:

22

Lemma 8 (Width Reduction). Let ϵ > 0 be a sufficiently small constant. Let ϕ be a matching
disjunction with s terms over [M][N]. Say a partial matching ρ is sampled as follows: sample
A ⊆ [N] by including each element independently with probability 1− ϵ; now choose a uniform 1-1
function A→ [M].

Pr
ρ
[ϕ ↾ ρ has width ≥ w] < exp(log s− Ω(w))

Proof. Let ϕ = λ1, . . . , λs. We will ignore each term whose width is already < w; its width cannot
increase under the restriction. Let λ ∈ ϕ be a term of width ≥ w. We bound the probability that
ρ does not kill the term λ as:

Pr
ρ
[λ survives ρ] =

∑
U⊆dom(λ)

Pr[dom(λ) ∩ dom(ρ) = U]
1

|U |!
(
M
|U |

)
≤

w∑
t=1

Pr[|dom(λ) ∩ dom(ρ)| = t]
1

t!
(
M
t

)
≤ 1

(w/2)!
(
M
w/2

) + Pr[|dom(λ) ∩ dom(ρ)| < w

2
]

≤ 1

(w/2)!
(
M
w/2

) + Pr
ξ1,...,ξw∼Bern(1−ϵ)

[
∑
i

ξi ≤
w

2
] ≤ exp(−Ω(w))

Where the last inequality follows from Chernoff’s bound and Bern(1 − ϵ) denotes the Bernoulli
distribution with expected value 1− ϵ. Thus by a union bound

Pr
ρ
[ϕ ↾ ρ has width ≥ w] ≤ exp(log s− Ω(w))

Lower Bounds for Moderately Weak Avoid: Above we showed that depth-3 circuits cannot
solve the Strong Avoid problem unless their size is exponential. In contrast, Li’s construction gives
quasipolynomial size depth 3 circuits which solve the Weak Avoid problem, i.e. Avoid on instances
[N] → [2N] when the codomain is at least twice as large as the domain. By a standard iteration
construction (the same argument which lets us reduce [N] → [2N] Avoid to [N] → [N2] Avoid as in
[Kor21]), for every constant d we can obtain quasipolynomial size depth 3 circuits solving Avoid on
instances [N] → [N +N/ logdN]. We show here that this is essentially optimal: for every constant
c there exists another constant d so that [N] → [N +N/ logdN] Avoid cannot be solved by depth
3 circuits of size 2log

c N . The proof is a simple reduction to Theorem 2 which is originally due to
Razborov [Raz].

Lemma 9. For every c ∈ N there exists d ∈ N so that the following holds. Let Φ1, . . . ,Φk be depth
3 circuits of size s such that for every assignment f : [N] → [N + N/ logdN], an Avoid solution
can be determined from the values Φ1(f), . . . ,Φk(f). Then either k ≥ logcN or s ≥ 2log

c N .

Proof. Let c ∈ N be fixed. We will choose M = logdN for an appropriate choice of d which
will be specified later and which will depend only on c. We then reduce the Avoid problem on
instances [M] → [M + 1] to instances [N] → [N +N/ logdN] as follows: given g : [M] → [M + 1],
let g⊗ℓ : [Mℓ] → [(M + 1)ℓ] be the map which sends each block [1,M], . . . , [M(ℓ − 1),Mℓ] to its
corresponding block in [1,M + 1], . . . [(M + 1)(ℓ− 1), (M + 1)ℓ] according to g. Setting ℓ = N

M we

see that g is a map [N] → [N + ℓ], where ℓ = N/M = N/ logdN .

23

Obviously given g we can generate g⊗ℓ without any computational overhead by simply substi-
tuting variables. In addition, any Avoid solution to g⊗ℓ uniquely determines an Avoid solution to
g, obtained by simply forgetting the block number and outputting the position within the relevant
block. Thus if the circuits Φ1(f), . . . ,Φk(f) could solve Avoid on inputs [N] → [N + N/ logdN]
then they can also solve Avoid on inputs [M] → [M + 1]. By Theorem 2 there is some absolute
constant ϵ, such that for this to be possible we must have k ≥M ϵ and s ≥ 2M

ϵ
. Setting d > c

ϵ the
theorem follows.

3.3 BPPNP Lower Bound for 1-1 Strong Avoid

We restate the main result to be proved:

Theorem 3 In the decision tree model, Strong 1-1 Avoid is not solvable in FBPPNP.

Recalling the definition of BPPNP (in the decision tree model), if 1-1 Strong Avoid has BPPNP

decision trees of complexity w, then there is a distribution T over PNP decision trees of complexity
r, so that for all f : [N] → [N + 1] T outputs a 1-1 Strong Avoid Solution with probability ≥ 2/3.
By Yao’s minimax principle, this implies the existence of a fixed tree T ∈ support(T), so that
T (f) succeeds in finding an empty pigeonhole of f with probability ≥ 2/3 when f is sampled
uniformly from the space of 1-1 functions FN,N+1. It thus suffices to rule out the existence of such
a deterministic tree T . We will use here the notation FN := FN,N+1, and f ∼ FN to denote a
uniform sample from this set. Thus Theorem 3 follows from the following Theorem:

Theorem 8. There is an absolute constant ϵ > 0 so the following holds: if T is a PNP decision tree
of complexity N ϵ over the bit variables BITSN,N+1 and leaves labeled by elements of [N + 1], then:

Pr
f∼FN

[T (f) /∈ range(f)] ≤ N−Ω(1)

The high level idea of the proof is as follows. Observe that a random f ∼ FN,M can be sampled
by first choosing a uniform partial matching ρ of a certain size, and then choosing a uniform
completion of ρ to a total assignment. Applying our Switching Lemma, we can argue that with
high probability, after we sample ρ we can replace all of the NP queries in our PNP decision tree T
with small depth pigeonhole decision trees, which overall allows T to be replaced by a low depth
pigeonhole decision tree. It then remains only to argue that a pigeonhole decision tree of low depth
cannot solve 1-1 Strong Avoid with non-trivial probability on a uniform extension f of ρ, which
can be accomplished with a direct argument.

