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Chapter �

Introduction

Complexity theory studies the inherent computational complexity �di�culty� of problems�
By problem we usually mean decision problems� the question of whether a given object
belongs to a certain set �in other words� has a certain property� or not� But how do
we measure di�culty� Quite naturally� the time needed to come up with a solution is a
reasonable and often used measure� More precisely� the time measure of a problem A is
a function t satisfying that for each input x the answer to the question �x � A �� can
be found in at most t�jxj� time units� where jxj is the length of the representation for x�
In complexity theory time is measured in terms of steps needed by a Turing machine to
solve the problem� Turing machines� rst dened by Turing �Tur��� and Post �Pos���� are
a computational model that is simple yet powerful enough to capture the very notion of
computability� The time measure allows to classify problems� Those being computable by
a deterministic Turing machine with a time function that is bounded by a polynomial form
the class P �Edm���� The class P is a theoretical concept intended to capture the spirit of
feasible computation� The word �feasible� should be viewed in a rather theoretical context�
Clearly� problems having a time function that is a polynomial of high degree� say n��� are
certainly not considered to be e�ciently solvable� However� polynomials do not grow too
fast and possess a number of nice properties� for instance they are closed under composition�
Furthermore� the class P is a very robust notion not depending on the denitional variations
of the underlying computational model� In contrast� problems having a time function that
is bounded by 	cn� where c is some constant and n the length of the input� are �until one
shows a better time bound� not considered to be feasibly computable� The class E is the
collection of all those problems�

It is known that there are problems in E that are not in P �HS���� Examples of problems
in P are addition of natural numbers and sorting natural numbers� The EULER TOUR
problem emerging from Eulers famous K�onigsberger Br�ucken�Problem �Eul���� that given
a graph asks whether it is possible to walk through the graph along its edges in such a way
that every edge is touched exactly once� is another prominent member of the class P�

A seemingly slight but crucial� as we will see in a moment� variation of this problem
leads to the so�called HAMILTON CIRCUIT problem �HC�� Given a graph one is asked
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Figure ���� The left graph contains both� an Euler tour and a Hamilton Circuit� whereas
the right graph contains neither an Euler tour nor a Hamilton circuit�

to nd a way of moving through the graph along its edges such that starting from some
vertex one returns to it while visiting every other vertex exactly once� The best known
algorithms for HC need exponential time� HC � E� and consist essentially in testing for all
permutations of the vertices of the input graph whether the vertices can be visited in the
order given by the permutation�

It is not known whether HC � P and people have tried to understand why this ques�
tion has resisted all solution e�orts� It turned out that a variant of deterministic Turing
machines� so�called nondeterministic Turing machines can solve HC in polynomial time�
the amount of nondeterminism needed is growing exponentially with the size of the input
graph� This gives rise to a new class of problems between P and E� namely� NP� the class
of problems that can be solved by some nondeterministic polynomial�time Turing machine�
It is known that HC is among the hardest problems in NP in the sense that HC � P would

immediately imply P � NP� In fact� the question P
�
� NP is the most famous open question

in complexity theory having reformulations in many of its areas� While being concerned

with resolving the P
�
� NP question researchers quickly found out that there is a much

richer structure of complexity classes between P and E� Variations to the acceptance mech�
anism of nondeterministic Turing machines and the notion of oracle Turing machines are a
few examples for other computing paradigms that allow to exactly pinpoint many naturally
arising computation problems� For instance� oracle Turing machines are Turing machines
that have access to external information sources� the oracle machines make so called oracle
queries and receive�quite in contrast to the Greek mythology�always a clear answer �yes�
or �no� in unit time�

The observation that seemingly no nondeterministic polynomial�time Turing machine
can solve the MINIMAL EQUIVALENT EXPRESSION problem �MEE� �MS�	� Sto���
GJ��� �see also �HW��a� for latest results on the complexity of MEE�� which� informally� is
the question of whether a given boolean formula has a shorter representation� together with
the fact that a nondeterministic oracle Turing machine equipped with an oracle from NP can
well solve MEE in polynomial time led to the denition of the polynomial hierarchy �MS�	�



