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Abstract

We study search problems and reducibilities between them with known or
potential relevance to bounded arithmetic theories. Our primary objective
is to understand the sets of low complexity consequences (esp. X or 3?)
of theories St and T for a small 4, ideally in a rather strong sense of
characterization; or, at least in the standard sense of axiomatization. We
also strive for maximum combinatorial simplicity of the characterizations
and axiomatizations eventually sufficient to prove conjectured separation
results. To this end two techniques based on the Herbrand’s theorem are
developed. They characterize/axiomatize Y:%-consequences of Y5-definable
search problems, while the method based on the more involved concept of
characterization is easier and gives more transparent results. This method
yields new proofs of Buss’ witnessing theorem and of the relation between
PLS and 25(T}), and also an axiomatization of ¥:¢(77). We also investigate
the relations among known search problems such as GI, MIN and GLS and
some of their variants.

v



Chapter 1

Preliminary Computational
Complexity

As computational complexity has become a widely known branch of math-
ematics, only a few pieces of not unusual terminology and notation will be
fixed here. The background for this section can be, for example, [Pap94] or
[BDG88|, although function problems, our primary object of study, otherwise
receive much less than the proportional amount of attention in both these and
other introductions to computational complexity theory. We try to amend
this deficiency for an interested reader by including a standalone Appendix
addressing the relation of function problems to the better understood decision
problems.

1.1 Data Representation

We shall work with natural numbers a lot; in fact, most variables and terms
throughout the thesis are arithmetic variables and terms. The preferred
encoding for the purposes of measuring computational complexity resources
is binary, and so the length of a number is approximately its logarithm®.
Pairs and other sequences are all encoded in a simple and efficient way, too.

There is perhaps one simple, but essential point to be made here: a

'We shall see in Definition 2.1 that the details of the encoding are a little more com-
plicated. The reason is that to receive the full power of both arithmetic and complexity,
the correspondence between numbers and bit strings must be a bijection: in particular,
prepending a zero bit to a bit string will change the value.
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polynomial-time computable function can grow faster than any polynomial.
Imagine a number z of length log z and suppose its representation somehow
squares in size (e.g., logz copies of = are taken). Then its value increases to
approximately z'°8%.

1.2 Computational Model Details

Deterministic Turing machines, usually guaranteed to terminate in time poly-
nomial in the size of the input, and often with an oracle, are used throughout.
We always assume that the time bound is enforced by a standard alarm
clock attached to the machine, making the concrete polynomial syntactically
obvious from the machine’s description, and the distance from the initial
state measured as a number of steps is explicitly present in every recorded
configuration (i.e., state, head positions and tape contents) of the machine.

A computation of a Turing machine is any sequence of adjacent configura-
tions from the initial configuration to any configuration with a terminating
state. It is uniquely determined by the machine and the initial configu-
ration, unless the machine invokes an oracle. Note that computations of
polynomial-time bounded Turing machines are also polynomial-size objects.

We make no distinction between accepting and rejecting states of a Tur-
ing machine when solving search problems?; all the search problems under
consideration are total and so all terminating states are accepting. There
is, however, a dedicated output tape (in addition to the input tape, working
tapes and an oracle query tape for every available oracle) whose contents
upon entering a terminating state is considered the output of a computation.

Oracle queries are accessed by writing the query to the oracle tape and
shifting to the oracle query state; in this situation the next state is not

2In contrast with solving non-total function problems, where rejecting states must
always be available in order to keep the notion of many-one reducibility compatible with
decision problems.

An additional note for an advanced reader. Whenever the promise of the search problem
is breached, the most adequate behavior of the machine solving the problem is indeed a
rejection; in particular, if a machine is used as a sub-procedure of another machine, the
sub-procedure’s rejection forces a rejection by the larger machine by definition. But we
adopt a conceptually simpler and computationally slightly stronger approach where every
answer to an invalid query is valid and there are no rejections.

These approaches are indeed different: some sensitive material to compare them on is
Lemma 7.9 and Lemma 7.10.
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determined by the transition function, but the tapes and head positions stay
unchanged, whereas the machine state shifts to either the positive or negative
state, indicating a positive or negative oracle answer, respectively. If multiple
oracles are available, one tape and three states are provided for every oracle.
A fully specified oracle can be identified with a language presented by the
oracle, which is the set of strings for which the oracle indicates the positive
answer.

On rare and explicit occasions, where the language presented by the oracle
is determined by a formula of the form Jy <z ¢(z,y) for any oracle query z,
the oracle answers will be witnessed. That is, not only the state changes as
above, but in case of a positive answer, the oracle tape (which just held x)
is completely erased and some y is written to its initial segment for which
©(z,y) holds. This computational model, however, comes with a price: there
may be several computations for a single input, branching by getting different
witnesses to positive answers to the same oracle query and so the computed
objects are multifunctions®. We shall therefore keep such witnesses separate
from the (non-witnessed) computations whenever possible.

1.3 Computational Model Notation

Decision problems (i.e., membership in a language) are encountered here
especially in connection with oracles. Most prominently, 3 is the i-th level
of the Meyer-Stockmeyer Polynomial Hierarchy; in particular, ¥ is P and
¥?is NP. (In a non-witnessed oracle, the language presented by a ¥ oracle
and its complement contribute the same information to the computational
model, so we were at a liberty whether to choose ¥ or II7.)

By O07, ¢ > 1, the functions computable in deterministic polynomial time
with an oracle from ¥? | are denoted; in particular, [} is F'P. Generally,
when A is a class of functions defined in terms of some computational model
and B is a decision problem (a language), then A” means the class of func-
tions computed by the same computational model enhanced by an oracle
solving B.

When ¢ > 2, modifications are occasionally employed in which the compu-

31n this thesis, both functions and multifunctions are implicitly total.

An additional note for o curious reader. A function problem is actually a partial multi-
function: we almost avoid this term, except for the Appendix. A search problem is a total
function problem, hence a total multifunction.
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tational model is enhanced by allowing witnessed queries, but also restricted
in the total number of oracle queries. Suppose the input is x and so its length
is n = log z; the unrestricted computations can query the oracle at most n°")
times due to the polynomial time bound. Notation like [ [wit, O(logn)] is
then employed to imply O(loglogz) of witnessed queries.



Chapter 2

Preliminary Bounded
Arithmetic

Bounded arithmetic is a field of study centered around specific rather weak
formal theories. It started with [Par71]; the area received additional signif-
icant potential to strong connections with computational complexity with
the ; axiom introduced in [WP87], which was particularly demonstrated in
[Bus86], whose language Ly became standard. The theory PV was originally
([Coo75]) considered in the context of computational complexity theory and
it represents a historically independent thread of research.

Our account of relevant parts of the bounded arithmetic follows [Kra95]
with minor differences.

2.1 Basics

We need to present theories whose powers of derivation are the powers of
polynomial-time algorithms and to study sometimes very concrete combina-
torial structures using them. These structures will always be finite (although
we shall also employ infinite classes of such structures to study their asymp-
totic behavior) and thus the natural numbers suggest themselves as a most
natural and most universal host structure for coding everything else. In
particular, finite strings of bits continue to be identified with numbers in the
binary representation and we use the |z| notation meaning the length of z,
i.e., its binary logarithm rounded up in a consistent way, or a convenient
primitive symbol || meaning z without the least significant bit.



CHAPTER 2. PRELIMINARY BOUNDED ARITHMETIC 6

2.2 Language

The best known axiomatic theories of natural numbers, such as the Peano
arithmetic, are formulated in a language centered on addition and multiplica-
tion, whose popularity stems directly from the structure of natural numbers.
As bounded arithmetic, or rather its specific area linked to computational
complexity, was shown by [Bus86] to reflect the power of polynomial-time
computable functions, and polynomials are exactly the terms built from
addition and multiplication, the reader may expect the same language for
bounded arithmetic, too.

However, the polynomial time bounds are not applied to the values of
the input, but to the size of the input and so it is polynomial increase of the
size of a number and not of its value, which has to be captured by suitable
terms in values. Addition in sizes is covered by multiplication in values;
multiplication in sizes requires the “smash” in values, the function denoted
with # and defined to be a#b = 2%t Furthermore, a few extra functions
will simplify the presentation. The language L, will thus include: 0, 1, z + v,
T -y, o#y, |5, |z and z < y.

This L, now consists of a selected set of polynomial-time computable func-
tions, chosen so that every polynomial-time computable function is majorized
by a term in Ls. But it may be sometimes practical also to consider the
language Lpy which consists of all polynomial-time computable functions,
or rather, all their canonical descriptions. If the uninitiated reader decides
to skip the following formal definition of Lpy at the first reading, she should
still read the last paragraph on oracles (relativization) in this subsection.

Definition 2.1 (Cook [Coo75]) The language Lpy consists of PV function
symbols of any rank k € N. We simultaneously define PV function symbols
of rank k, defining equations of rank k, and PV -derivations of rank k, by
induction on k. [Text bracketed like this is explanatory, not constitutive.]

Function symbols of rank 0 are constant 0; unary operators so(zx) [stand-
ing for 2-z +1], s1(z) [standing for 2-x+ 2], and |52| [standing for |25 ],
except that [02;1J = 0]; and binary operators x#y [standing for a function with
approzimately the same growth rate as #, namely |y| concatenated copies
of z|, © ~ y [standing for the concatenation], and Less(x,y) [standing for x
with |y| rightmost bits deleted).

Defining equations of rank 0 are:
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iy
so(z)—
=z
L
2
x~0 T
x ~ so(y) so(r —~y)
z ~ 51(y) si(z ~y)
z#0 = 0
z#so(y) = z~ (#y)
z#s1(y) = x~ (T#y)
Less(z,0) = =x
_ Less(z,y)—1
Less(z,s0(y)) = LLTJ
ess(x,y)—1
Less(z,s1(y) = [F=ge2]

t=u
u==t
t=u =
t=v
tl—ul,...,tk:uk
f(tla '7tk):f(ula ,Uk)
t=u

f(z,0) = g(z) f2(2,0) = ¢(7)
fi(Z,50(y)) = ho(Z,y, f1(Z,y)  f2(Z,50(y) = ho(Z,y, fo(Z,y))
fl('fa Sl(y)) = hl(jjaya fl('fay)) fZ(jvsl(y)) = hl(jaya fQ(f:y))

fl(j:ay) = fQ(E:y

PV derivations of rank k are sequences of equalities in which every func-
tion symbol is of rank at most k and every of these equalities is either a
defining equation of rank at most k or derived from some earlier equations
by one of the PV rules (i.e., there is a consistent substitution of terms for
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each t,u,v; of PV function symbols for each f, g, h; and variable identifiers
for each x, y, so that the considered equation is found under the bar of the
rule and all equations found above the bar appear earlier in the sequence).

PV function symbols of rank k£ + 1 are of two kinds, each coming with
its respective defining equations. First, for every term t composed of PV
function symbols of rank at most k there is a PV function symbol f; of rank
k—+1. Second, for every five PV function symbols g, hgy, hi, ly and l; of rank
at most k, and every two m;’s (i € {0,1}) which are PV -derivations of rank
at most k of

Less(hi(Z,y,2),z ~ l;(Z,y)) =0,

there is a PV function symbol fg no hy o1 ,m0m Of Tank k4 1.

PV defining equations of rank k + 1 are also of two kinds. For every
function symbol f; of the first kind, the defining equation is simply f; = t.
For every function symbol fg ho hiioinmom Of the second kind, the defining
equations are:

(2'1) fg,ho,hl,lo,llmo,m (3_7: 0) = g(a_:)
fg,ho,hl,lo,hﬂroﬂn (‘/E: 50 (y)) = h’O (:Ea Y, fg,ho,h1,lo,l1,7r0,7r1 (‘/E’ y))
(2-3) fg,ho,hl,lo,llmo,m (ja 51 (y)) = Ml (‘f’ Y, fg,ho,hhlo,llﬂro,m (ja y))

Several points should be made here. First, the defining equations of
rank 0 are indeed too weak to fix the indicated standard semantics of PV
function symbols of rank 0, even in conjunction with the rest of the definition.
Second, the heart of the definition lies at its end, where closure under func-
tion composition and limited recursion on notation is implemented. Third,
the word “limited” in the previous point refers to the condition imposed
by the existence of my and m;; there must be recursion step independent
polynomial-time computable limits on the size increase contributed by both
ho and h;. For example, h; is not allowed to be 22, as this would make
the newly defined function explode to an exponential amount of space; this
is enforced by not allowing [y or /; to depend on z at all. Fourth, every
function of rank £+1 introduced in this way is uniquely determined, provided
its constituent functions of rank at most k£ are. Fifth, for every PV func-
tion symbol there are infinitely many other PV function symbols denoting
a derivably equal function, and additional, non-derivable and both “true”
and “false” identities may happen to hold in N, for example even sy = s1.
This demonstrates why function symbols for each canonical description are
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not symbols for each polynomial-time computable function alone. Finally, we
get PV function symbols for all functions computable in polynomial time and
for no others, as shown already by [Cob65], albeit outside of the formalism
of [CooT5].

When the oracle counterparts of the respective theories are being formu-
lated, the language has to be extended with a symbol representing the oracle.
It is not essential whether this is a function (as long as its value is a priori
bounded by a term in its arguments) or a predicate symbol, whether there
are several of them or what their arity is, because all such issues can (and
will) be solved with straightforward encoding, preserving relative polynomial
time. Thus for any language Ly: Ly () is Ly augmented by a single unary
predicate symbol a.

2.3 Bounded Quantifier Complexity

To count the bounded quantifier complexity of a formula, first convert it to
a prenex form. Three types of quantification are distinguished: unbounded,
bounded (by any term) and sharply bounded (by the length of any term). The
unbounded ones are forbidden, the bounded ones are counted, the sharply
bounded ones are completely ignored. For example, dx <y Va <|b| Jz<y
counts as a single block of bounded existential quantifiers.

Definition 2.2 The YXl-formulae are those which are logically equivalent! to
a prenez formula with no unbounded quantification and only 1 blocks of alter-
nating bounded quantifiers, starting with existential ones. Sharply bounded
quantifiers may intervene anywhere, even within the blocks. The T1°-formulae
are defined in the same way, but starting with universal quantifiers. The
Ab-formulae over theory T are those which are T-equivalent to both a Y-
formula and a T1°-formula. The Ab-formulae without further qualification
are the Ab-formulae over PV, (see below).

Note that unbounded universal quantifiers are not allowed, but free vari-
ables are.

In some places, stricter conditions on sharply bounded quantifier distri-
bution are technically useful.

!Equivalent in first order logic. This is a brief way of putting the standard definition
at the expense of an apparent deviation from a purely syntactic setting.
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Definition 2.3 A strictXl-formula is any X:2-formula consisting of i alter-
nating bounding quantifiers, the first one being existential, followed by an
arbitrary formula in which all quantification is sharply bounded.