Proof of Theorem 8. By definition of a PNP decision tree, T is a binary tree of depth r = N ϵ

with each internal node branching on the value of some DNF of width r over the bit variables
BITSN,N+1. Let D1, . . . , Ds be the set of all DNF associated to the nodes of T ; so s ≤ 2r. As in
the proof of Theorem 2 we may apply Observation 3 and replace all Di by width r logN matching
disjunctions ϕi since we only care about their behavior on assignments in FN . Fix some parameter
K to be specified later. We will consider sampling f ∼ FN in the following way: first choose a
uniform partial matching ρ with N −K edges, then a uniform extension f ⊇ ρ of ρ to a total 1-1
assignment. We define B as the event that ϕi ↾ ρ does not have a pigeonhole decision tree of depth
≤ r for some i ≤ s. Observe in the case ρ /∈ B, we may construct a pigeonhole decision tree T of
depth r2 so that T ≡ρ T ; we simply simulate the original computation of T , and each time a DNF
Di was originally queried, we instead simulate the depth ≤ r pigeonhole decision which represents
ϕi. Let Pd(J) be the maximum, over all pigeonhole decision trees Q of depth d on g : [J] → [J +1],
of Prg∼FJ

[Q(g) /∈ range(g)]. Then we have:

24

Pr
f∼FN

[T (f) /∈ range(f)] = Pr
ρ, f⊇ρ

[T (f) /∈ range(f)]

≤ Pr
ρ
[ρ ∈ B] + max

ρ/∈B
Pr
f⊇ρ

[T (f) /∈ range(f)]

≤ Pr
ρ
[ρ ∈ B] + Pr2(K)

≤ 2r max
i

Pr
ρ
[ϕi ↾ ρ has no pigeonhole decision tree of depth ≤ r] + Pr2(K)

We will prove in the next lemma that Pr2(K) ≤ r2

K+1 . Setting ϵ sufficiently small and K = r3, we
can apply Lemma 6 and complete the proof.

It remains to prove the bound on Pr2(K). At the cost of increasing the depth of the tree by 1,
we assume that a pigeonhole decision tree always queries a hole before outputting it as a solution.

Lemma 10. Pd(N) = d
N+1

Proof. Let T be a tree witnessing Pd(N).
Say that T first queries a hole y ∈ N , so that

T (f) =

T1(f) if f(1) = y

· · ·
TN (f) if f(N) = y

y if y /∈ range(f)

then we have:

Pd(N) = Pr
f
[T (f) /∈ range(f)]

= Pr
f
[y /∈ range(f)] +

∑
x

Pr
f
[f(x) = y] · Pr

f
[Tx(f) /∈ range(f) | f(x) = y]

≤ 1

N + 1
+

N

N + 1
Pd−1(N − 1)

Here we are using that fact that a uniform f conditioned on f(x) = y is equivalent, up to
relabeling, to a uniform member of FN−1, and the labeling of pigeons and holes has no effect on
the value of Pd−1(N − 1). By the same reasoning if T first queries a pigeon x then we have the
simpler bound:

Pr
f
[T (f) /∈ range(f)] =

∑
y

Pr
f
[f(x) = y] · Pr

f
[Ty(f) /∈ range(f) | f(x) = y] ≤ Pd−1(N − 1)

so overall

Pd(N) ≤ max{Pd−1(N − 1),
1

N + 1
+

N

N + 1
Pd−1(N − 1)}

Therefore by induction on d we conclude that the optimal pigeonhole decision tree achieving Pd(N)
only queries holes, and without loss of generality queries them in order 1, . . . , d (in the base case
we use the assumption that T must query a hole before using it as an answer), then outputs the
index of the first empty hole that was queried (if any). Therefore we have:

Pd(N) = Pr
f
[{1, . . . , d} ⊈ range(f)] =

d

N + 1

25

Next we show that Theorem 4, separating the decision class ΣP
2 ∩ ΠP

2 from BPPNP, follows as
a corollary of Theorem 3.

Proof of Theorem 4. Lemma 4 says that Strong 1-1 Avoid is solvable in FPΣP
2∩ΠP

2 . This result
holds relative to every oracle (and thus in the decision tree model). Hence relative to every oracle,
if ΣP

2 ∩ ΠP
2 ⊆ BPPNP then Strong 1-1 Avoid collapses into BPPNP. The result then follows from

Theorem 3.