The notation defined in this section is slightly ambiguous as it is applied
to formulae in several different languages, even in languages with extraarith-
metical symbols. But the language L, remains implicit and any other lan-
guage choice will be clear from the context.

2.4 Theories

The language L, is finite and so is the set of basic recursive relations among
the symbols as laid out in [Bus86], which will be called BASIC:

a+0=a
a+(b+c) = (a+b)+c
a-0=020
a1 =a
a-(b+c)=a-b+a-c
a+b=>b+a
a-b=>b-a
a<bVb<a
(a<bAb<a) —a=b
(a<bAb<c)—a<c
a<b—oa<b+1
a #a+1
0<a
a<b—oa=bVvVa+1<b
2:-a=0—>2a=0
a<a+b

a+b<a+c—-b<c
1<a—(a-b<a-c+b<c
0 =0
1] =1
a#0—=>(2-al=la]+1 A [2-a+1]=|a|+1)
a<b—lal < b
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a<bANa#b—>2-a+1<2-bA2-a+1#2-b
a#0—lal = |[5]|+1

a=2]<2-a=bV2-a+1=0b

0#a =1

a#0—= (1#(2-a) =2 (1#a) AN 1#(2-a+1) =2 (1#a))
la#b| = [a] - o] +1
a#b = b#a

la| = |b| = a#tc = b#c
|a| = [b] + [c] = a#td = (b#d) - (c#d)

All of these axioms are open, and the only form of other axioms that
appear in theories formulated in L, are various types of induction axioms.

Definition 2.4 The theory Ty is aziomatized by the azioms from BASIC
and by the induction arioms

(p(0) AVy <z (p(y) = 0y +1))) = (),

where () is a X2-formula in the language Lo.

Definition 2.5 The theory S is aziomatized by the azioms from BASIC
and by the length induction azioms

(p(0) AVy <z (p(y) = 0y +1))) = o(|z]),

where p(x) is a X8-formula in the language Lo.

In connection with S% and T%, we always assume ¢ > 1, even when this
is not explicitly stated. The “sharply bounded” theories, which we thus
ignore, are much less understood and probably also less useful — due to their
stronger dependence on idiosyncratic details of the formulation of BASIC.

Definition 2.6 The union |J; Ty is denoted Ty. Likewise for Ss.

A principle equivalent to the length induction is the polynomial induction.
It is sometimes used instead to define Si:

(@O) AVy <z @(l5]) = @(y) = ¢(@).

Another important equivalent formulation replaces the induction axioms by
corresponding minimization principles, claiming that a nonempty set defin-
able by the formula has a minimum.
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Definition 2.7 The '-minimization principle therefore consists of the aziom

p(z) = Jy <z Vz<y (o(y) A —p(z))

for every ¢ € T

Definition 2.8 The I'-length-minimization principle consists of the aziom

p(r) = Iy <z Va<y (ply) A (2] < ly) = —p(2))

for every ¢ € I

Fact 2.9 (Buss, [Bus86])
The Yt-minimization principle aziomatizes T over BASIC.

The Yt-length-minimization principle aziomatizes Si over BASIC.

Quite a lot is known about these theories. Most notably ([Bus86]),
Vi Sy CTi C Set,

and therefore 75 = S;. The tighter inclusion is the second one, in the sense
that there is the highest possible conservativity relation short of equivalence.
Each Si or T¢ is axiomatized by X!, -formulae and S3'' is 3¢, -conservative
over Ti. So T} is actually the set of ¥ ;-consequences of S5, as shown by
[Bus90].

A weak theory is now introduced over which some of the central concepts
will be built. The theory is based on language Lpy, i.e., it includes all
polynomial-time computable functions. The original PV is a purely equa-
tional theory (as indicated in the concept of PV derivations above), but we
shall follow [KPT91] in adapting it to the first order logic, while keeping its
axiomatics purely universal.
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Definition 2.10 The theory PV; is axiomatized by all PV -derivable equa-
tions in language Lpy and by the following variant of polynomial induction.
For an open formula ¢(x) define a function h(b,u) whose values are intervals
represented by end points, by induction on length of u:

((0,b) ifu=0
whenever u > 0, assume h(b, |5]) = (z,y):
hlb.u) = { (.5 + [2]) o<zt 5 Ao+ (1))
@+ 14),9) o+ 12 <y ola+ (4)
(7, ) otherwise

Then the additional axiom of PV; is
(0(0) A =(b) A (b, b) = (z,y)) = (z+ 1=y Ap(@)A-p(y)).

This definition is very sketchy and assumes that constructs like x + y,
| 5], pairing, projection, 1 and definition by cases can be built in Lpy. We
assume that all these constructs and also all functions from L, are identified
with some arbitrarily chosen PV function symbols which represent the same
functions: for example, 1 with function derived by function composition from
LMJ This is possible as long as special names are given in this way
to polynomial-time functions only (cf. [Cob65]).

Everything defined and said so far obviously generalizes to the languages
LQ(Of) and va(a).

2.5 Fractions

Definition 2.11 Let T be a class of formulae (for example, 3¢ for some i)
and T a theory. Then I'(T) denotes the consequences of T which are also T.
['(T) is called a fraction both of T and of any T'(T) where T C T".

Note that T'(T) is technically never implicationally closed? and that this
set of formulae is only interesting for I being more restrictive than any known

2Unless T includes at least all valid sentences of first order logic, no matter how complex.
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axiomatization for T for example, if I' = X% and T' = Sj, the set of all con-
sequences of X2, (S3) is equivalent to S§ and the interesting cases of X5(55)
are those where j <7+ 1.

This definition helps to present the already mentioned conservativity re-
sult in a terse form as an equivalence of theories:

Fact 2.12 (Buss [Bus86], [Bus90])

Ty = ¥5.(85)

2.6 Sequence Coding

Although in a weak theory the coding of sequences may be tricky or even
impossible, we shall not repeat the standard binary coding of sequences in
IA, developed in [Nel86], [WP87] and [Bus86] and nicely presented in [HP98,
Section 5.3]3.

The referenced coding A’-defines the operator (w); in S} to extract the
1-th element from w if w codes a long enough sequence, and to be 0 otherwise.
It also supplies an equally efficient concatenation operator —~ and finite tuple
constructor (), and lets S prove their basic properties, summarized in the
following facts.

Fact 2.13 For a fized n and i, Sy proves:

@~y ~z=2~(y~2)

(@1 ey Ty e ey Tp) ™ Y)i = T4

(@1, y @) ™ (Tig1y ooy Tn) = (T1, -+, Tp)
Fact 2.14 Assume t1,to,...,t; are terms in variables xq,xs,...,2;. Then
there is a term t°“P in the same variables so that (t1,ts, ..., t) < t5P.

3The last referenced book also includes an easier coding in TAG"™ which is a standard
example of an encoding which is not usable for our purposes.
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Fact 2.15 Assume f(z), g(z) are Ab-defined in Si. Then Si proves that
there exists a tuple (x1,. .., gz,))) such that for any 1 <i < |g(z1)],

|f(za)| < il +1 = i1 = f(2)
This tuple is a Ab-definable function in x, and possibly other free variables.

The last fact deserves a bit of comment. Suppose there is an algorithm
which computes an n-tuple w with some property in a left-to-right fashion.
For the polynomial time bound, measured within the length of its initial
configuration z1, it is enough to show that every element can be obtained
from its predecessor by a polynomial-time algorithm f, is larger by at most
one bit, and that the total number of such steps n is bounded by a polynomial
n = |g(x1)|. This simple proof technique will appear several times, both for
constant and non-constant n’s.

The principle of sharply bounded collection ensures, roughly speaking,
that every Y:2-formula can be replaced by an equivalent stricty’-formula. It
is based on sequence coding, too.

Definition 2.16 The I'-sharply-bounded-collection principle consists of the
formula

Ve <|s| Jz<s o(z,y,2) <= Fw<it(y) Ve <|s| (w), < ' A p(x,y, (w)g)
for every ¢ € T.

It will be shown available in strong enough theories where needed.



Chapter 3

Search Problems

In contrast with the mainstream of computational complexity theory which
concentrates on decision problems (i.e., partial one-valued functions), we
study search problems (i.e., total multifunctions with polynomial-size values)
in this thesis. Search problems can be mathematically identified with (total)
function problems, but the term is normally only used in connection with of-
ten simple “problem templates” into which arbitrary procedures from a given
class are substituted, and this is what the methods in the area are tailored
to. The general relation between decision problems and function problems is
far beyond the scope of this thesis, but as we consider several basic points of
the traditional treatment of this area in standard computational complexity
textbooks traditionally inaccurate, we provide an Appendix addressing these
points.

Search problems have been studied by several authors in the past. From
the standpoint of pure complexity theory, [JPY88] introduced several classes
of search problems including PLS; an important representative of typical
combinatorial knowledge in this area is also [BCE"95]. The somewhat more
focused interests of researchers in bounded arithmetic obtained a lot of in-
teresting results, most notably [Rii93], [CK98] and [CK99].

3.1 Basic Framework

Definition 3.1 A search problem is a binary relation R(xz,y) such that

1. Vx 3y R(z,y) and

16
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2. 3k Vz Vy (R(z,y) — ly| < |z|F)

FEvery x represents an instance of R and every y such that R(x,y) holds
s a solution for the instance of R represented by x.

This definition is the same as the definition of a total search problem
given in, for example, [BCE"95], but without their general requirement that
R be computable in polynomial time.

In our case, R will always be definable in a weak theory of arithmetic, that
is, represented by a formula o(z,y) satisfying {(z,y) € N% ¢(z,y)} = R,
and the conditions above will be provable in the theory (for a fixed k; |z|* is
therefore expressible using k-fold multiplication).

The reader might expect us to give interesting examples of search prob-
lems literally conforming to the above definition; if so, she will be dis-
appointed, for the definition will be typically used in a formally different
way. Whenever a specific search problem is defined, the description will
be parametrized by other predicates or functions taken from the class of
polynomial-time computable functions, or sometimes from a higher class [FF.
This way the definiendum will be a class of search problems, rather than a
single one. It is these highly “uniform” classes of search problems that will
be investigated, and the proofs will almost always depend on this uniformity
of description.

Definition 3.2 A class of search problems is uniformly defined by a for-
mula @ in an extension of Lo, if it consists exactly of search problems defined
by ¢ into which polynomial-time computable functions and relations are sub-
stituted for all the extraarithmetical symbols (i.e., symbols outside Lo ).

It is even safe to speak about the bounded quantifier complexity of .

Lemma 3.3 Let ¢ > 1. If the bounded quantifier complexity of ¢ before
the substitution of particular polynomial-time functions is X2 (112, A?), then
suitable definitions can be chosen for each occurrence keeping the resulting
formula also X2 (11%, A?) after the substitution.

Proof: Polynomial time computability implies definability by a A%-formula,;
so all the substituenda have both ¥2- and IIS-definitions available, to be
understood as the existential and the universal definition, respectively.
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Rewrite ¢ to a logically equivalent prenex formula with propositional
connectives limited to negations and conjunctions. If all bounded quantifiers
in it are sharply bounded, prepend a dummy quantifier — either da <b
or Ya <b where a nor b occur in ¢. Choose the type of the quantifier so as
to keep membership in the target class of formulae; in the special case of A!
where there is no easy choice, perform the following argument independently
for X2 and I12.

For each occurrence to be substituted for, identify the nearest enclosing
quantifier which is not sharply bounded, and the parity of negations between
the occurrence and the quantifier. Insert the definition whose type matches
that quantifier if the number of negations is even and insert the opposite
definition if the number of negations is odd.

In the above-mentioned special case when the target class is A? and,
before the substitution, ¢ contained no quantification other than sharply
bounded, it is also necessary to verify that the II’-formula and Y!-formula
obtained from two independent executions of this procedure are equivalent
in S;. That is a consequence of the fact that the existential definition and
the universal definition of a symbol obtained as above are indeed equivalent
in S3, and so are the original ¥¢-formula and IT’-formula. n

In this context the following convention is introduced:

Definition 3.4 Suppose A is a uniformly defined class of search problems.
Then A% is a class defined likewise, but the substituted predicates or func-
tions are DfH, i.e., computable in polynomial time with an oracle from the
indicated level of polynomial hierarchy. As a special case, ANT denotes the
class of search problems where predicates and functions which are in PNF
and [0, respectively, are substituted.

Fact 3.5 If A is uniformly defined by ¢, then every A is uniformly defin-
able by some 1), whose quantifier complexity exceeds that of ¢ by at most 1.

Lemma 3.6 Suppose a search problem is uniformly defined by a bounded
formula, so its well-definedness is expressed as ¥Vx Iy p(x,y). Then there is a
formula equivalent to ¢ in PV, with the same bounded quantifier complexity
as ¢ and with all bounding terms identical (except for the additional outer-
most length operator of sharply bounded quantifiers), including a bound for
the existential quantifier dy , which asserts the existence of solutions.
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Proof: To see this, first use the Parikh’s theorem from [Par71] (also to be
found in [HP98| or [Kra95]) to bound the external existential quantifier by
a term in x, too. Then proceed from the outside by substituting the bound
for each individual variable into all bounds within its scope. For example,

Ve dy<az®’Ve<z-(y+2) oz, y,2)

changes into
Vo dy<z®Vz<z- (2® +2) o(z,y, 2).

This way, no bounding terms refer to variables other than z anymore; but the
formula may not be equivalent, as the bounding term may have increased,
so the working example has to be polished to

Ve dy<a?Ve<z-(2°+2) z<z-(y+2) = o(z,y,2).

Dissociate the bounds from the quantifiers and put the sum of all the bounds
D(z) in place of each. For every sharp bound |t(x)| contribute #(x) to the
sum and treat also the outermost length operator specially to preserve the
sharpness. More formally:

Vy<t(z)O(xz,y)  becomes Vy<D(z)(y<t(zr)—0(zvy)),
Jy<t(z)b(r,y)  becomes Ty<D(x)(y<t(x)Ab(z,y)),
Vy <[|t(z)| O(z,y)  becomes  Vy<|D(z)|(y < [t(z)| — O(z,y)),
Jy < |t(z)|O(x,y)  becomes  Ty<|D(z)|(y < [t(z)|Ab(x,vy)).

Equivalence in PV} is maintained, because PV; F t(z) < D(z) and the other
necessary inequalities. The quantifier complexity is unchanged. -

By this lemma all the bounding terms may be safely assumed to be equal.
This assumption turns out to be natural in important cases and so it is kept
throughout the text, starting with the following convention.

Definition 3.7 The domain of a uniformly defined bounded search problem
s the set identified by a term into which or into whose length all quantifiers,
including the existential quantifier over solutions, are bounded. It is denoted

by D(z).
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3.2 Reducibilities

Definition 3.8 A search problem S is (polynomial-time) many-one reducible’
to a search problem R (denoted as S =,, R) if there exist polynomial-time
computable functions f and g satisfying

Vo Vo R(f(x),v) = S(x, g(z,v)).

Search problems R and S are (polynomial-time) many-one equivalent!
(denoted as R ~,, S) if R <., S and S <, R.

It is tempting to claim that decision problems are a special case of search
problems with solutions restricted to 0 and 1 and with the property that
—(R(z,0)AR(z,1)). This is not possible in our setting though (cf. Appendix,
Myth Three) without breaking the compatibility of many-one reducibility.

Definition 3.9 (Let ng f£(z) mean the set of return values of the computa-
tions of f with input x for which whenever the oracle answers a y to a query
z, R(z,y) holds.) A search problem S is (polynomial-time) Turing reducible!
to a search problem R (denoted as S <1 R) if there exists a polynomial-time
computable function f with an oracle so that S(x,y) for any y € rng f&(x).

In the next chapter provable counterparts of some reducibilities over par-
ticular arithmetical theories are considered.

3.3 Promise and No Promise

With uniformly defined search problems, it is often natural to split the defin-
ing formula ¢(z,y) informally into the “promise” component 7(x) and the
“search task” component p(z,y). The well-definedness is then expressed as
follows:

Vz (m(z) — Jy o(z,y)).

We shall simply say “many-one reducible”, “many-one equivalent”, or “Turing re-
ducible”, omitting the qualification “polynomial-time”. Many-one reductions and Turing
reductions in this sense are sometimes called Karp reductions and Cook reductions, re-
spectively.
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The promise formula of a search problem can be empty; in that case, the
search task alone takes the place of the whole implication. This particularly
“pure” situation is termed a “no-promise” search problem. There is a trivial
way to derive a (many-one equivalent) no-promise search problem from any
search problem, namely to replace the search task by the disjunction of itself
and the negation of the promise. The promise tends to be a universal formula
and a more radical move is thus available: any initial existential quantifica-
tion of the negated promise can now be removed and the affected variable
renamed (or, affected variables encoded) to y; domain enlargement by a
polynomial might be implied. This “overdone no-promise version” no longer
preserves many-one equivalence?, having potential to decrease the complexity
of ¢(x,y), and is not what we have in mind when discussing specific search
problems. To make this clear we always identify the search task whenever
bringing forward a search problem.

Exemplum sequitur.

Definition 3.10 The search problem MIN s defined by a ternary predicate
<t (a,z,y) conveniently denoted as x <% y, such that for any a, <’ is a
linear order and the search task is to find a minimum element of <™.

Here we have a search problem with a I1? promise (expressing the transi-
tivity, antisymmetry and linearity of <) and a X search task.

Definition 3.11 The search problem MIN s qgain defined by a ternary
NOPROMISE

predicate x < y. There is no promise and the search task for an a is to find
a triple which breaks the transitivity of <, a pair which breaks antisymmetry
or linearity of <, or an element which is a minimum element of <”.

This is the “overdone no-promise version” as discussed above. Notice
also the details not stated formally: when deriving an instance of a MIN
search problem from an instance of MIN, the domain of the search problem
is cubed to accommodate the pairs and triples, and additional care is taken
in the defining formula that the individual members or pairs effectively stay

bounded into the original domain or its Cartesian square.

2Unless P = NP. Consider the capricious scenario where 7(x) expresses a coN P-
complete property of x and o(x,y) is 7(x).
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3.4 Turing versus Many-One

In the cases which primarily interest us it often turns out that the Turing
and many-one reducibilities coincide; this is, vaguely speaking, due to the
self-compositionality of the problems reduced to. It is however possible to
construct pairs of less natural search problems where the many-one reducibil-
ity is stronger under reasonable assumptions.

Theorem 3.12 There are search problems A and B such that A <t B, but
A=<, B < P=NP.

Proof: The proof just translates the easily seen state of affairs with regard
to reducing an F'N P-complete function problem (say, graph coloring) to the
corresponding N P-complete decision problem (say, graph colorability).

Let A and B be defined by a binary predicate interpreted as an edge in
a graph G with the vertex set being encoded in a logarithmic fraction of the
domain (say, in unary, as 1,11, 1114,...,1¥). We take no care whatsoever
about the behavior of the predicate on arguments outside this “graph”. Now
the search task of B is to “find” an element of the domain which is a vertex
of GG if and only if GG is not 3-colorable. The search task of A must satisfy the
same, but if G is 3-colorable, the non-vertex n found must also be one which
encodes a witness to the 3-colorability (say, there should be a coloring such
that the bit of n corresponding to 2! is 1 if and only if the color of vertex 1°
is black).

Let us see that A <7 B. The algorithm will keep asking B about inputs
which will be identical to the input to A or almost identical with some new
edges added into G. Any such query can be constructed in polynomial time
thanks to the size of G.

With the first query to B make sure that G is colorable. If not, we are
finished returning the vertex number 1.

If G turned out to be colorable, just keep adding all possible new edges to
it one by one; at every step query B to ensure colorability and withdraw the
edge if it prevented colorability. After k? queries the graph becomes critically
colorable: every coloring assigns the same colors to every pair of unconnected
vertices. The complement of the graph is therefore a union of three disjoint
cliques, each corresponding to a single color and we are finished returning
the encoding of the smallest of the cliques, which is always a non-vertex.
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Now suppose A =<,, B and prove P = NP by extracting a polynomial-
time algorithm for 3-coloring from the reduction.

The reduction supposedly works by examining the input, which can en-
code any graph G (along with some garbage), asking a single query to B
(which encodes a graph H) and then effectively constructing a 3-coloring
from the oracle answer (whenever there exists one). Consider this algorithm
for A: take GG. Construct H. Continue the reduction computation twice, once
with the assumption that B answered 1 (i.e., denied the 3-colorability of H)
and once with the assumption that B answered 0. If one or both branches
of the computation assert some particular 3-coloring of G, verify it (that is,
check whether no two black vertices are connected and whether the non-black
vertices induce a 2-colorable subgraph). If one or both asserted 3-colorings
survives this check, output the 3-coloring (which is clearly a correct answer
to A no matter whether it was based on an incorrect reply to B — which
is quite possible); if both branches deny or fail to witness the 3-colorability,
then one of them is based on the right answer to B and thus justifies the
negative answer to A. -

Note that the fact that Turing reducibility is allowed to ask multiple
queries is not necessarily the key difference from the many-one reducibility:
a finite (or even, polylogarithmic) number of queries would be no different
from many-one reducibility here. There are however also pairs of search
problems, where a trivial Turing reduction with just two queries exists, but a
many-one reducibility seems unlikely (compare Lemma 7.9 and Lemma 7.10).

Surprisingly enough search problems seem to be an understudied area
of structural complexity and little is known about them along the lines of
[LLS75] as yet.

3.5 Relativized Framework

In this section, the concepts presented in other sections of this chapter are
extended to their oracle versions; instead of substituting objects for predicate
and function symbols into the definition of a uniformly definable class of
search problems, we use exactly the unmodified formula (algorithm) and
access the objects using an oracle. See also Section 4.3.2 for further discussion
and [BCE*95] for an alternative treatment of the same concepts.
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Here we often abuse the notation by listing together components of input
(parameters) and oracles used to compute an output, as in R(z,y,«). The
oracles are distinguished from inputs by being denoted with Greek letters «
and f.

The oracle is assumed to be a unary predicate; it is straightforward to
accommodate predicates with more arguments, or multiple predicates at the
same time using a polynomial-time coding. Function symbols are encoded
through binary predicates using the technique of the bit graph, lest their
logical properties (totality and unique values) are lost. The coding predicate
Rg(x,4) is true if and only if the i-th bit of f(z) is 1. It is important that if
Ry (z,1) is Ab-definable, and some predicate S is also Ab-definable, then there
is also a A’-definition of S applied to arbitrary terms which may include f.
We are going to use this fact implicitly several times.

Definition 3.13 An oracle search problem is a relation R(x,y, ) such that
1. YaVz Iy R(z,y, «) and

2. IkVaVz Vy (R(z,y, o) — |y| < |z|F)

The concept of definability is similar with the oracle versions; the lan-
guage of the defining formula now contains « and in place of quantification
over these relations we get quantification over models consisting of N en-
hanced by an extraarithmetical predicate «.

Definition 3.14 An oracle search problem S is many-one reducible to an
oracle search problem R (denoted as S <,, R) if there ezist functions f and g
and a relation B computable by a polynomial-time computable function with
oracle access to «, satisfying

Vo Yo (R(f(z),v,B) = S(z, g(x,v), a)).

The oracle access to o normally plays an essential role in 3, but not in
the functions f and g. We do not know whether not publishing the oracle
for f and g can make a difference in many-one reducibility with regard to
sufficiently robust classes (like polynomial-time computable functions with a
specified oracle), but smaller differences can occur. For example, the proof
of Corollary 8.6 provides a reduction to an identity function using oracle
access of f to a. Such a reduction cannot exist with f strictly in polyno-
mial time, but the proof of that corollary would not be affected by such a
requirement. The necessary complexity of f could be performed in  instead
in that particular situation.
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Definition 3.15 (Let fR%) (x, ) mean the return value of one of the com-
putations of f with input x for which whenever the oracle answers a y to a
query x, R(x,y, B) holds.) A search problem S is Turing reducible to a search
problem R (denoted as S <r R) if there exists a polynomial-time computable
function f with an oracle and a relation B computable by a polynomial-time
function with oracle access to o, so that S(z, f®P)(z,a)) for any of the cor-
rect computations of f.

In this definition, f has actually access to two oracles; one represents an
oracle input of S, the other one represents an oracle solution of R. This
difference of modality is expressed by a difference in notation: the output
of f is a solution to information presented through a, not through R(f).



Chapter 4

Characterizations

4.1 Many-One Based Characterizations

It is now time to put the search problems and bounded arithmetic together.
We shall present several natural concepts of “characterization”. Let us begin
by the one which has been introduced and studied in [CK98], although with
a non-essential modification and with the added ability to refer to its “com-
pleteness” part separately, to view weak characterization as a special case of
a weak capture from within.

Definition 4.1 Let ® be a class of search problems and T a theory in a
language extending Lo. The class ® weakly captures the search problems
that are YX°-definable in T, if and only if for every Xl-formula o(z,y) for
which T + Yz Jy o(x,y) there exists a search problem S(z,y) in ® and a
polynomial-time function g such that

1. Vo 3y S(z,y)
2. Yz Yy (S(z,y) — o(z,9(y)))

The class ® weakly characterizes the search problems that are X2-definable
i T, if and only of ® weakly captures them, and for every search problem
R(z,y) in ® there is a X.2-formula o(x,y) such that

1. Vz Vy (o(z,y) = R(z,y))
2. T+ Vz 3y oz, y)

26
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Without loss of generality, g can be taken to be a projection function.
This is because y can be systematically replaced by (g(y),y) and both this
transformation and its inverse can be computed in polynomial time.

Unfortunately this concept, which has been used to derive unprovability
results, is not strong enough for the applicability of the Herbrandization
methods (Chapter 8 and Chapter 9). In refining it we arrive at the key
definition of this thesis:

Definition 4.2 Let ® be a class of search problems uniformly defined by
some @ andT a theory in a language extending Lo. The class ® captures the
search problems that are X:2-definable in T, if and only if for every X.-formula
o(z,y), such that T - Yz Iy o(x,y), there are PV function symbols f, g such
that

PVi EVz Vv o(f(z),v) — o(z, g(z,v)).

The class ® uniformly defined by ¢ characterizes a class ¥V equal to search
problems that are X0-definable in T, if and only if ® C V and ® captures all
problems in .

The basic relation between weak characterization and characterization is
that characterization requires the many-one reducibility to be provable in
PV;. This is also the reason why the concept of characterization is restricted
to uniformly defined class of search problems! in contrast with weak charac-
terization. We shall see that the provability in an open theory is essential for
the applicability of the methods developed in Chapter 8 and Chapter 9.

There is also a point in which the weak characterization actually seems
stronger than the other one. Recall the weak characterization requirement
with regard to an arbitrary formula o of the right complexity

Vo Yy (S(z,y) = o(z, 9(y)))

and its provable counterpart from the concept of characterization:

vz Yy (S(f(z),y) = o(z, 9(z,y)))-

It has been already observed that g does not have to depend on z, but
the absence of f seems more serious. However, thanks to the absence of a

L There is no technical obstacle to extending the notion of characterization to (infinite)
unions of uniformly definable sets of search problems with no harm to our results, but
making the presentation needlessly awkward.
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uniform definability requirement in the definition of weak characterization,
it is possible and natural to encode f into S in a way analogous to the way
uniform definability works. This way characterization implies weak charac-
terization.

The already known characterization-like results have been obtained using
the weak characterization. We shall however need to build on some of them in
ways in which the stronger characterization is required: they will be re-proved
in this possibly stronger setting in subsequent chapters. The proof methods
are to a large extent the same.

4.2 Consequence Based Characterizations

With the characterization definitions of the previous section, a theory T
entered the picture only in some kind of a completeness argument concerning
a purely combinatorial reduction. A different important approach will now
be presented.

Definition 4.3 A uniformly defined class of search problems S is a conse-
quence of a uniformly defined class of search problems R over a theory T,

if
T FVz 3y R(xz,y) — Yu Iv S(u,v).

The theory PV; takes the place of T', unless specified otherwise. In the
oracle version,

Definition 4.4 An oracle search problem S is a consequence of an oracle
search problem R over a theory T, if

A8 T +Vz Iy R(z,y, B) = Yu v S(u, v, )
where B is a Ab-formula in language Ly U {a}.

The corresponding characterization-like notion is the following:
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Definition 4.5 Let ® be a union of uniformly definable classes of search
problems represented by a set of formulae @, and T a theory in language
extending Ly. The class ® axiomatizes the search problems that are X.2-
definable in T, if each problem in ® is X.t-definable in T, and if

PVi+{Vz 3y R; R € &} F X(T).

The following fact illustrates the relation of the consequence-based char-
acterization to the Turing reducibility, but it will not be used in subsequent
proofs and is only included for symmetry with the link between characteri-
zation and many-one reducibility.

Fact 4.6 Let R and S be two classes of search problems, each uniformly
definable by a X8-formula. If S is a consequence of R, then S is Turing
reducible to R.

Proof: Assume
PVi = Yu3v R(u,v) — Vz Jy S(z,y).

Introduce a new function f which solves R; its computational complexity
corresponds to the bounded quantifier complexity of R. Then

PVi +Vu R(u, f(u)) F Vz 3y S(z,y).

By the Buss’ witnessing theorem relativized to the language Lo U {f}
(see Theorem 5.2) there is a polynomial-time machine with oracle access to
f solving the search problem S. This machine provides the reduction. .