4 Linear Ordering Principle

In this section we investigate the complexity of the Linear Ordering Principle. We restate the
definition in a slightly different terminology:

Definition (Linear Ordering Principle, Restatement of 2). The input to LOP is a binary relation
≺ on [N]× [N] specified by a circuit. The following solutions are sought:

1. A witness that ≺ does not define a total order on [N] (trivial solution)

2. An element a0 ∈ [N] so that a0 ≺ a for all a ̸= a0 ∈ [N] (nontrivial solution)

We say an instance ≺ is nontrivial if it has no trivial solutions. The trivial solutions are enumerated
formally as follows:

Antireflexivity Violation: x such that x ≺ x

Transitivity Violation: x, y, z such that x ≺ y ≺ z and x ̸≺ z

Totality Violation: x ̸= y such that x ̸≺ y and y ̸≺ x

Note that in the introduction we defined ≺ to be a relation on {0, 1}n × {0, 1}n. We state it in
this more general form here, since the space we define a linear ordering on in our main reduction
will not have size being a power of two. It is straightforward to pad an instance of LOP which is
defined on some subset of {0, 1}n to the whole space without affecting the value of the solution.

Recall from Section 2.1 that LOP has “essentially unique solutions:” the trivial solutions are
checkable in polynomial time, and any instance without trivial solutions has a unique nontrivial
solution. Our primary interest in this problem stems from the following reduction (stated in the
Introduction):

Theorem 1 Weak Avoid is polynomial-time many-one reducible to LOP.

We will describe the reduction in two parts, using an intermediate search problem called Forest
Termination:

Definition 21 (Forest Termination). The input consists of:

1. A function Pred : [M]× [N]× [N] → [M]

2. A function Col : [M]× [N] → {0, 1}

specified by boolean circuits. We think of the input as representing a layered rooted forest F of
depth N with nodes partitioned into sets L1, . . . , LN , each of size M , with nodes in L1 being roots
and all other nodes in {Lj}j>1 having a unique parent in Lj−1. We say that the function Pred
“validly represents a forest” if the following holds: for each u ∈ [M], k ≤ j ≤ i ∈ [N], we have

26

that Pred(Pred(u, i, j), j, k) = Pred(u, i, k). If this holds then we may think of Pred as repre-
senting some forest F in the following strong sense: for any node u ∈ Li with i > 1, the nodes
Pred(u, i, 1), . . . ,Pred(u, i, i) form the unique path from L1 to u in F . Finally for each each u ∈ F
with think of Col(u, i) as coloring the node u ∈ Li red or blue.

We say that u ∈ F ∪ {⊥} is a termination point of F if the following holds:

1. u = {⊥} and L1 contains no blue node.

2. u is a node in F , the path from L1 to u in F uses only blue nodes, and u does not have a blue
child in F .

Now the search problem is: given Pred,Col, find a witness that Pred does not validly represent
a forest, or else find a termination point in the forest it represents.

The totality of this problem follows by starting at at a blue node in L1 (if one exists) and finding
a maximal blue path through its descendants in F . We start by giving a reduction fromWeak Avoid
to Forest Termination. This is the aspect of the proof which is very similar to arguments by Li and
by Paris Wilkie and Woods [Li24, PWW88].

Lemma 11. Weak Avoid with 2n stretch is polynomial-time reducible to Forest Termination.

Proof. Let f : {0, 1}n → {0, 1}2n be given; we denote by f0, f1 : {0, 1}n → {0, 1}n the functions
obtained by restricting to the first and last n bits of output respectively. Let Sn denote the set
of all binary strings of length at most n, including the empty string ϵ. Naturally Sn is associated
with the nodes of a full binary tree of depth n; however since the Forest Termination instance
we construct involves a forest whose structure and depth differ from that of Sn, we will use the
terminology of binary strings to refer to elements of Sn in order to avoid confusion. We say s ⊑ s′

if s is a prefix of s′, and s ⊏ s′ if it is a proper prefix. We use s · s′ for concatenation. If s ⊑ s′, with
s′ = s · p, we use s′ − s to denote p. We define the “preorder” < on Sn recursively with respect to
prefixes: for a prefix p and two distinct extensions p · s, p · s′ with s < s′ (with the relative order of
s, s′ defined recursively), we put p ·s < p ·s′ < p. In the view of Sn as a depth n perfect binary tree,
this corresponds to the recursive subtree ordering “left subtree < right subtree < root.” Note that
this is a total ordering with ϵ being the greatest element and 0n the least. Finally, for an element
s ∈ Sn, we say that s′ is a “left outlet” of s if either s′ = s or s′ = p0 for some p ⊑ s. We use LO(s)
to denote its set of left outlets; note that |LO(s)| ≤ n. Observe that for any s′ ≤ s, there exists a
unique p ∈ LO(s) such that p ⊑ s′.

For some s ∈ Sn and some value x ∈ {0, 1}n, define fs(x) recursively as follows: if s = ϵ then
fs(v) = v. If s = bs′ for some bit b and substring s′, fs = fs′(fb(x)). We define a “transcript”
as an element π ∈ ({0, 1}n)n. We say the transcript π is valid for some s ∈ Sn if πi = 0n for all
i > |LO(s)|. In this way the valid transcripts for s are in one-to-one correspondence with functions
LO(s) → {0, 1}n. Thus for a valid transcript π for s and some p ∈ LO(s), we use π(p) ∈ {0, 1}n
to denote the value the transcript associates to p. For a transcript π, and strings s′ < s ∈ Sn, we
define the transcript π′ = Pred(π, s, s′) as follows. We first check if π is valid for s; if not we set
π′ to be some fixed canonical choice of invalid transcript for s′. Otherwise, for each p ∈ LO(s′), we
set π′(p) = fp−q(π(q)) where q ∈ LO(s) is the unique left outlet of s which is an ancestor of p.

We now construct an instance of Forest Termination with [N] = [2n+1 − 1] = Sn and M =
[2n

2
] = ({0, 1}n)n. [N] is associated naturally to Sn, so that each layer corresponds to an element

of Sn and the layers are ordered according to <, i.e. L1 is associated to 0n ∈ Sn and LN to
ϵ ∈ Sn. [M] is associated to the set of possible transcripts, so that Ls will be the set of all possible
transcripts for the string s (some valid and others invalid). We use Pred defined above to give

27

the Pred function in the instance of Forest Termination. It should be noted that the depth of
the forest defined here is N = 2n+1 − 1, which is much larger then the depth of tree naturally
associated to Sn (whose depth is n); this is why we have used the notation of binary strings rather
then nodes in a tree to refer to elements of Sn. It remains to define the node coloring function Col.
If (π, s) ∈ [M] × [N] are such that π is not a valid transcript for s, then Col(π, s) is red; if π is a
valid transcript for s and |s| < n then it is colored blue (|s| denotes its length as a binary string).
Otherwise if π is a valid transcript for s and |s| = n, we check that π(s) = ¬fs(s), where ¬ denotes
the string obtained by flipping all bits. If so we color it blue, otherwise we color it red. Note that
since |s| = n, f(s) is well defined, and thus so is fs(s).

It follows by construction that Pred validly defines a forest in the sense of Definition 21. It
remains to show that given any termination point we may determine a solution to the original
instance of range avoidance. We first claim that there exists a blue node in the first layer L0n ,
so that the solution to Forest Termination cannot be ⊥. Observe that LO(0n) = {0n}, thus the
transcript π which sets π(0n) = ¬f0n(0n) will be blue. Now, say that π ∈ Ls is a termination node.
We claim that Ls cannot be the last layer, i.e. s ̸= ϵ. Say towards a contradiction that π is a
termination node in layer Lϵ. So π is a valid transcript for ϵ, which stores a single value x = π(ϵ).
By the assumption π is a termination point all of its predecessors are blue. In particular if we view
x as a length-n element of Sn, then we have that Pred(π, ϵ, x) is blue, which by construction means
that fx(x) = ¬fx(x), which is a direct contradiction.

Now say that π is a termination node in layer Ls where s ̸= ϵ; let s′ be the successor of s in
the ordering <. First say that |s′| = n; in this case (π, s) cannot be a termination point, since
we may construct a blue transcript π′ for s′ such that Pred(π′, s′, s) = π by simply appending the
value ¬fu′(u′) as π′(u′) to the original transcript π for s. Otherwise we have s = s′1. Let p = s′0;
so p is a left-outlet of s, and therefore π stores some values x0 = π(p), x1 = π(s). We claim that
x0x1 must be a solution to the Avoid instance f . Say this is not true and there is some x ∈ {0, 1}n
such that f(x) = x0x1; i.e. f0(x) = x0 and f1(x) = x1. Then we can generate a blue transcript
π′ for s′ as follows. Observe that LO(s′) = LO(s) \ {p} ∪ {s′}. Thus if we remove p from the
domain of π and set π′(s′) = x to obtain π′, then π′ will be a blue transcript for s′ and we will have
Pred(π′, s′, s) = π, which means (π, s) cannot be a termination point. To see this, note that in the
computation of Pred(π′, s′, s), the only modification made to π′ to generate π will be to compute
z0 = f0(π

′(s′)), z1 = f1(π(s
′)), and add z0 as the value π associates to p and z1 as the value it

associates to s. By construction z0 = x0 and z1 = x1 so we end up with the original transcript
π.

Next we reduce Forest Termination to LOP, which is simpler:

Lemma 12. Forest Termination is polynomial-time many-one reducible to LOP.

We will prove shortly that any search problem which is PNP-reducible to LOP is also polynomial-
time many-one reducible to LOP (Theorem 5); therefore it suffices to give a PNP reduction.

Proof. Let Pred,Col an instance of Forest Termination. We start by using an NP oracle to search
for a witness that Pred fails to validly represent a forest; if found we output this as our solution,
otherwise we know that the instance indeed represents a forest F on the nodes L1 ⊔ · · · ⊔ LN . For
conceptual simplicity, we modify F into a tree T by adding a virtual blue root node ⊥ whose children
consist of all nodes in L1. We use < for the lexicographical ordering on each Li. We now define a
new ordering ≺ on the nodes of T . Its definition is given recursively with respect to subtrees of T
as follows: say that u is a node with blue-rooted subtrees B1 < . . . < BK and red-rooted subtrees
R1 < . . . < RK′ ordered lexicographically by their respective roots. Define ≺ recursively inside

28

each Bi, Rj ; now between them use the ordering B1 ≺ . . . ≺ BK ≺ {u} ≺ R1 ≺ . . . ≺ RK′ . By
induction on the depth of T we see that ≺ is a total ordering. The relation ≺ will be our instance
of LOP output by the reduction; it remains to show that ≺ is efficiently computable and that its
minimal element yeilds a Forest Termination solution.

We first show how to compute ≺. Given u0 ̸= u1 ∈ T :

1. If u0 is an ancestor of u1 then let v be the child of u0 from which u0 can be reached. If v is
blue then set u1 ≺ u0, else if it is red set u0 ≺ u1.

2. Otherwise let v be the least common ancestor of u0 and u1, and let w0, w1 be the children
of w from which u0 and u1 can be reached respectively. We define the relative ordering of
w0, w1 in ≺, which is then inherited by the pair u0, u1: if wb is blue and w¬b is red for some
b ∈ {0, 1}, then set wb ≺ w¬b. Otherwise use the lexicographical order < to order the pair
w0, w1.