4.3 So What Is the Question?

We have defined two notions of characterization, the many-one reducibility
based one and the consequence based one. Each of them can be applied to
¥:-definable search problems in theories S or T4 or in their respective oracle
versions S () or T (). Tt is even possible to consider I1i-definable search
problems instead of the Y’-definable ones. These alternatives combine into a
system of questions: what natural combinatorial problems characterize each
class? It is the purpose of this section to sort over all of this.
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4.3.1 S} or TJ?

Due to the noted X!, -conservativity of S5 over T%, these two hierarchies
mostly coincide. That is, suppose the Y2-consequences are targeted and
j > i—1. Then we do not have to distinguish between SJ*' and 77, as
the definitions of the characterization and axiomatization do not distinguish
between equivalent fractions. With the consequence characterization, we may
even stop distinguishing between fractions Ef(S%) for a fixed j and 7 > j+1;
they are all equivalent to S itself in the sense of axiomatization®.

This leaves all the interesting difference between ™" and 77 to the level
of X% ,-formulae. As this is already above the interesting level (the complex-
ity of the axioms) for TQj , it suggests that it is enough to study the slightly
more diverse S hierarchy. We shall however often speak of T3 ~!in place of
S3 (where the fraction under consideration is equivalent) anyway, sometimes
for technical, sometimes for aesthetic reasons.

4.3.2 S} or Si(a)?

We are primarily interested in the non-relativized case of Sg , which can be
obtained from the relativized one by assuming that « is a polynomial-time
computable predicate (as are all other members of the language). It turns
out that most arguments do relativize and for positive results (which are no-
toriously more accessible than the negative ones), the non-relativized version
is a consequence of the relativized one. Both cases are therefore investigated
in parallel to get the stronger result when possible.

While this dichotomy is clear from the logical point of view, some natural
computation complexity based approaches can be formulated which appar-
ently lay somewhere in between; for example, instead of oracle access, the
additional information could be provided by a Turing machine (of some kind)
included in the input.

2The (many-one reducibility based) characterization however does refer to quantifier
complexity of formulae in the fraction. It seems that here the two notions are indeed
different from each other as well as they are different from the weak characterization; but
we did not pursue this line of research farther, as there is no hope in eventually obtaining
any separation results from it.
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4.3.3 Many-One or Consequence?

From the computational complexity point of view both reducibilities are of
comparable importance, because the consequence reducibility corresponds
to the (provable) Turing reducibility at least in the most interesting case of
Y:%-consequences.

As the ultimate goal of the field is to prove as much separation between
the fractions as there is, the consequence reducibility has immediate merit
to be studied. But it again turns out that some positive results can be
formulated with the stronger many-one reducibility based notions, and so we
did. It is not implied that these two reducibilities generally coincide and some
of the remaining open problems may turn out to demonstrate the difference.

The reader may already be aware of the axiomatization of every ¥%(S3)
and ¥%(T3) by the reflection principles for fragments of quantified proposi-
tional logic j-RFN(G;) and j-RFN(GY), respectively, as defined and shown
in [KP90]. That is a very different line of investigation. It lacks immediately
accessible combinatorial content: the only method of proving separation re-
sults which it apparently offers, is thus disproving j-polynomial simulation
between quantified propositional calculi. But it does demonstrate in a very
elegant way that there is an axiomatization for every fraction under consider-
ation, which is more than it is known concerning the characterizability based
on the many-one reduction.

4.3.4 X0 or TI%?

The definition of a search problem is asymmetric with regard to quantifi-
cation. The defining formula is placed within existential context, and that
may suggest that the Y:’-definable problems in some theory are the same
as the II?_-definable ones: the adjoining existential quantifiers are easily
merged in the former case. Well, not exactly: imagine a search problem
2z ¢(x,y, z) where y is not mentioned in the formula at all, whereas z is
something guaranteed to exist in some theory, but hard to find. (See the
footnote in Section 3.3 for an example.) If these two existential quantifiers are
merged, a different (supposedly harder) T1¢_, search problem ¢(z, (y)1, (¥)2)
arises.

On the other hand, almost all characterizations presented in the follow-
ing chapters avoid using initial existential quantification and thus succeed
in characterizing each Y’-fraction of a chosen theory with a I1?_,-definable
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problem whenever 7 > 2, thus closing the gap between X! and I , as
far as any type of reducibility is concerned. This equivalence does not
stretch to the remaining case of ¥t and II} in the language L,, because
polynomial-time functions have to be substituted for all extraarithmetical
symbols, and this requires (some) quantification. Equivalence seems less
hopeless for the ¢ = 1 case both in the oracle language Ly(«), and in the
language Lpy; the search tasks of characteristic search problems like PLS
can indeed be expressed in a quantifier free way in these cases. But the
(negated) promise part of the search problem apparently cannot and so we
arrive at the need for ¥X%-formulae here even in the extended languages.

Mathematical tradition mostly favors ¢ over I1? in basic investigation
and presentation, and so it is followed here. But the attentive reader will no-
tice that TT2-consequences, strictyt-consequences, and strictIIl-consequences
for 1 > 1, and Al-consequences for i > 2 are implicitly covered as well.

4.3.5 An Illustrative Summary

We have just reached the boundary between defining our questions and giving
answers to them, so it is perhaps worth to summarize them in a table.

50 ?
8 ? MM
) #FM? FM GLS
Y o PLS ?

S, T} S2 T2 S3

The table reviews previously known results about the weak characteriza-
tion as investigated in [CK98]. Each field contains either a search problem
to be defined in subsequent chapters, which weakly characterizes the respec-
tive class of consequences, or a question mark where no characterization
was previously known. The special case of #F M has a question mark too,
because its ¥5-definability in Si originally relied on an unproven assumption,
Y8 (R2) = ¥%(S3) 3. An unconditional proof will be given.

3Instead of digressing to define the theory R3 here, we refer the interested reader to
[Kra95] for additional definitions and to [CK98] for a detailed exposition.
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As we study the concept of characterization instead of weak characteri-
zation, we start from an empty table like this and try to upgrade the known
results to this strongest form wherever possible. The individual characteri-
zations are not obtained independently of each other. It turns out that many
results for $%(S3) are obtained from the respective result for 22,1(5571) and
so the table is best understood not in terms of columns or rows, but in terms
of lines sloping upwards, especially the diagonal j = 7, the superdiagonal
j =1+ 1 and the immediate subdiagonal j =7 — 1; each gets due treatment
in one of the following chapters.



Chapter 5
Zg(Sg): The Diagonal

5.1 General Background: Buss’ Theorem

The key witnessing theorem in bounded arithmetic is the Buss’ witnessing
theorem. This is partly reflected by the appearances it makes in this text:
some related results have already been recalled in the preliminaries, especially
the partial conservativity of Si*' over T¢. The theorem is formulated in this
chapter where it is used directly, not for the last time; and new proofs of the
theorem shall be given in Section 8.2 and Section 9.2, not to justify it, but
to show interesting connections.

The theorem will not be stated here in the maximum strength in which
it is known to hold, but only in a version sufficient for our purposes. The
interested reader can consult [Bus86] (together with a later improvement in
[Bus90]), or [Kra95] for more information on this topic, including the usual
proof. On the other hand, we will use the straightforward relativization of
the theorem to Ly(cr), which is mentioned in the same sources.

Definition 5.1 Suppose i > 1 and ©(z) be a X2-formula with free variables
shown. The predicate Witnessfp s defined by induction on the logical com-

plexity of ¢:
1. Ifpext orpell |,
Witnessl(w,T) <= ¢(Z)

no matter what the following alternatives may suggest.

34



CHAPTER 5. %(Si): THE DIAGONAL 35

2. If p is O N\ x,

Witnessi’(w,a_:) < Witness}((w)1,7) A Witness;((w)g,:ﬁ).

3. If pis OV x,

Witnessfp(w,a_ﬁ) < Witnessh((w);,T) V Wz'tnessi((w)%:i').

4. If o(z) is Yy < [t(Z)] 6(Z, y),

Witnessfp(w,a_c) = Vy < [t(z)| Witnessh(w)yt1, T, Y)-

5. If p(z) is Iy < t(z) 0(z,y),

Witness,,(w,T) <= (w), < t(Z) A Witnessy((w)1, Z, (w)a).

6. If ¢ is —0, then use double negation elimination and de Morgan and
prenez rules to push the odd leading negation into the subformula; then
apply one of the preceding clauses.

This definition transforms ¢(Z) into another form Jw Witness! (w, T);
the equivalence of these two forms can be shown in reasonably weak theo-
ries. The existential quantifier also accumulates a significant amount of total
existentiality of ¢ in the sense that Witness,(w, ) is a Al-formula in Sj.

Note that the arity of Witness;, depends on the pumber of free variables
in ¢, and even that the free variables of Witness;, apart from w exactly
correspond to those of ¢.

Theorem 5.2 (Buss [Bus86], [Bus90]) Let @(x1,...,z,) be a X6-formula
with free variables as shown and S;I— ©(x1,--.,Ty). Then there is a function
f in OF which is X2-definable in Ty~ and

Tt e Witnessfp(f(a_c), z)
with PV, instead of Ty when i = 1.

The most useful application in connection with search problems is that if
¢ is Jy ¥(z,y) and satisfies the requirements, solutions are (¥ computable:

o(z, (fo())2)-
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5.2 Function Minimization

We shall give two different characterizations for the diagonal fractions (i.e.,
¥%(S%)) in this section. Each applies to other tastes and they work best for
different ¢’s. The first one is perhaps too simple, but it is a search problem
anyway.

Definition 5.3 The search problem I} taken as a search problem is defined
by a formula y = f(x), where f € OF. So there is no promise and the search
task is simply to find the value of f.

Lemma 5.4 The search problems ¥.2-definable in S3 are weakly characterized
by the OF functions taken as search problems.

Proof: Take any such problem ¢(x,y). Apply the Buss’ theorem to the
formula Jy (x,y), which has a 3¢ equivalent by the Parikh’s theorem. This
yields a function f(z) in [ which gives witnesses to Jy¢(z,y). By definition,
o(z, (f(z))2) and so ¢(z,y) can be reduced to y = (f(z))s using identity
functions. .

Note that for ¢ = 1, f is not only in (0P, but the rest of the argument is
(also by the Buss’ theorem) provable in S and so in this particular case we
have even the characterization.

Lemma 5.5 The search problems Y.2-definable in Si are aziomatized by the
O functions taken as search problems.

Proof: By Fact 2.12, it is sufficient to prove the induction for any ¢ -
formula ¢ in S5 plus the well-definedness of (I computations.

Reason in polynomial time with ¢ as a X! | oracle. Suppose ¢(0) and
—p(a). Query ¢(|5]) etc. using binary search to find x where ¢(x), but
—p(x + 1). We have arrived at the necessary induction. =



CHAPTER 5. %(Si): THE DIAGONAL 37

Definition 5.6 The function minimization search problem (FM ) is defined
by a polynomial-time computable function fry(x,y) (sometimes conveniently
denoted as f(y)), so that the search task is to find y where frur(z,y) is
minimal within D(zx).

Some authors have preferred working with the function maximization
problem instead. While function maximization and function minimization
are trivially many-one equivalent, the function minimization principle fits
perhaps more naturally into the family of various search problems more or less
based on different kinds of minimization. For this merely didactic purpose
we changed the problem and its name, while keeping the same abbreviation.

Lemma 5.7 Leti > 2. The FM>i-2 search problems are Y2-definable in S}.

Proof: The uniformly defining formula of F M problems is I1}; after the
substitution of a Df_l function for frp (which is represented by a A?_l—
formula) it becomes II¢_,.

To prove its well-definedness, consider first the weakening 1 (z,d) “for
somey, f(y) is larger than any other f(y') by at most d”. As f is polynomial-
time computable (albeit with an oracle), its values are bounded by some poly-
nomial p(z,y), too; and this polynomial is majorized by a term p(z, D(z)).
Clearly, v (z, p(z, D(z))) holds and also ¢(z,d) — ¥(z, |£]). Polynomial in-
duction available in S% gives us ¥(z, 0), which is the original well-definedness
of FM*-2, .

Theorem 5.8 Let i > 2. The search problems X0-definable in Si are weakly
characterized by F'M %2 search problems.

Proof: Lemma 5.7 leaves just the weak capture to be proved.

Take any Y¢-formula 6(z,y) for which Si - Vx 3y 6(z,y). By the Buss’
theorem, there exists a (I function s such that 6(z, s(x)). We need to find
an F M- problem 7(z,y) and a polynomial-time function g satisfying

Vo Yo (n(z,v) — 0(z, g(x,v))).

Take M to be a Turing machine with an oracle from ¥? ; which computes
s(z) in time |z|™. Define D, as the set of quintuples of the form:

(y,p,w, €, )

where
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1. pis a computation of machine M with input z and output y

2. eis a tuple €, ..., €4m of oracle answers received by the computation
p (in order; padded with zeroes at the end)

3. wisatuplews, ..., wym of witnesses to positive oracle answers received
by the computation p (so that w, corresponds to ¢, = 1; padded with
zeroes elsewhere)

All such tuples have polynomial size (are bounded by a suitable term
D(z)). The function to be minimized in D(z), say f(x,c) will be defined
as 2#™ if ¢ ¢ D,, and as € (encoded as a |z|™-bit number) if ¢ € D,. The
clumsy notation 2/*™ gives actually a number by no more than a single bit
longer than any € and trivially computed in linear time: flip all bits of € into
zeroes and prepend a one.

The set D, is always nonempty, because by Fact 2.15 we receive (even in
S3) a computation py of M with input x such that all the oracle queries were
answered in negative, yielding

(y,p0, (0,...,0),(0,...,0),x) € D,.

Let ¢ be the (y,p, w,€,z) which is f(z,c)-minimal in D(x). Obviously
all the oracle queries listed in € have been correct: positive answers are all
witnessed by the respective w;’s and thus true. If a negative answer ¢; = 0
is incorrect and in particular some a would be a witness to the positive
answer, then ¢ is not f(z, ¢)-minimal. Use Fact 2.15 to build a computation
p' of M with input z and oracle queries answered according to €, which is
identical to €, except that whereas ¢; = 0, let €, = 1. Use a to amend the
7'th component of w accordingly, yielding w’. Take 3y’ to be the output of p'.
Define

CI — (yl,pl,wl’ 6I’:L_)
and conclude with ¢ € D, and f(z,c) < f(z,c). We have shown that the
only minimum of f describes the unique computation of s(z), the witnesses w
possibly varying, and its projection to the first coordinate y = s(z) thus
satisfies 0(x,y).

So n(x,y) is
y € D, AVy' € Dy f(2,y) < f(=,9),
and g(z,v) is (v)1- =
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Lemma 5.9 Leti > 1 and ¢ be a X-formula, s(y) and s'(z,y) terms. Then
PV, together with the statements that FM%i-1 4s well-defined proves, for some
term t, the principle of sharply bounded collection:

Ve <|s|Fz< s p(z,y,2) <= FJw<t(y) Ve <|s| (w), < ' A p(z,y, (w0)g).