The only nontrivial step here is to compute a least common ancestor of u1, u2, which can be
accomplished with binary search. Say u1, u2 lie in layers Li, Li′ respectively, with i

′ > i. The using
Pred we find the ancestor of u2 in Li; call it û2. If û2 = u1 then u1 is the ancestor of u2. Otherwise
let j = ⌈i/2⌉, and compute the ancestors v1, v2 of u1, û2 in layer Lj . If they are distinct then
we repeat the same procedure starting from v1, v2. Otherwise if v1 = v2 we prune all the layers
L1, . . . , Lj−1 from consideration and repeat the procedure from u1, û2, taking Lj to be the root
layer with v1 = v2 as its root, and renumbering the layers accordingly. Overall the number of steps
required is O(logN).

Finally it remains to show that any solution to LOP on the instance ≺ yields a solution to the
given Tree Termination instance, i.e. if u ∈ {⊥} ⊔ L1 ⊔ · · · ⊔ LN is minimal in the ordering ≺ then
it must correspond to a termination point. Say that u is not a termination point, then either:

1. There is an edge (v, w) in the path from the root to u so that w is colored red. In this case
we must have v ≺ u.

2. u has a blue child v. In this case we have v ≺ u.

In each case we see that u cannot be the minimal element. An example of a Forest Termination
instance and its corresponding order ≺ is given in Figure 2.

We now observe some special properties held by the search problem LOP, the first of which is
its strong closure properties under a wide class of reductions:

Theorem (Theorem 5). Let R be any search problem which has a polynomial-time, NP-oracle
Turing reduction to LOP. Then R is polynomial-time many-one reducible to LOP.

Proof. Let A be a polynomial time PNP Turing reduction from some search problem R to LOP. Let
x be an instance of the search problem of length n. We first claim that we can modify A so that:

1. A(x) only calls the LOP oracle on instances ≺ which are nontrivial, i.e. they define a true
total order.

2. A(x) does not use its NP oracle.

To achieve the first condition, before each call to the LOP oracle on an instance ≺, we first use the
NP oracle to check if ≺ defines a total order, and to find a violation if not. If a violation is found
we no longer need to use the LOP oracle on this instance; otherwise we know that ≺ is a nontrivial

29

Figure 2: Example instance of Forest Termination with M = 4 and N = 3, with virtual root added
at the top. Blue nodes are circles and red nodes are diamonds. We have sorted each layer left to
right so that blue nodes come first, and within each color class the nodes are ordered left to right
lexicographically. The number on each node represents its position in the ordering ≺. The nodes
numbered 1 and 4 are the termination points of this instance.

instance and we use the oracle to solve it. Now to achieve the second condition, if ϕ is an instance
of SAT with m variables, we define the ordering ≺ϕ on {0, 1}m by: y ≺ϕ z if ϕ(y) = 1∧ϕ(z) = 0 or
vice versa, otherwise ≺ϕ orders them lexicographically. Clearly ≺ϕ is a nontrivial LOP instance,
and the minimal element of ≺ϕ will tell us if ϕ is satisfiable.

At this point we have a polynomial time reduction A which makes adaptive oracle calls to LOP
on nontrivial instances, each of which has a unique solution. We next modify A(x) to make exactly
m calls on all computation paths, and have each call of the form ≺: {0, 1}m × {0, 1}m → {0, 1}
for some fixed value m = poly(n). We can accomplish this easily by padding the algorithm with
dummy queries and padding any instance of LOP to a larger bit-length. We now define a new
instance ≺x: {0, 1}m

2 ×{0, 1}m2 → {0, 1} as follows. An element of {0, 1}m2
is given by a sequence

(u1, . . . , um) with ui ∈ {0, 1}m. To compare two elements ū = (u1, . . . , um), v̄ = (v1, . . . vm), we find
the first index i ∈ [m] so that ui ̸= vi. We simulate A(x) through the first i − 1 queries, plugging
in uj = vj as the answer to the jth LOP oracle query. Once we get to the ith query, we look at
the instance ≺i of LOP defining the next query, and compare ui, vi using ≺i; we then order ū, v̄
accordingly, e.g. ū ≺x v̄ if ui ≺i vi. It follows by construction that ≺x is a total order, and its
least element corresponds to the unique sequence of correct oracle responses in the computation
A(x). Therefore by the correctness of A we may read off in polynomial time from this sequence
the solution to the search problem R on input x.

At this point we can prove Theorem 1 that Weak Avoid is polynomial time many-one reducible
to LOP:

Proof of Theorem 1. By [Kor21] there is a PNP reduction from the general Weak Avoid problem
to the special case when the stretch is 2n. Composing this with the reductions in Lemmas 11 and
12 we obtain a PNP reduction from Weak Avoid to LOP. Applying Theorem 5 this in turn yields a
polynomial-time many-one reduction.

30

Recall that LOP enjoys the special property of having essentially unique solutions. Together
with its closure under PNP reductions, this endows LOP with the unusual property of being equiv-
alent to a decision problem. We define now a decisional complexity class LP2 , possessing a few
equivalent definitions, whose complete problem is equivalent to the search problem LOP:

Definition (Reminder of Definition 5). A language L is in the complexity class LP2 if there is a
polynomial time relation R : ({0, 1}∗)3 → {0, 1} and a polynomial p, so that for all x, R(x, ·, ·)
defines a total order on {0, 1}p(n) whose minimal element a has a1 = L(x).

Recalling Lemma 5, we have the following upper bound for this class:

Observation 6. LP2 ⊆ SP2 .