Proof: By the same reasoning as in Lemma 3.6, no generality is lost in
assuming s’ = s.

Assume ¢ € 112 | and Vz < |s| 3z < s(y) ©(s(y),x,z). Consider the fol-
lowing valuation function:

s(y)l  always, if i <[s(y)[ (w): > s(y)
fly,w) = § ls@)l =1 if Vi <i <[s(y)l ¢ (y, ], (w);) and not (y, i, (w);)
0 if Vi <|s(y)| ¢(y,1, (w)s)-

By the well-definedness of this particular instance y of the F'M 1 search
problem defined by f, there is a w which gets the minimum value of f.
Assume the value is positive, some [s(y)| —i. Then w provides the first i
witnesses by the definition of f. By assumption, 3z < s(y) ¢(y, i, 2). Define

(w); forj <1,
(w; =4z for j =1,

0 otherwise.

Clearly, f(y,w') < f(y,w), contrary to the minimality; the minimum value
is therefore zero, and such w has the desired property — provided ¢ is chosen
high enough, using Fact 2.14.

To prove the same for any X.2-formula, iterate this construction. In each
step, the innermost sharply bounded universal quantifier appearing in the
initial block of bounded existential quantifiers is pushed to the end of this
block.

The converse implication is immediate, provided an efficient coding of
sequences is used. =
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Theorem 5.10 Let i > 2. The search problems E?—deﬁnable m S§ are ax-
tomatized by FM™-> search problems over theory PV;.

Proof: By Fact 2.12, the desired fraction is axiomatized by induction
axioms for every ¥ ,-formula. Further, it is also axiomatized (see Fact 2.9)
by the X2 ,-minimization principles, namely that every nonempty set defined
by a ¥:¢ ,-formula ¢(z) has a minimum:

p(z) = 32" <zVy<a’ (p(a’) A-e(y)).

For every such statement build an F'M > gearch problem whose minima
immediately encode the (unique) minimum z of the statement.

Take any ¢ € X! |. Using Lemma 3.6, assume that all the bounding
terms depend solely on a single free variable, say x; straightforward formula
manipulation also allows us even to assume that ¢ begins by a block of
existential quantification interspersed with sharply bounded universal quan-
tification and continues with a II?_,-subformula.

Force all sharply bounded universal quantification deeper into the formula
using Lemma 5.9, finally arriving at some

Jyr <ty () Fyo <ty,(z) ... Tyx <ty (z) O(z,y1, ..., Yk)-

Take a big enough term #**?(z) (see Fact 2.14) and rewrite the formula to

By <t?(2) (AW <ty (@) = 0@, @)1, @2 W).
Ignoring the leading existential quantifier, denote the I1° ,-formula so ob-
tained as po(z,y).
Let the domain of the desired FMi-2 problem be a set of pairs (z/,y)
where 2/ < z and y < t**P(z'). Define

!

fru((2',y)) = {x if o (', y),

t°“P(x) otherwise.

Recall the definition of X! |-minimization principles and assume @(z).
Any minimum m found for this function minimization problem satisfies p(m),
which is

Fy <t"(x) o(m, y),
and no m’ < m does. This implies the minimality also for ¢(m), as the con-
verse of the described formula manipulation can be performed in PV;. A
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Theorem 5.11 The search problems X8-definable in S2 are captured by FM
search problems.

Proof: By Theorem 5.10, any Y:3-definable search problem ¢ is provable
from the well-definedness of F'M and PV;. By the deduction theorem, a finite
set of F'M search problems exists such that PV; plus their well-definedness
implies the well-definedness of ¢.

Take two such problems, one minimizing function f;(x,y) in domain #;(x),
the other one minimizing function fo(z,y) in domain t5(x). Make the latter’s
polynomial running time bound explicit as ¢(z), and define a new F'M search
problem: its domain is the set of all pairs (x,y) such that z < ¢;(z) and
y < ta(y) and its function to be minimized is f((z,y)) = t(x) - f1(x) + fo(z).
Clearly this construction yields an F'M problem, too, and its well-definedness
implies the well-definedness of both constituent F'M problems. Iterating
this construction finitely many times, a finite number of FFM problems is
characterized by a single one, say, Vz < D(x) 0(z,y, z) with § open in Lpy.
Thus

PVi FVzy< D(x)Vz< D(x) 8 — Yu Iv p(u,v),

or, taking v as a constant,
PViF 3z Vy< D(z)Iz< D(z) f(z,2) < f(z,y) V v p(u,v).

After applying the Herbrand theorem from [KPT91] to z, z and v, and
reintroducing existential quantification over z, we end up with terms ¢; and s,
such that

PViEVYy <D(ti(w)),...,Yye < D(tr(u,y1,-- -, Ye—1))

dzy <ty(w),..., 3z <te(u,y1,- .-, Yk—1)
(f(tr(u), 1) < fta(u),m) %
flta(u,y1), 22) < f(ta(u,y1), 42) \%
A V
f(tk(ua yl;""yk—l)azk) < f(tk(uayla"'ayk—l)ayk))
\ QD(U,S(U/, yla"'ayk))))a
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or, returning to the original form:

PViEVYy <D(ti(u)),...,Yye < D(tg(u, y1, .-, Yp—1))

Vzy <ti(u), ...,V <tp(u,y1,- -, Yp—1)

( fti(u), ) < f(ti(u), 21) A
(*) Fta(u,v1),92) < f(ta(u,y1),22) A
Sy, ym—), ve) < Fe(wy, - Yk-1), 26) )
— o, (7,1, - 1)) ).

Now apply the method of Lemma 3.6 to obtain a single term M (u) ma-
jorizing all these bounding terms provably in PV;. Use it to define a new
function F as

k
F(U, 'LU) = Z f(tz(u; (w)la ERI (w)i—l)a (w)l) : Mk_i(u)a
i=1
and observe, still inside PV}, that if the minimum w is some (yy, ..., yx), then

the conjunctive premise of (x) is satisfied. By transitivity of implication, we
have proved in PV, the many-one reduction (using M* and s) of ¢ to the
F'M search problem specified by F' in place of fry,. —



Chapter 6

; +1(S2) The Superdiagonal

6.1 General Background: Bounded Queries
The following result is from [Kra93], also to be found in [Kra95].
Theorem 6.1 Let i > 1 and let o(z,y) be a X2, -formula such that

Si =V Iy oz, y).

Then there is function f(z) from O, [wit, O(logn)] which is X2, ,-definable
in S& such that .
Sy FVa o(z, f(2)).

6.2 Sharp Function Minimization

Definition 6.2 The sharp function minimization search problem (#FM ) is
defined by a polynomial-time computable function f(z,y), so that the search
task is to find y such that |f(z,y)| is minimal within D(zx).

Again we have formally deviated from the definition in [CK98|, where the
analogous sharply bounded function mazimization effected the exponential
shrinking of the range of f by giving a promise that the values of f are
bounded by the length of a term. That is because we want to capture more
directly the idea that the only difference between F'M and #F M is that the
values of f are encoded in binary for FFM and in unary for #F M.

43
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Lemma 6.3 Let ¢« > 2. The #FMEZ?—2 search problems are Y:2-definable
in Syt

Proof: Let ¢(z,u) be the X2 |-formula
y <D(z) [f(z,y)[+ 1> |ul,

where D(z) and f are taken from an instance of a #F M search problem,
and let B be the upper bound on the output size derived from f.
Obviously ¢(z,0) and —¢(x, B). Therefore

o(z, [5]) A —p(, 2)

for some z. The left hand part of the conjunction provides a y such that

(2, 9)| + 1> [[5]]

and the right hand part of the conjunction guarantees the maximality of this
particular value of |f(z,y)| = |[£]]. -

Theorem 6.4 Let © > 2. The search problems Ef—deﬁnable m S;fl are
weakly characterized by #F M 2 search problems.

Proof: Lemma 6.3 leaves just the weak capture to be proved.

The proof is a variant of the proof of Theorem 5.8. Instead of Buss’
theorem we start from Theorem 6.1 and so we find ourselves weakly capturing
computations not of (I functions, but of 0F [wit, O(logn)] functions.

Because the oracle answers are witnessed, two computations may branch
not only on a different oracle answer, but also by getting a different witness
for a positive answer. So this time the correct computation is not unique,
but that makes no difference in the proof other than the option of forgetting
about the w’s and using witnesses extracted from the computation instead.

The bound on the number of witnesses, namely HxH, allows to consider
shorter tuples in place of €, namely €y, ..., €& lol| for some constant £ with

the same role in the proof.

The function to be minimized in D(z), say f(z,c) will be defined as
okllell = ok |y if ¢ ¢ D,, and as 2 if ¢ € D,. By 2¢ we mean taking ¢
as a k - ||x||—bit number and encoding it into unary; this is possible with
a polynomial-time algorithm, because its input also includes the (unused)
binary representation of . -
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Lemma 6.5 Leti > 1 and ¢ be a X2-formula, s(y) and s'(z,y) terms. Then
PV, together with the statements that #F M s well-defined proves, for
some term t, the principle of sharply bounded collection:

Vz<|s|Fz<s o(r,y,2) < Fw<t(y)Vz<|s| (w)s < 5" A p(z,y, (w)g)-

Proof: The proof is the same as in Lemma 5.9. A formal difference is that
the function values (like |s(y)| — ¢) have to be replaced by their expansions
into the unary. This is possible in polynomial time, because the resulting
values are all bounded by s(y). -

Theorem 6.6 Let © > 2. The search problems Ef—deﬁnable m Sg_l are
axiomatized by #F M =2 search problems.

Proof: The proof proceeds in analogy with the proof of Theorem 5.10. The
desired fraction is axiomatized by X?_;-length-minimization principles. Take
any ¢(x) € X¢ | and transform it to some Jy < T'(x)po(z, y) where o, € I12 ,
as in Theorem 5.10, this time using Lemma 6.5.

Let the domain of the desired #F M>i-> problem be a set of pairs (', y)
where ' < z and y < T'(z). Define

!/

, . x if ®o (xl7 y)7
f#FM((f’j ,y)) - {2 . T(ac) otherwise.

(The only difference from the proof of Theorem 5.10 is a “safety bit” in
the unwanted case to avoid its length minimality in spite of non-minimality.)
This time we get only one of the shortest (not necessarily smallest) minima,
but this is enough to conclude the length minimization for (. —|

Theorem 6.7 The search problems X8 -definable in S3 are captured by #F M
search problems.

Proof: The proof proceeds in full analogy with proof of Theorem 5.11,
although again it is necessary to add “safety bits” in two places, to ensure
that any shortest pair of some kind is guaranteed to be shortest in the “more
important” coordinate, too. Technically this means multiplying by 2 - ¢(z)
instead of ¢(x) and by the appropriate power of 2- M (u) instead of M (u).



Chapter 7
Z?(S%H): The Subdiagonal

7.1 Polynomial Local Search

Definition 7.1 (Johnson, Papadimitriou, Yannakakis [JPY88]) The poly-
nomial local search problem (PLS) is defined by polynomial-time computable
functions N(z,y) and v(x,y), for which

v(z, N(z,y)) <v(z,y)VN(z,y) =y.
The search task is to find y such that N(x,y) =y.
Theorem 7.2 (Buss, Krajicek [BK94]) Let i > 1. The class of PLS¥
problems weakly characterizes the ¥.2-consequences of Sutt,

The proof proceeds by a proof-theoretic analysis in S5™ and can be found
in [BK94]. A new proof of its base case i = 1 will be given in Section 8.2.

7.2 Generalized Local Search

Definition 7.3 The generalized local search problem (GLS) is defined by
a polynomial-time computable predicate < (x,a,b,c) (conveniently always
denoted as a <. b) and a polynomial-time computable function v(x,a) (con-
veniently denoted as v(a)) for which each <. is a linear order and

(Vd< D(z)Ve< D(x) =d <, b A —e <y c) = v(c) < v(b).
The search task is to find a triple a, b and c such that b is <,-minimal,

c is <p-minimal and v(b) = v(c).

46
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This definition is a simplified version of the one in [CK98|. The latter also
uses an extra predicate N(z, z,n), meaning “n is one of the neighbors of 2”,
and each <, is required to be a linear order only over the set of neighbors of z
— which is required to be nonempty for any z — instead of over the whole
domain. Our definition is clearly a special case thereof, but it is actually
many-one equivalent (and even under the strong reduction in the sense of
[BCE195]), as the order can be extended to non-neighbors by defining all
non-neighbors to be greater than neighbors and by using an arbitrary linear
order to compare non-neighbors among themselves.

Lemma 7.4 Let n be a PLS¥ problem. There is a GLS> > problem n'
such that
Sy Yz Vs (/' (d'(2), 5) = n(z, ¢'(z, 5)))

where d' and ¢' are polynomial-time computable functions.

Proof:  Suppose 7 consists of N,(z,y) and v,(z,y) as in the definition
of PLS.

Take M to be a Turing machine with an oracle from >?_; which computes
simultaneously N, (z,y) and v,(z,y) in time (|z| + |y|)™. Fix z and define D
as the set of sextuples of the form:

(N,v,p,w, €,y)
where

1. pis a computation of machine M with input (z,y) and output (N, v)
where y, N < D(x)

2. eisatuple €y, ..., €qm of oracle answers received by the computation p
(in order; padded with zeroes at the end)

3. wisatuplews,...,wymn of witnesses to positive oracle answers received
by the computation p (so that w, corresponds to €, = 1; padded with
zeroes elsewhere)

We say that d € D is a sequel to e if (e); = (d)s, i.e., the PLS-style
neighbor suggested in e is used as the input in d.

The GLS”i-> relation d <, e is defined as always true if d is a sequel to z,
while e is not. It is defined antilexicographically by the respective values
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of € if both are a sequel to z and it is defined lexicographically by the whole
sextuples in the less important cases — when none is a sequel to z, or when
both are a sequel to z and (d); = (e)s.

The GLS¥-> value of any (N,v,p,w,€,y) is the v component. More
formally, vy (d) = (d)2.

Argue in S: The set D is nonempty: take any y, assume all oracle answers
to be negative, all witnesses w to be zero and apply Fact 2.15 to construct
p, N and v from y and € = (0,...,0) as defined. By the same argument, for
any z, there is a d which is a sequel to z: just start with y = (z);. Therefore,
every <,-minimum is a sequel to z and is determined by the e-maximality.
By the same argument as in Theorem 5.8 we get the correctness of p with
respect to the oracle and so the promise of the underlying PLS>-1 problem 7
translates to the characteristic promise of the GLS™-2 problem.

Any solution

(Naa Vs Pas Wa, €a, ya): (Nb, Vb, Pb, Wh, €p, yb)a (Nc, Ucy Pey We, €, yC)

to the GLS™i-2 problem satisfies N, = N, (2,Ya), vh = vy(x, Np) and N, = N,
Hence N, is a solution to 7. -

Theorem 7.5 Let i > 2. The class of GLS* > problems weakly character-
izes the X.2-consequences of Syt

Proof: The definition of GLS™-2 is slightly complicated, but rewritten
into a formula ¢(z,y), where y = (a,b, ), it turns out to be a Yb-formulal.
It is definable in 7% C Si™!: take z as a constant and consider the set

{vy : Ja<D(z) Ib< D(z) Vd < D(z) ~d < bAv(b) = vy }

which is thus defined by a Y’-formula with the only free variable being v.
It is also nonempty, because T¢ proves each <, has a minimum. By the
Yt-minimization principle available in T%, this set has a minimum, yielding
a and b. Take ¢ to be the <,-minimal element. The triple (a, b, ¢) is a solution
to the GLS™-2 problem.

'To weakly characterize the class of GLS™ -2 problems by a II?_,-formula, take the
“overdone no-promise” version of GLS instead.
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Take any YP-formula 6(z,y) and the corresponding PLS™-1 problem 7
to which it is reducible by Theorem 7.2:

Vz Vs (n(d(z), s) = 0(z,9(z, )))-
Lemma 7.4 provides a GLS™-2 problem 7' such that
Sy Yz Vs (i (d'(2), ) = n(z, g'(2, 5)))

and the weak characterization follows by the transitivity of reductions. -

It would be a convenient strengthening if Theorem 7.2 could provide an
7 where
PVi vz Vs (n(d(x), s) — 0(z, g(x, 5)))

but such result is not available and known methods prove the reduction, even
for the base case, in Sz, or at most in Ty. We shall however return to what
can be said about GLS and 25(S3) after additional methods are developed,
in Corollary 9.4 and Theorem 9.6.

7.3 Minimization

Definition 7.6 The search problem G LS~ is a special case of GLS with the
cost being an arbitrary constant.

To satisfy the reader who is accustomed to the old style definition of GLS
found in [CK98|, we should also briefly investigate the old style definition of
GLS=, which is temporarily reintroduced as GLSy. The expected confir-
mation of the many-one equivalence is reached again, though slightly less
directly this time.

Definition 7.7 The search problem GLSY is a special case of the old style
GLS, with the cost being constant over the whole neighborhood of each z.
More formally: the problem is defined by predicates a <. b and N(c,a)
(meaning “a is a member of the neighborhood of ¢”), and a function v(a); all
three depend also on x. The promised transitivity, antisymmetry and linearity
of <. is restricted (weakened) to the neighborhood of c. The GLS-specific
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promise is also weakened by additional premises N(a,b) and N (b, c). Further
two promise conjuncts are given:

Va < D(x) 3b< D(x) N(a,b)

Ve,a,b< D(z) (N(c,a) A N(c,b)) — v(b) = v(c))

The search task is as in GLS, but with the additional requirements that
N(a,b) and N(b,c).

We are being honest here; if we required the cost being constant not only
over every neighborhood, but over all of the domain?, we would again easily
observe many-one equivalence with GLS=. That would only strengthen our
claim that the neighborhood predicate in the old style definition never makes
any difference.

Note that MIN as defined in the Section 3.3 is actually a special case of
GLS= with <, being independent of z. But even more:

Lemma 7.8 MIN =, GLSY ~,, GLS™

Proof: Show the reducibility of GLSy to MIN by constructing a linear
order over triples of elements of any instance of GLSy.
Define (a, b, c) <% (a’,b', ') to be true, if one of the following holds:

N(a,b) A =N(d',V)

N(a,b) A N(a',b') ANN(b,c) A\-N(, ()
= N(a,b) A =N(d', V') A (a,b,c) < (d,V, )
- N(b,c) AN, ) A (a,b,c) < (d,V,)

or if all N(a,b), N(b,c), N(a',t') and N (¥, ') and one of the following hold:

v(b) < v(b")

v(b) =v(l)ANa < d

v(b) =v()Na=ad Nb<, ¥

v(b) =v()ANa=d ANb=b ANec <.

This is a linear order and its unique minimum is some (a,b,c) which
satisfies the search task of GLSy. In particular, the value v(b) is globally

2Remember that GLS™ did not receive attention before, and so we have to resort to
some kind of analogy to identify the old style definition.
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minimal among the values which can occur in a neighborhood of any element,
and so v(b) < v(e), which, by the promise, means v(b) = v(c).

The rest of the lemma is trivial as M IN is a special case of GLS=, which
is a special case of GLSYy. -

It is open whether MIN is many-one equivalent (or at least Turing equiv-
alent) with a more general search problem MIN?T of finding a minimum of a
partial order, i.e., M I N with the linearity component of the promise dropped.

It is also open whether MIN is many-one equivalent with MIN

NOPROMISE"
As all these search problems are in X5(S3), any negative result concerning

these main variations of the M IN problem would also give a negative answer
to a question asked in [CK98]: does MIN (weakly) characterize ¥4(S3)?

Let us conclude this section by three partial results helping to understand
the relation between MIN and MIN

NOPROMISE

Lemma 7.9 There is a Turing reduction of Né\gRgAYSE to MIN with only two
queries to the MIN oracle, both coming from a set of queries constructed
before any oracle answers are received.

Proof: It is possible to resolve any YX%-question, i.e., an arbitrary NP ques-
tion, using MIN: simply define witnesses to be smaller than non-witnesses
and use some arbitrary linear order to compare witnesses among themselves
and non-witnesses among themselves.

The first query of the Turing reduction asks the :3-question whether
there is a triple of elements of the domain of the N{)\g R{) JJWYSE problem being
reduced, which breaks at least one of the transitivity, antisymmetry and
linearity. If so, the reduction can halt with a correct output. Otherwise a
second query is asked which is identical to the to the problem instance being
reduced, because it is now certain that it happens to be a linear order. -

This result is complemented by the following one (for R = MIN ),

NOPROMISE

Lemma 7.10 Let R be a search problem. Suppose there is a Turing reduction
of R to MIN such that the reduction algorithm computes some n, builds
an algorithm C(y1,--.,yn) and n queries to the oracle (each satisfying the
promise of MIN) without actually asking any, then asks all the queries,
evaluates C on the oracle answers and halts with the output of C. Then
R <, MIN.
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Proof: Call the reduction as described above conjunctive truth table re-
duction. Many-one reducibility is a special case of conjunctive truth table
reducibility with n = 1.

Assume there is a conjunctive truth table reduction of R to MIN. Then n
used in the reduction is a polynomial-time computable function of the input
and the length of any oracle query is bounded by a polynomial ¢,. The -th
oracle query consists of a linear order <; and an instance d;, 1 < i <n, and
the oracle answer will eventually be some y;.

Define a new <’ in the domain d = ¢,#n, on members of this form:

x=(21,...,Tp) x; < dj,
lexicographically:

r<ls = Ji<ldly =N Az =2 | A 3 < 7L

This is a linear order; its unique minimum is some (my,...,m,). Finish
the many-one reduction of R to this instance of M IN by halting with output
C(my,...,my). -

The two lemmata just given hold analogously for search problems related
to partial orders MINP and MIN” which we are now going to define.

NOPROMISE’

Definition 7.11 The search problem MINT is defined by a ternary predi-
cate <F(a,z,y) conveniently denoted as x <% vy, such that for any a, <F is
a partial order and the search task is to find a minimum element of <¥.

Definition 7.12 The search problem MINT g again defined by a ternary
NOPROMISE

predicate © <P vy. There is no promise and the search task is to find a triple
which breaks the transitivity of <¥, a pair which breaks the antisymmetry
of <P, or an element which is a minimum element of <F.

Definition 7.13 The search problem #MINF is a search problem defined
like MIN, but instead of the linearity assume a polylogarithmic bound on
the depth of the order in the promise; the polylogarithmic bound is supplied
through a function symbol. More formally, the extraarithmetical symbols are
P . . . P . P .
<" (ternary) and b (unary); the promise is the transitivity of <", the anti-
symmetry of <¥ and the nonezistence of a set of size |b| (the bound) which
is linearly ordered by <¥'; the search task is to find any minimum element.
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Definition 7.14 The search problem #MINT has no promise and its search
NOPROMISE

task is to find a counterexample to transitivity or antisymmetry, a linearly
ordered set of size |b|, or a minimum.

Lemma 7.15 The #MIN® qnd #MINF search problems are many-one
NOPROMISE
equivalent.

Proof: The proof of #MINF <m #FMINPF is based on the observation
NOPROMISE

that each linearly ordered subset of a partially ordered set either includes a
global minimum, or can be extended to a larger one.

The reduction takes an input with domain d and bound |b| (for simplicity,
assume |b| > 3), and asks a query with bound |¥'| = |b|+4 (i.e., ¥’ = 16-b) and
the order to be minimized is the opposite of the cardinality-based order of
linearly ordered sets of at most b elements. More formally: the domain is an
upper limit on the codes depending on the chosen coding of sets, for example
d#d. The members of the domain are classified into four groups according
to the size and the behavior of the input “order” on the set encoded by the
member:

1. codes of non-transitive or non-asymmetric sets
2. codes of transitive, asymmetric and linear sets of size |b| + 1 or more
3. codes of transitive, asymmetric and linear sets of size at most [b|

4. codes of transitive and asymmetric, but non-linear sets, and non-codes

The queried order u <, v is true either if the group of u is lower numbered
than the group of v, or if both u and v are of group 3 and v has fewer elements
than u. This indeed defines an order of depth at most |b| +4 no matter what
the input relation is.

If transitivity or antisymmetry has been violated in the input, the min-
imum for the query is of group 1 and any such minimum provides enough
information to compute the output of the reduction. If this has not been
the case, but the input has breached its bound |b|, the minimum is a set of
group 2 and it serves as the output of the reduction. If the input has satisfied
all of the promise, then the minimum is of group 3, and its minimum element
serves as the output of the reduction. =
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7.4 Generalized Iteration

Definition 7.16 The search problem GI s defined by a ternary relation
NOPROMISE'

Ol
<gr(a,z,y) (conveniently denoted as x <gr y; possibly a linear order in

the indicated variables) and a binary function g(a,z) (conveniently denoted
as g(x)). The problem has no promise and the search task is to identify a
member which breaks one the following restrictions on g:

9(0) <gr 0,
9(z) <arz — g(9(x)) <er g(z),
g9(z) < D(x),

or a pair or a triple of elements which breaks the linearity, transitivity or
antisymmetry of <gp-

Definition 7.17 The search problem PRQA{EE is defined in the spirit of G1

NOPROMISE’
while its promise is that <gr is a linear order and g(0) <gr 0. The search

task is to find x such that g(x) <gr z, but not g(g(x)) <gr g(x).

Definition 7.18 The search problem MIN* is defined by a ternary predicate
<t (a,z,y) conveniently denoted as x < y and a binary function h(a,x)

conveniently denoted as h(z). The promise is that <% is a linear order.
The search task is to find y such that —h(y) <" y.

The notation requires some explanation. The problems GI and MIN
were defined in [CK98] as candidates for the weak characterization of ¥:¢- and
Yb-consequences, respectively, of T2. (Those questions are still open.) MIN*
is defined from MIN by a specific type of Herbrandization: in addition to
the linear order a device to derive an example of a smaller element for any
element is available. This Herbrandization will be explained in a more general
setting in Chapter 8.

An attentive reader will also note a difference between our definition of

GI , and the definition of GI introduced in [CK98], in the choice of the

PROMIS]
search task. Whereas the original G includes

9() <ar v — g(9(r)) <cr g(z)
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as a part of the promise and falsifies g(x) < D(z) in the search task, we
have chosen the opposite for pR§A£5E' The reason is a clearer affinity to the
other well-known problems we study, and a more transparent road to Corol-
lary 7.25. Of course, the original GI and our ngulzsz are actually many-one
equivalent, too. Both directions of the proof are similar to each other and
easy, as the affected conditions can be locally verified in polynomial time:
after the necessary promise of the problem reduced to is satisfied by local
changes where necessary, only the ¢(0) <g; 0 part of the promise may become
breached. It is then regained by the technique of Lemma 7.23 below. The
same technique also addresses another non-essential variation: the promise
may or may not include a statement that 0 is the maximum element of <g;.

Definition 7.19 The search problem GLS' is defined in the same way as
the GLS search problem, but an additional function f(x,z,y) (conveniently
denoted as f(z,y)) is available with an additional promise:

fzy) <2y V (f(zy) =y AVu<D(z) (y=uVy <, u))
(i.e., identity on minima, elsewhere a witness to the non-minimality).

We shall write min, y to abbreviate f(z, z,y) = y (which is equivalent to the
fact that the minimum of <, is y).

At the first sight the relation of MIN* to MIN on one hand and of
GLS' to GLS on the other hand looks rather similar — and rightfully so,
as the remaining difference of putting the “Herbrandizing” behavior of the
additional function either to the promise or to the search task does not affect
the many-one equivalence about to be reached in Corollary 7.25, either. The
notation does not reflect this apparent parallel; the star notation has to
stay reserved for a much more general construction developed in Chapter 8.
Taking into account Lemma 7.8 and Corollary 7.25, GLS’ would be a poor
counterpart for MIN* in direction of GLS.

Definition 7.20 The search problem GLS'= is the special case of GLS',
where the cost is an arbitrary constant.

Start up with a trivial observation even though it will be immediately re-
placed by a couple of slightly stronger results with slightly more complicated
proofs.
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Lemma 7.21 MIN* <, GLS'=.
Proof: Define the z <, y as © <uyrn+ y (independently of z, but still

dependent on a as always), f(z,z) as h(z), and let the cost be an arbitrary
constant. -

Lemma 7.22 GI <, GLS~=.
PROMISE

Proof
If g(z) <z A g(y) <y, define z <, y as x <gr y as above
Ifg(z) >z A g(y) >y, define z <, yasz <y
If g(x) >z A g(y) <y, let x <, y be false
If g(x) <z A g(y) >y, let <, y be true

It is easy to see that this defines a linear order, as it is a “concatenation” of
two linear orders, namely of <¢; and of the lexicographic order <. (Instead
of the lexicographic order, any linear order would do, too). It remains to
define f so as to be decreasing in this order, except for the <,-minimal
element:

If g(g(z)) < g(z) < z, define f(z,x) as g(x)
If g(x) > z, define f(z,z) as 0
If g(g(x)) > g(z) A g(z) < z, define f(z,z) as z.

In the middle item the promise that g(0) <gs 0 is used.