At first sight LP2 seems to crucially involve a promise, namely that ≺x defines a total order
for all x, just like the promise defining the class SP2 . However it turns out that this promise can
be eliminated and LOP can be given a purely syntactic characterization. This is summarized in
Theorem 6 which we restate here:

Theorem 6 The following are equivalent for a language L:

1. L ∈ LP2

2. L is PNP-Turing reducible to LOP.

3. L is polynomial time many-one reducible to LOP.

Conversely, the search problem LOP is polynomial time truth table reducible to a language in LP2 .

Proof. If L ∈ LP2 then by definition it is many-one reducible to LOP which gives (1) → (2).
Theorem 5 gives (2) → (3); inspecting the proof, for each x we may define ≺x so that the value
L(x) is the first bit of the LOP solution to ≺x, which actually gives (2) → (1).

Finally we prove Theorem 7 from the introduction, which tells us that LP2 satisfies two of the
three most interesting properties of the larger class SP2 :

Theorem 7

1. PNP ⊆ LP2 and BPP ⊆ MA ⊆ LP2

2. LE2
6 contains a language of circuit complexity 2n/n.

Proof. The inclusion PNP ⊆ LP2 follows directly from the closure of LP2 under PNP reductions. For
the second inclusion, we know that every language in MA is PNP-reducible to the construction of a
O(log n)-seed length PRG for O(n)-size circuits [NW94]. The explicit construction of such PRGs
is in turn reducible to Weak Avoid [Kor21], and Weak Avoid is reducible to LOP by Theorem 1.
Applying Theorem 5 the result follows.

For the second part, the proof is identical to the case of SE2 shown in [Li24] given our reduction
from Weak Avoid to LOP. Given x ∈ {0, 1}n we may produce in 2O(n) time an instance of Weak
Avoid Cn : {0, 1}ℓ → {0, 1}2n so that any solution is a truth table of a function f : {0, 1}n → {0, 1}
of circuit complexity 2n/n. By Theorem 1 we may then construct in 2O(n) time a nontrivial instance
of LOP ≺ so that from the unique minimal element of ≺ we may read off a uniquely defined Weak
Avoid solution fn for Cn. We then accept/reject x based on fn(x). Using the closure properties of
LE2 the language {fn}n∈N thus defined lies in LE2 .

6LE
2 is the exponential-time analogue of LP

2 , where we replace “polynomial time” with 2O(n) time” in its definition

31

The only interesting property of SP2 which we cannot prove is inherited by its subclass LP2 is the
Karp-Lipton theorem:

Theorem ([Cai07], credited to Sengupta). If NP ∈ P/poly then PH = SP2 .

The proof of this result does not seem to generalize to LP2 .

References

[Ajt83] Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.

[AT13] Albert Atserias and Neil Thapen. The ordering principle in a fragment of approximate counting. Electron.
Colloquium Comput. Complex., TR13-149, 2013.

[BCE+98a] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative
complexity of np search problems. Journal of Computer and System Sciences, 57(1):3–19, 1998.

[BCE+98b] Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The relative
complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.

[Bea94] Paul Beame. A switching lemma primer. Technical Report, Department of Computer Science, University
of Washington, 1994.

[BIK+92] Paul Beame, Russell Impagliazzo, Jan Kraj́ıcek, Toniann Pitassi, Pavel Pudlák, and Alan R. Woods.
Exponential lower bounds for the pigeonhole principle. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 200–220. ACM, 1992.

[BKT14] Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approximate counting.
J. Symb. Log., 79(2):496–525, 2014.

[Cai07] Jin-Yi Cai. S2p in zppnp. Journal of Computer and System Sciences, 73(1):25–35, 2007.

[Can96] Ran Canetti. More on bpp and the polynomial-time hierarchy. Information Processing Letters, 57(5):237–
241, 1996.

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point, and hard partial
truth table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, page 1058–1066, New York, NY, USA, 2023. Association for Computing
Machinery.

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires near-maximum
circuit size. In 56th Annual Symposium on Theory of Computing, 2024.

[CIY97] Stephen Cook, Russell Impagliazzo, and Tomoyuki Yamakami. A tight relationship between generic
oracles and type-2 complexity theory. Information and Computation, 137(2):159–170, 1997.

[CL23] Yilei Chen and Jiatu Li. Hardness of range avoidance and remote point for restricted circuits via
cryptography. Cryptology ePrint Archive, Paper 2023/1894, 2023. https://eprint.iacr.org/2023/

1894.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Math. Syst. Theory, 17(1):13–27, 1984.

[FY96] Lance Fortnow and Tomoyuki Yamakami. Generic separations. Journal of Computer and System Sci-
ences, 52(1):191–197, 1996.

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range Avoid-
ance for Constant Depth Circuits: Hardness and Algorithms. In Nicole Megow and Adam Smith,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023), volume 275 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 65:1–65:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range Avoidance for Low-Depth Circuits and Con-
nections to Pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2022), volume 245 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:21,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

32

https://eprint.iacr.org/2023/1894
https://eprint.iacr.org/2023/1894

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range avoidance, and
bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, page 1076–1089, New York, NY, USA, 2023. Association for Computing Machinery.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandomizing the
XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, page 220–229, New York, NY, USA, 1997. Association for Computing Machinery.

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomization. Annals of
Pure and Applied Logic, 129(1):1–37, 2004.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control,
55(1):40–56, 1982.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total Functions in
the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages
44:1–44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80,
page 302–309, New York, NY, USA, 1980. Association for Computing Machinery.

[Kor21] Oliver Korten. The hardest explicit construction. In 62nd Annual Symposium on Foundations of Com-
puter Science, 2021.

[Kor22] Oliver Korten. Derandomization from time-space tradeoffs. In Proceedings of the 37th Computational
Complexity Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[Li24] Zeyong Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly uniform.
In 56th Annual Symposium on Theory of Computing, 2024.

[MPW02] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole principle. J.
Comput. Syst. Sci., 64(4):843–872, 2002.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,
49(2):149–167, 1994.

[PWW88] J. Paris, A. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle and the existence of
infinitely many primes. J. Symb. Log., 53:1235–1244, 1988.

[Raz] Alexander Razborov. Personal communication.

[Raz93] A. Razborov. Bounded Arithmetic and Lower Bounds in Boolean Complexity, In Feasible Mathematics
II. Birkhauser, 1993.

[RS98] Alexander Russell and Ravi Sundaram. Symmetric alternation captures bpp. computational complexity,
7:152–162, 1998.

[VW23] Nikhil Vyas and Ryan Williams. On Oracles and Algorithmic Methods for Proving Lower Bounds. In
Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023),
volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 99:1–99:26, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Wil83] Christopher B. Wilson. Relativized circuit complexity. In 24th Annual Symposium on Foundations of
Computer Science (sfcs 1983), pages 329–334, 1983.

A Proof of the Pigeonhole Switching Lemma

As in the standard proof of the switching Lemma, we we need to define a procedure for representing
a matching disjunction by a canonical complete pigeonhole decision tree. We start with some
preliminary definitions.

Definition 22 (Complete Pigeonhole Trees on a subset A). For a partial matching π and a hole
restriction τ , we say that τ covers π if nodes(τ) ⊇ nodes(π). If τ = ⟨σ,E⟩, we say that τ is a
minimal cover of π if it fails to be a cover after removing any edge from σ or any element from E.

33

For every tuple (A,N,M) where A ⊆ [N] ⊔ [M], we define a canonical complete pigeonhole
decision tree, denoted denoted by CA(N,M), as follows. This tree is unlabelled, and is defined with
respect to some fixed ordering of the elements of A. So lets assume the ordering a1, . . . , ar of A.
We build CA(N,M) in r steps:

1. In step 1, if a1 ∈ [N], we query pigeon a1 at the root, with all possible outedges: (ai, y), y ∈
[M]. Otherwise if a1 ∈ [M], we query hole a1 with all possible outedges: (x, ai), x ∈ [N]⊔{⊥}.

2. In step i > 1, for each leaf node l in T , let τl = ⟨σl, El⟩ denote the hole restriction associated
with the path to l. If ai is a pigeon or hole in nodes(τl) (that is, if ai has already been
”determined” by the hole restriction thus far), then we do nothing. Otherwise, we query ai
at the leaf l, with all possible outedges that are consistent with τl.

Observe that the leaves of CA(N,M) are in one-to-one correspondence with the set of all hole
restrictions that minimally cover A, and thus CA(N,M) is a complete pigeonhole decision tree.

Definition 23 (Canonical Pigeonhole Trees). Let ϕ = π1 ∨ . . . ∨ πs be a matching disjunction
over [N] ⊔ [M] where we have fixed this ordering on the terms. The canonical pigeonhole tree for
ϕ, Tϕ(N,M), is defined recursively below. When N,M is clear from context, we will abbreviate
Tϕ(N,M) by Tϕ.

1. If s = 0, then ϕ is a constant function. If ϕ = 1 then Tϕ(N,M) consists of a single node
labelled by 1, and similarly if ϕ is 0, then the decision tree is a single node labelled by 0.

2. Otherwise, let π1 be the first term in ϕ according to the ordering of terms in ϕ. First, we
create the complete pigeonhole tree Cnodes(π1)(N,M). For each leaf l in the tree constructed so
far, let τl = ⟨σl, El⟩ be the hole restriction associated with the path to l. Then for each leaf l:

(a) Let P ⊆ [N] be the subset of pigeons that have not been matched by πl, and let H ⊆ [M]
be the subset of holes not matched by πl and not in El. P and H define the pigeons and
holes that are still undetermined after applying τl. If the size of P is N ′ and the size of
H is M ′, then we can rename the vertices so that we identify P with [N ′] and H with
[M ′].

(b) Recursively construct Tϕ↾τl(N ′,M ′). and attach a copy of this subtree to the leaf l.

It follows from the definition that Tϕ ≡ ϕ. Next, we restate the Pigeonhole Switching Lemma.

Lemma 6 Let M,N, d ∈ N. Let ϕ be a width-w matching disjunction over [M][N]. If M − N ≤
K ≤ N

4 and N,K, d, w sufficiently large, then:

Pr
ρ∼MK

[Tϕ↾ρ has depth ≥ d] ≤ exp
(
d(logwK5 − logN1/2 +O(1))

)
Proof. Let ϕ = λ1 ∨ . . . ∨ λs be a matching disjunction of width w. Let B be the set of partial
matchings ρ with N − K edges, such that Tϕ↾ρ has depth ≥ d. If ρ ∈ B, there exists a total
assignment f ⊇ ρ yielding a path P of length d from the root in Tϕ↾ρ. We define a sequence of
hole restrictions τ1, . . . , τℓ and a sequence of partial matchings σ1, . . . , σℓ, and set S ⊆ [ℓ] × [w] as
follows. Define τ0 = ∅. Once τi has been defined, let ai+1 be the index of the first term in ϕ so
that λai+1 ↾ ρ ∪ τ1 ∪ · · · ∪ τi is unkilled. Then let τi+1 be the minimal map τi+1 ⊆ f which covers
λai+1 ↾ ρ ∪ τ1 ∪ · · · ∪ τi, and let σi = λai+1 ↾ ρ ∪ τ1 ∪ · · · ∪ τi. Finally let S ⊆ [ℓ]× [w] contain each
index (i, j) ∈ [ℓ]× [w] such that the jth edge of λi occurs in σi. We claim that such a sequence can