By the same promise, any minimum z of any <, found by the query to the
GLS'= oracle has the property that g(z) < = holds. By its <,-minimality,
g(x) lacks this property and so z is a suitable output of the reduction. -
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Lemma 7.23 MIN* <,, GI

PROMISE

Proof: The domain of ” R%:MIISE is the domain of MIN* increased by one.
Define 0 <57 = to be always false and z + 1 <g; 0 always true; define
r+1<gry+1asx <l y. Define g(x+1) as h(z) and g(0) = 1. This satisfies
the promise of Rgﬁg . and the search task of PR‘C)TVMIEE is actually stronger than
that of MIN™. -

Lemma 7.24 GLS' <,, MIN*

Proof: The domain of the MIN* problem will consist of triples of the
GLS' problem elements.

The ordering predicate (z,y,2) <mprn+ (2',9',2") will be true in any of
the following eight cases:

1 ming y A ~"ming y
2 min, y A ming ' A v(y) < v(y')

ming y A ming y' Av(y) =v(y) Ay <y’

= W

ming y Aming ¢y Ay =y' Az <, 2
mingy Aming y' Ay=y' Az=2 ANz <z
—ming y A mming y' Az < 2’

—mingy A -ming Y Az =2' Ny <z 9/

co N O Ot

—ming y A ming Y Aze=2"Ay=y' ANz <, 2

(The reader is reminded that the < predicate without any further qual-
ification is a standard arithmetical predicate, here used both for numeric
comparison of values and for the “lexicographic” comparison of other objects.
Any other polynomial-time order could perform its job of choosing a unique
value-minimal object in the latter context as well.)

To see that the just defined predicate is indeed a linear order, note that
it is actually a hierarchy of value-based partial orders, hence antisymmetry
and transitivity. Linearity is obvious.

The iterator function g((z,y, z)) is accordingly defined by cases.



CHAPTER 7. $%(Si*'): THE SUBDIAGONAL 58

If = min, y, then g((z,y,2)) = (z, f(z,y),0)
If min, y A ~miny 2z, then g((z, vy, 2)) = (z, vy, f(y, 2))
If min, y A min, z, then ¢((z,v, 2)) = (y, 2, 0)
Check that for every z, y, and z, g((x,y, 2)) <min+ (z,y, 2).
If = min, y, either case 1 or 7 occurs.
If min, y A = min, 2, case 4 occurs.

If min, y A min, 2, case 2 occurs.

Corollary 7.25 GLS= ~,, GLS' ~,, Gl ~, MIN*
PROMISE

Analogous definitions of the “overdone no-promise versions” together with
analogous reasoning give an analogous result.

Corollary 7.26 GLS= ~, GLS ~ = GI ~  MIN*

NOPROMISE """ NOPROMISE =~ """ NOPROMISE = ""* NOPROMISE

It is natural to ask whether the last two corollaries can be combined
by a many-one equivalence, too. We do not know. This is related to the
MIN a~, MIN question and to Lemma 7.10. The same picture also

NOPROMISE
appears if we simply omit the linearity promise from all the search problems

linked by the results of this section.



Chapter 8

Star Herbrandization

We will now present a general method of transferring known characterizations
downwards to fractions. The idea is simple: let us start from a Y3-definable
search problem X which characterizes the ¥-consequences of some theory.
We want to derive, say, a characterization of the %-consequences of the same
theory. The method is to weaken X by adding an extra function symbol h
to it, which provides witnesses of a solution candidate not being a solution.
This function symbol serves to remove one level of quantification when the
search problem is formulated. It turns out that the strength of X with regard
to Y°-formulae is preserved, if the system of all such weakenings is taken.

The name “star Herbrandization” was chosen to distinguish this technique
from the “dagger Herbrandization” discussed in Chapter 9.

8.1 General Construction

Definition 8.1 Let X be a class of search problems uniformly defined by a
strictY-formula

Jy' < D(z)Vz< D(z) ¢(z,y,y,2)

in language Lo(c, . ..) for ¢ sharply bounded; i.e., the search task is to find y
such that o(x,y,y', z) holds for a suitable y' and all relevant z. Its star Her-
brandization X* is the ¥.5-definable search problem in language Ly(cv, . . ., h)
with the search task to find y such that

3y’ h(z,y,y') < D(x) = ¢(z,y,y', h(z,y,y")).

29
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The limitation to strict ¥5-formulae, as opposed to ¥5-formulae, is not a
serious one. All ¥3-definable search problems investigated until now can be
easily expressed in this form. Also, the following arguments can be extended
a little bit (using the result of [Res86] accessible as [Kra95, Lemma 5.2.13],
and straightforward subformula manipulation) to all ¥5-formulae in which
no sharply bounded universal quantifiers appear before or inside the initial
block of bounded existential ones.

Theorem 8.2 Let X € strictyh and Y € strictX$ be formulae uniformly
defining their respective classes of search problems. If X captures Y, then
X* captures Y, too.

(The converse implication is obvious.)
Proof: Suppose X has the form as in Definition 8.1. By the capture,

PVi(a) FVz VYo (Jy < D(z) Vz < D(z) o(f(x),v,y,2,8) = Y(z, g(z,v), a)),
or equivalently
PVi(a) FVz Vo Vy < D(x) 3z < D(z) (¢(f(x),v,y,2,8) = Y(z,g(x,v),a))

with ¢ sharply bounded.

Apply the Herbrand’s theorem to obtain a finite number of terms —
polynomial-time functions, which provide alternatives for witnessing both
the existence of such z and the initial existential quantifier of Y. As the
rest of the parenthesized subformula is sharply bounded, these terms can be
combined into a single polynomial-time function h(zx,v,y), which witnesses
the existence of a z as stated. Formally:

PVi(a) Vo Vo Vy < D(z) (X(f(),v,y, h(z,v,9),8) = Y(z,g(z,v), @),
which is an instance, for this particular A, of
PVi(a) FVzVoVy < D(z) (X*(f(x),v,y,8) = Y(z,g9(z,v),a)).
by the definition of X*. =
Theorem 8.2 can be replaced by the following more general theorem that

does not require Y to be strict¥}. This is paid by an indirect dependence
on Buss’ theorem — which renders it unusable for Corollary 8.6.
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Theorem 8.3 Let X € stricty and Y € X% be formulae uniformly defin-
ing their respective classes of search problems. If X captures Y, then X*
captures Y, too.

Proof: As the proof of 8.2. The problematic step is the combination
of alternative witnessing terms; the construction of the proof covers initial
bounded existential quantifiers and the sharply quantified kernel, but not
additional bounded existential quantifiers interspersed with sharply bounded
ones. It is thus necessary to weaken the statement of the capture to S;(a)
and to use the sharply bounded collection for ¥¢-formulae, which is provable
in S;(a), to replace a block of bounded existential quantification by a single
quantifier. Having obtained

Sy(a) FVz Yo Vy < D(z) 32 < D(z) (o(f(2),v,9, 2, B) = Y(z,9(z,v), a)),

apply the Buss’ theorem and combine the terms. To return back to the
weaker PV, the Y8-conservativity of Si(a) over PVj(«), which is a direct
consequence of the relativized Buss’ theorem, is used. =

Corollary 8.4 Suppose X is a strictys-definable class of search problems
which characterizes the Y5-consequences of a theory T, PV, C T. Then X*
characterizes the ¥.5-consequences of T.

Proof: The well-definedness of X* is a direct consequence of the well-
definedness of X. Its bounded quantifier complexity is ¥6. X* captures all
Yb_consequences of T by the theorem. —

8.2 Applications

One application of the results of this chapter was already presented sepa-
rately: the connection between P’Rgl\ﬁs . and MIN* as stated and proved in
Corollary 7.25.

A simple new proof of the basic case of Theorem 7.2 and even of Buss’
theorem (Theorem 5.2) can also be obtained as a corollary of Theorem 8.2.
These proofs are not different in the sense that they would not ultimately
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rely on proof-theoretic analysis. They do, but the results depended upon
are simpler than the quantifier elimination needed for the original proof of
Buss. They rely on Theorem 6.1 and also on the witnessing theorem from
[KPT91]. On the other hand, the proofs therefore show a new connection
linking together Theorem 7.2, Theorem 5.2 and Theorem 6.1.

Corollary 8.5 The PLS problems characterize the stricty}-consequences
of S2.

Proof: Assume S? + Vu Jv 0(u,v), where 0 is a strict¥-formula. By
Theorem 5.11, F'M captures the class of search problems uniformly defined
by 6. By Theorem 8.2, FFM* captures the same class, too. To conclude
the proof, it is sufficient to observe FFM* =<,, PLS within PV}; namely,
the function to be minimized frp, can be identified with the cost vprs of a
PLS problem, and the function A introduced by the star Herbrandization
can be trivially adapted to a neighborhood function Nppg, which satisfies
the promise of the PLS problem, and whose fixed points are exactly the
solutions to the underlying F'M* search problem. —i

(Use Theorem 8.3, which does use the Buss’ theorem, in place of Theo-
rem 8.2 which does not, to extend the corollary to all $2-consequences of S%.)

Corollary 8.6 The class of [} functions taken as search problems charac-
terizes the strictyt-consequences of Si.

Proof: Assume S + Vu Jv 6(u,v), where 6 is a strict>’-formula. By
Theorem 6.7, #F M captures the class of search problems uniformly defined
by 6. By Theorem 8.2, #F M* captures the same class, too. To conclude the
proof, it is sufficient to present a reduction of #F M* to a [ function taken as
a search problem, which is provable in PV;. We can even present a reduction
to the identity function using the following polynomial-time function:
Given z, compute the known upper bound on maximum running time ¢
of fupn for inputs up to z. This is also an upper bound on output sizes
of fupa. Build a value m such that |m| > ¢ using Fact 2.15. Iterate the
function A (starting from, e.g., zero) introduced by the star Herbrandization
t times and output the result. Use the PV)-specific variant of polynomial
induction for the formula expressing that the i-th iteration provides a value
shortened by at least 7 bits to prove the reduction in PV. =
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It is a natural question whether this corollary can be extended to all
Y%-consequences of Si without getting into a vicious circle by using the Buss’
theorem indirectly. A seductive device is Lemma 6.5 and it is almost enabled
by the concrete X for which Theorem 8.3 is reproved without the excursion
to S3(a). The difficulty of its application is that a particular f(z) and a
particular 3 is available, whereas the sharply bounded collection instance
needed has z in place of f(z) and a different oracle for frp than 5. The
different oracle can be made available at some expense of clarity. Just add
the required instance of the F'M search problem to the finite set considered
for a specific ¥:6-formula ¢ at the beginning of the proof of Theorem 5.11.
The construction by which the instances of F'M are combined is reversible
and we can recover this additional instance in the proof of Theorem 8.3. Un-
fortunately we have found no similar argument for the instance x and so this
particular question remains unresolved. Fortunately, all ¥:6-definable search
problems studied to our knowledge anywhere, are also strict¥%-definable.



Chapter 9

Dagger Herbrandization

Now we introduce a more general, but also a less straightforward method of
obtaining new axiomatizations from the existing ones.

9.1 General Construction

A notational convention: by a X%-formula with no sharply bounded quantifi-
cation we now understand a Y3-formula with no sharply bounded quantifier
such that there is other quantification than sharply bounded within its scope.
We do this to be able to write a single quantifier instead of a vector of
quantifiers of the same type. In this way we even combine the existential
quantifier which asserts the existence of solutions with the initial existential
quantifiers to keep the presentation as readable as possible.

Definition 9.1 Let X be a search problem definable by a Y%-formula with
no sharply bounded quantification, whose well-definedness is expressed (see

Lemma 3.6) as
Vo Jy< D(x)Vz< D(z) ¢(z,y,2),

where ¢ is sharply bounded; i.e., the search task is to find y such that o(x,y, 2)
holds for all relevant z, and both y and z encode as many variables of the
indicated quantification type as necessary.

Its dagger Herbrandization X' is a class of search problems with the
search task to find w = (yi, ..., yx) with the property

o(t1(w), y1,51) A o(ta(x, Y1), Y2, 52) A== Ao(te(T, Y1, -, Yr—1), Yk Sk),

64
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where k is an arbitrary number, each s; and t; is an arbitrary polynomial-time
function, and where every s; may depend on x and all y;, whereas t; only on
the variables shown.

An inconspicuous property of this construction is that the resulting X7
never has any promise. This is not surprising. A reasonable way to identify
a possible promise of a search problem ¢(z,y) is that it is a disjunct which
does not depend on y. But as all the disjuncts usually depend on z, and
we have replaced x with functions which do depend on y, and also have
covered the original formula by a conjunction, there is no opportunity for
having a promise anymore. It follows that, e.g., MIN' and Aé\g P{) M]YSET are the

same class! of search problems, no matter whether MIN and MIN are
NOPROMISE

many-one equivalent or not.

Note that X' is a class of definable search problems, but in contrast with
all preceding constructions, it does not appear to be uniformly definable,
even if X is uniformly definable; in the following theorem, Y¢-consequences
with longer proofs may need an instance of X' with a higher .

Theorem 9.2 Let X be a union of classes of search problems definable by
Y35 -formulae with no sharply bounded quantification. The classes of stricty!-
consequences of X and of X' over PV; are the same.

Proof: Understand X as a set of formulae specifying the well-definedness
of all search problems in X. Take any v’ < D(u) 9(u,v,v") which is a
consequence of X, and thus also of some finite X’ C X. Make sure that
variables found in different members of X’ are distinct. Join the formulae so
as to receive a single X5-formula, and, after straightforward finite sequence
encoding, even a formula (whose well-definedness still implies all members
of X" over PV}) of the form

Vz < D'(z) ¢(z,y,2),
and observe

PViFVz 3y Vz<D'(z) o(z,y,z) = Yu Fv ' <D(u) P(u,v,0").

Which is, by the way, a candidate for the axiomatization of $¢(S3) at least as good
as MIN is for £5(53), by Theorem 9.2.



CHAPTER 9. DAGGER HERBRANDIZATION 66

From now on, treat u as a constant and apply Lemma 3.6 to extend the
domain of X to D"(x). That allows

PV + VYo Yo' <D(u) ) (u,v,v") F Jz Vy < D"(z) Iz < D" (x) =p(z,y, 2).

Observe that the indicated theory in language Lpy U {u} is a universal
one. That allows to apply the Herbrand’s theorem from [KPT91]. This yields
k, I, and terms — polynomial-time functions ¢; and s} such that:

PV + Yo Yo' <D(u) =(u,v,v") = Yyi, ...,y < D"(x)

ot (w),y1, sV o Vop(t(u), yi, s7)V
_'QO(tZ(U’,yl)ay%S%)v s v_'(p(tQ(U’a yl)ayQaSIZ)V
ﬁ(tp(tk(ua Y1, - ",ykfl)aykasllg)v s V_'Qo(tk(uayla' . '7ykfl)aykasi;)'

(While the t;’s depend only on the variables shown, any sg may depend
on all u, y1,...,yx.)

Now for each s} to st a single polynomial-time computable function s;
can be defined by cases in order to replace every line of the disjunction above
by

=Y (iU Y15 -5 Yi1); Yis Si)-
(Each of these 3{ ’s is computable in polynomial time, and polynomial time is
also sufficient for determining whether the sharply bounded formula + holds
for given polynomial-time computable arguments.) So we have

PVi +YoYu'<D(u) — —(u,v,v") = Vyp, ...,y < D"(2)
—@(t1(u),y1,51) V-V 20(te (U, Y1, - - Yk-1)5 Yo Sk)-

By the deduction theorem, return the implication to its original direction
to see what is needed:

PVi

3yl: Y < D”(CU) (7/1(151(U)a Y1, 51) ARRRFAN w(tk(ua Y1y - - aykfl): Yk, Sk))
— Jv F'<D(u) p(u,v,v").
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9.2 Applications

The dagger Herbrandization is essentially a harder alternative to the star
Herbrandization. Its advantage is its applicability under weaker assumptions
— the axiomatization suffices instead of the characterization. In the most
important cases it turns out that it eventually provides the same links be-
tween Theorem 7.2, Theorem 5.2 and Theorem 6.1, as it was already shown
in Section 8.2. These results are now presented mainly to illustrate the
more general method, and to persuade the reader that the stronger notion
of “characterization” indeed simplifies the constructions considerably.

Corollary 9.3 The well-definedness of the class of O functions taken as
search problems aziomatizes the stricty’-consequences of Sa.

Proof: Assume S} + Vu Jv 0(u,v), where 6 is a strictXi-formula. By
Theorem 6.7, #F M captures the class of search problems uniformly defined
by 6. By Theorem 9.2, #FM?" captures the same class, too. To conclude
the proof, it suffices to solve each #F M search problem in polynomial time,
provably in PV;.

The instance of #F M is:

k
() Ve Iy, Ty Nwi <tin (Si <t = [f( )] < |f(ti,81')|)

=1

where each ¢; depends only on x and ¥, ..., %; 1, whereas each s; may depend
on z and all ¥y, ..., yx.

Fix = and consider the following procedure. Take any y = (yi,...,Yx),
which satisfies y; < t; for any ¢ (the simplest choice is a k-tuple of zeroes). If
(*) holds (which is now a polynomial-time computable predicate), output y
as a solution to this instance of #FM' and halt. Otherwise continue by
taking the smallest 4, which falsifies the conjunction in (x), and define a
modified ¥’ = (yi,...,y;) in this way:

y; for 1 <1<,
yi =< s; fori=i,
0 fori<i<ek.

Replace y with ¢’ and repeat the procedure ad infinitum.
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Argue in PV;.
Observe that each y examined during the procedure is valid in this sense:

Viy < ti(u,y1,...,Yi-1)

by induction over the iterations.

Let ¢ = 1. Observe that f(¢;,y;) changes only polynomially many times
during the procedure. Continue by (metamathematical) induction over i < &
to see that the procedure terminates in a time bounded by a polynomial. -

The fact that we have quietly provided a strong reduction in the sense of
[BCE™95] is not surprising, because the reduction functions can always be
easily absorbed into a target (I} function taken as a search problem.

Corollary 9.4 The well-definedness of polynomial local search problems ax-
iomatizes the strictX?-consequences of Sa.

Proof: FMT captures strictX?(S2) by Theorem 5.11 and Theorem 9.2.
The instance of FMT is:

k
(*) Vo Jyr ..., 3y /\yi <tiA (s <t = i y) < f(ti,s:))
i=1
where each ¢; depends only on x and ¥, ...,%; 1, whereas each s; may depend

on z and all y;,...,yx. Functions N(z,y) and v(z,y) are defined which
impose the form of PLS on this search problem as follows.
Fix z and take any y = (y1,...,yx). If y satisfies y; < ¢; for any i, define

k

U(ﬂ?, y) = Zf(tl('ra Y1y ayi—l): yZ) ’ Bk_i($)>

i=1

where B(z) is a common upper bound on the values of f(z,y), y; < ;. If y
satisfies every y; < t;, but breaks the conjunction in (x), take the smallest 3,
which breaks it, and define:

y; for 1 <<y,
(N(z,y))i = { si fori=i,
0 forg<i<ek.
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and if y also satisfies the conjunction in (x), define N(z,y) = .

Finally, if some y; < t; is broken or even y is not a k-tuple, define
N(z,y) = (0,...,0) and v(z,y) = v((0,...,0)) + 1.

It is straightforward to prove in PV) that this construction constitutes a
many-one reduction of FM' to PLS. .

Another application of the dagger Herbrandization employs GLS' for a
new axiomatization result. It is perhaps useful to re-state the definition of
GLS' at this place, although it is still easiest understood in decomposition
into Definition 7.3 and Definition 9.1.

Definition 9.5 Let k > 1. The class of search problems G’LS}; 1s defined by a
polynomial-time computable predicate a <¥ b, a polynomial-time computable
function v(z,a), polynomial-time computable functions t;(x,...) of respective
arities 4-(i—1)+1, for 1 < i < k, and polynomial-time computable functions
si(z,...) of arity 4k + 1, for 1 <i < k.

There is no promise.

The search task is to find a 4k-tuple of elements

ai, bl; C1, dl; -eey Ok, bk’ Ck, dk;
such that for every 1 < i <k, all of

t'($7a'15"'1d'—1)
_'Si(xaal,-":dk) <a; ' b’ia

’U(ti(.’E, A1y .., di—l); bz) S v(t,-(ac, aiy - - . ,di—l); Ci);
hold, or the transitivity of <fji 15 broken by a;, b;, c; like this:
a; <2ii(maa1,---,di—1) b A b; <fii¢(z,al’m,di_l) ci A —a; <fiii($,ul,---,di—1) ¢,

or the linearity or the antisymmetry of <f}z s broken in an analogous sense.
The search problem GLS? is the union of the GLSZ search problems for all k.
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Theorem 9.6 GLS' aziomatizes the stricty}-consequences of Si.

Proof: By Corollary 9.4, PLS axiomatizes strict>’(S%) over PV;. Through
introducing new predicate symbols for 3¢-definable predicates together with
the defining axioms, that implies that PLS™ axiomatizes strict¥4(S3) over
S2. By Lemma 7.4, GLS axiomatizes the same class over S3. Because GLS
is defined by a II%-formula, Lemma 2.12 shows that GLS axiomatizes the
same class also over 7.

Compose this with the fact that F'M axiomatizes Ty over PV; by (the
proof of ) Theorem 5.10 and the obvious fact that the GLS is a generalization
of MIN which is itself a generalization of F'M. -

Note that an axiomatization of this class was previously given in [Fer95],
under the name My, although it is not presented there as a search problem.
Ferreira’s M, (adapted to a search problem) and GLS' look rather dissimilar,
although any two search problems which axiomatize the same fraction must
clearly be equivalent over PVj.

Our methods fail to give immediate uniformly defined axiomatizations.
But the results of [KP90], which we already discussed in Section 4.3.3, show
that every fraction under consideration has a uniformly definable axiomati-
zation. As a consequence, some GLS,Z for a fixed k axiomatizes ¥:(S3), too.
A similar corollary applies to the result of Ferreira.



Appendix A

Three Myths About Function
Problems

Current structural computational complexity theory puts its focus on the
study of interesting classes of decision problems, also known as languages.
Such problems are sets of strings and to solve them means to present a
machine which gives a single bit of output for any candidate member of
the set, thus computing its characteristic function. Part of the intuition
of what constitutes an “interesting” class (or, less formally, an interesting
computational model) is drawn from real world applications such as computer
programming, as long as the intuition has a concise and robust mathematical
expression.

On the other hand, genuine decision problems are somewhat rare in real
world automated computations. Computer programmers do not live within,
say, P or BPP, but, typically, within F'P or FFBPP, the corresponding
classes of function problems. Each canonical description of an algorithm
thus represents a partial function and problems are even partial multifunc-
tions — there may be multiple fully acceptable outputs for the same input.
No wonder that structural computational complexity theorists always pre-
ferred to concentrate on the mathematically more elegant decision problems.
But the resulting discrepancy between the theory and the applications re-
quires some justification.

It is the purpose of this Appendix to demonstrate that the common justifi-
cation for replacing non-total function problems with the corresponding deci-
sion problems is philosophically inadequate. The Appendix is self-contained
and independent even in the formal apparatus, because it needs to address a
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more general topic. It is to be read as an optional appetizer before the thesis
itself.

Problems, Algorithms, Reductions

Let us pick a formal basis for various computational models: Turing machines
adapted to compute function problems. The machine has an input tape,
working tapes, perhaps oracle query tapes or advice tapes, and an output
tape. The content of the output tape at the moment of entering any accepting
state is the output of the computation. In addition, a computation may
end by entering a rejecting state, in which case the computation has no
output. For accepting computations, the relation between the initial content
of the input tape z and the final content of the output tape y is denoted as
M(x) =y.

A very important detail is that rejections cannot act as inputs. Therefore
the composed machine f(g(x)), where f and g are machines of the same kind,
rejects whenever g(x) rejects, as well as when g(z) =y and f(y) rejects.

Oracles, if present, can either solve decision or function problems. For
decision problems, the answer can be indicated by oracle specific answer ma-
chine states; for function problems the oracle query tape also instantaneously
changes its content from the input to any output consistent with the solved
problem whenever the machine enters the positive oracle answer state.

For clarity, all reducibilities presented here will be based on different
kinds of reductions performed in polynomial running time by a deterministic
Turing machine, as this is the most popular combination of resource, bound
and computational model. But the reasoning seems to be mostly independent
of all three, as long as the general modus of many-one reductions and Turing
reductions can be identified.

Definition A1 A function problem is a partial multifunction R(z,y). An
algorithm solving this function problem within a computational model is any
machine M based on that model, such that M(xz) =y — R(z,y) and M(z)
rejects only if Yy ~R(x,y).

Definition A2 A function problem F(x,y) is (polynomial-time) Turing re-
ducible to a function problem G(x,y) (in symbols, F <r G) iff there is an
oracle polynomial-time function which solves F' whenever the oracle solves G.
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Further, a function problem F(x,vy) is f-bounded (polynomial-time) Tur-
ing reducible to a function problem G(xz,y) iff F' is Turing reducible to G so
that the number of oracle queries in any reduction computation is at most
f(n) where n is the size of x.

Interesting choices of f include 1, O(1), O(logn), O(log®™ n) or O(n).
The 1-bounded Turing reducibility should not be confused with many-one
reducibility:

Definition A3 A function problem F(z,y) is (polynomial-time) many-one
reducible to a function problem G(z,y) (in symbols, F' <., G) iff there are
polynomial-time functions f(z) and g(z) such that

F(z,9(G(f(2))))-

Myth One: Reducibility to Decision

Myth 1 Important function problems are often self-reducible, and are thus
equivalent to their decision versions.

This is the key myth which in our opinion somewhat hinders the structural

complexity research of function problems in contrast with the fast progress
in the area of decision problems.
Discrepancy: Self-reducibility is indeed an important phenomenon!, but
there is an essential discrepancy between the types of reducibility here:
whereas the standard reducibility in complexity research is the many-one
reducibility, self-reducibility gives only a Turing reduction.

This gap cannot be overcome even in the textbook examples of SAT,
graph 3-coloring etc. exactly because decision problems produce a smaller
amount of information than (other) function problems. This is observed in
the following fact.

!Giving e.g. P = NP <= FP = FNP. This is, however, not an argument against

an independent pursuit of the FP Z FNP question, but in favor of it. The method
also seems to fall short of answering whether e.g. RP = NP <= FRP = FNP; the
structure of multifunctions and languages may be generally quite different.
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Fact A1 Take an NP-complete decision problem D(x) and express it as
dy A(z,y) where A(zx,y) is computable in polynomial time, and where A(x,y)
implies y > 0 and the size of y is bounded by a polynomial in the size of x.
Let A'(z) be the function problem to output y such that A(zx,y) or zero when
there is no such y.

If A'(z) is polylog-bounded Turing reducible to the decision problem D(x),
then P = NP.

Proof: Assume such a reduction R does exist. Consider the following
decision algorithm F': given z, it simulates the computation of R, but instead
of asking queries to Jy A(zx,y) it tries out both possible answers in turn. As
some of the branches are based on false assumptions, the assumed polylog-
arithmic bound on the depth of this recursion must be enforced during the
simulation as well as the assumed polynomial bound on total running time
of each branch. Every branch which does not exceed these limits outputs a
candidate y; as the number of branches is polynomial and A(z,y) € P, it
is possible to verify the candidates. The algorithm F' accepts if one of the
candidate y’s satisfies A(x,y) and rejects otherwise.

The positive answer of F' is always based on verifying a specific witness
y and thus implies 3y A(z, y). On the other hand, suppose Jy A(x,y). Then
the computation of R(z) keeps within the bounds on running time and or-
acle queries and so its output was considered among the candidates found
by F' and so F' will accept. F' thus solves an N P-complete problem D in
deterministic polynomial time. -

Myth Two: Totality Makes Difference

Myth 2 Total multifunctions are different from other function problems,
having their corresponding decision problems constant and thus not being
reducible to them.

This view is so widespread that the only function problem classes that
generally made it into introductory graduate courses on computational com-
plexity until now are F'/P, FNP and TFNP, and merely TF'NP may hope
that its popularity is not purely derived from its famous corresponding class
of decision problems. It is, together with other total function problems, often
introduced and motivated by this myth.
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Discrepancy: The misunderstanding stems from a wrong choice of the
corresponding decision problem for a function problem, which works in the
case of self-reducible problems and fails in others, not necessarily total ones.
But there is also a well-known strategy which works in all cases.

Fact A2 Take F(z) a function problem, whose solutions are of size bounded
by a polynomial p(|x|). Its corresponding decision problem is the following
predicate D(z,w,l):

Jy lyl <p(z)) N F(z) =y Aw =1y

where y; means “the first | bits of y”.
Then F can be Turing-reduced to D.

Proof: Start by querying D(z,0,0). If the answer is positive, a solution
exists and it can be discovered bit by bit. In each step, it is already known
that D(z,w,!) for some w and [. Consequently

D(z,w,l+1)V D(z,2" +w,l + 1),

and by asking a single query, it is possible to guarantee D(z,w',l + 1) for
some w' in the next step. Accept in p(|x|) steps with the last value of w.

Myth Three: Decisions Are Two-Valued

Myth 3 Decision problems can be identified with two-valued function prob-
lems with regard to reductions.

Discrepancy: The difference is that the set of possible outputs for a
decision problem including their semantics is finite and fixed by the computa-
tional model, whereas with function problems this would be counterintuitive
and in general impossible.

So the question whether coSAT <,,, SAT is resolved in the positive when
asked about two (total) function problems which just happen to have a two-
valued range, whereas when asked about the decision problems, the answer
is negative.

Anyway, it is possible to identify decision problems with partial one-
valued function problems. In this way the unwanted output tape is disabled
for decision problems.
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