34

be constructed so that at the end ℓ ≤ d, and if we take σ = ∪iσi, then σ is a partial matching with
nodes(σ) ∩ nodes(ρ) = ∅ and |σ| = t for some d

2 ≤ t ≤ dw. This follows from the definition of Tϕ↾ρ
and and the fact that f achieves a path of length ≥ d in this decision tree.

Thus, ρ ∈ MK , while ρ ∪ σ ∈ MK−t for some d
2 ≤ t ≤ dw. We will define a map

Dec :
⋃
t≥ d

2

MK−t × Γt ×∆t → MK

for some finite sets {∆t}t≤N so that whenever ρ ∈ B and σ, S are constructed from ρ as above,
there exists some “advice” δ ∈ ∆t so that Dec(ρ ∪ σ, S, δ) = ρ. This will imply that

Pr
ρ∼MK

[ρ ∈ B] ≤ 1

|MK |
∑
t≥ d

2

|MK−t||Γt||∆t|

which will yield the theorem provided we can choose the sets Γt, ∆t sufficiently small.
Let ρ ∈ B, τi, ai, σi, S be as above. Define γi := ρ∪τ1∪ . . .∪τi∪σi+1∪ . . .∪σℓ, where γ0 = ρ∪σ.

Let σ = ∪iσi and t = |σi|. First, we claim that if we are given τ1, . . . , τi−1, σ1, . . . , σi−1, and and
γi−1 then we may decode from these the index ai. To do this, we simply search for the first satisfied
term in ϕ ↾ γi−1. Next, observe that if we have knowledge of ai, then using S we may reconstruct σi.
Once we have γi−1, σi, τi, we may construct γi directly, by removing σi in γi−1 and replacing it with
τi. So it remains to show how to specify τ using the extra information ∆t, so that we may recover
τi from σi. Obverse that nodes(τ) is contained in nodes(σ)∪ ([N]⊔ [M] \ nodes(ρ∪ σ)). Therefore
if we construct a map δ : [K] → [K + L], where M −N = L and |δ| ≤ 2d which specifies, for each
u ∈ nodes(σ) the preimage/image of u in τ (or the lack of preimage if u is marked empty), then
from σi we may reconstruct τi by searching for the images/preimages of the nodes in [K]⊔ [K +L]
corresponding to nodes(σi). Thus for every t we can take ∆t = ∆ to be the set of all hole restrictions
[K] → [K + L] of size at most d, so that |∆| ≤

(
K
2d

)(
K+L
2d

)
(2d)!. Finally it remains to show that

the sets S lie in Γt for some suitably small set Γt. Observe that the set S ⊆ [ℓ] × [w] constructed
in this argument has the following form: |S ∩ {i} × [w]| ≥ 1 for all i ∈ ℓ, and |S| ≤ t. There are at
most (2w)t sets of this form (ranging over all possible values of ℓ), thus we can take |Γt| = (2w)t.

It remains to estimate the value

Pr
ρ∼MK

[ρ ∈ B] ≤ 1

|MK |
∑
t≥ d

2

|MK−t||Γt||∆t|

=
∑
t≥ d

2

|MK−d|
|MK |

|Γt||∆t|

Observe that for each κ ∈ MK−t there are at least
(
N−K+t

t

)
elements α ∈ MK such that α ⊆ κ,

and on the other hand for any α ∈ MK there are at most
(
K
t

)(
K+L

t

)
t! elements κ ∈ MK−t so that

α ⊆ κ. Thus
|MK−t|
|MK |

≤
(
K
t

)(
K+L

t

)
t!(

N−K+t
t

)

35

So overall we have:

Pr
ρ∼MK

[ρ ∈ B] ≤
∑
t≥ d

2

(
K
t

)(
K+L

t

)
t!(

N−K+t
t

) |Γt||∆t|

≤ |∆|
∑
t≥ d

2

(
K
t

)(
2K
t

)
t!(

N−K+t
t

) (2w)t

≤
(
K

2d

)(
K + L

2d

)
(2d)!

∑
t≥ d

2

(
K
t

)(
2K
t

)
t!(

N−K+t
t

) (2w)t

≤ (
2K√
2d

)4d
∑
t≥ d

2

(
8wK2

N

)t

Where we apply the assumptions K ≥ L and K ≤ N
4 . We may safely assume wK2

N = o(1), otherwise
the conclusion of the theorem holds trivially. Thus by geometric decay of terms in the above sum
we have, for some absolute C ∈ N, the bounds:

Pr
ρ∼MK

[ρ ∈ B] ≤ C(
2K√
2d

)4d
(
8wK2

N

) d
2

≤ (2K)4d
(
8wK2

N

) d
2

provided K, d are sufficiently large with respect to C. So overall

Pr
ρ∼MK

[ρ ∈ B] ≤ exp(4d log(2K) +
d

2
log(8wK2)− d

2
logN)

≤ exp(d(log(16K4) + log(8wK) + logN1/2)) = exp
(
d(logwK5 − logN1/2 +O(1))

)

36
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