�

Sto���� The polynomial hierarchy is inductively dened via the concept of deterministic
and nondeterministic polynomial�time oracle Turing machines� P� NP� and the complement
class coNP form its rst level� Much has been learned about the structure of the polynomial
hierarchy and a number of very elegant techniques have been developed while studying its
properties� The literature on the polynomial hierarchy� in particular� on complete sets�
the existence of tally and sparse complete sets� relativizations� characterizations� collapse
properties� renements� and much more is immense �for references see �BDG��� BDG�
�
WW��� Pap����� Over the years the conviction has grown that the polynomial hierarchy is
innite� though a rigorous proof has yet to be found� Part of its importance today stems
from the fact that it still serves as the main yardstick for classifying other complexity classes�
Relatedly� it is so widely accepted that the polynomial hierarchy is strict and innite that
an implied collapse of it often serves as a strong sign that other events are quite unlikely to
happen�

Though the polynomial hierarchy allows to classify many of the arising computation
problems� it often seemed to be to rough to exactly classify all of it� Many naturally arising
computation problems are contained in  p

� �a class from the second level of the polynomial
hierarchy�� though one easily veries that they do not require the full computational power
of  p

� � Recall that HC belongs to the class NP� For the weighted version of HC� often called
TRAVELING SALESPERSON problem �TSP�� each edge in the input graph is assigned
a positive integer weight �length� and one is asked to decide whether there is a Hamilton
circuit of length less then or equal to a given integer k �the length of a circuit is simply the
sum of the length of the edges on this circuit�� It is known that TSP can be solved with a
nondeterministic Turing machine in polynomial time� TSP � NP� Yet EXACT TSP� that
asks whether the shortest Hamilton circuit in the input graph has length exactly k is not
known to be in NP� Though EXACT TSP is contained in the second level of the polynomial
hierarchy�  p

� � not all of this levels power is needed to solve it� Essentially� every instance of
EXACT TSP can be easily reduced to two TSP problems� the rst one accounting for the
fact that there is a Hamilton circuit of length at most k in the graph and the second one
testing that no Hamilton circuit of length k�� exists� This computing paradigm is re!ected
by the class DP �PY���� DP � fL� � L� j L�� L� � NPg� Its generalization� for instance as
nested di�erences or alternating sums of NP sets� leads to the concept of the boolean
hierarchy� In fact� DP is exactly its second level� The boolean hierarchy was introduced
almost simultaneously by several groups of authors with a variety of denitions ranging from
acceptance types �Wec���� boolean hardware over NP �CH���� and symmetric di�erences of
NP sets �KSW���� but can in concept already be found in the work of Hausdor� �Hau����
Though it is known that NP is closed under union and intersection� it is not known to
be closed under complementation� The boolean hierarchy provides a rich structure inside
the closure of NP under the boolean operations union� intersection� and complementation�
Being sandwiched between the polynomial hierarchies" rst and second levels the boolean
hierarchy forms a renement of the polynomial hierarchy� As it is the case for the polynomial
hierarchy� complete sets� relativized separation� and collapse results have been studied for
the boolean hierarchy as well in detail �CGH���� CGH�����



� Introduction

��� The Boolean and Polynomial Hierarchies Connection

Whenever a hierarchy is dened� one of the rst questions going to be asked is whether the
hierarchy is innite or not� For quite a number of hierarchies in computational complexity
the answer to this question has been found� For instance� Hemaspaandra showed that the
strong exponential hierarchy is a nite hierarchy �Hem���� a number of authors proved
that the logarithmic space and linear space hierarchies are nite structures �SW��� Tod���
LJK���� and Immerman and Szelepcs#enyi independently obtained the breakthrough result
that the nondeterministic space classes are closed under complementation implying that the
nondeterministic logarithmic and linear space hierarchies collapse to its rst levels �Imm���
Sze����

However� for the polynomial and the boolean hierarchies we do not know whether they
are innite or not� For both hierarchies relativized worlds have been constructed in which
they are innite or nite �Yao��� Ko��� CGH����� respectively� Hence� non relativizable
proof techniques are required for ultimately determining the dimensions of those hierar�
chies� Though most researchers believe that both hierarchies are innite� the hope for a
proof of that conviction has somewhat diminished over the years� Unfortunately� proving
strict inclusions is in general extremely di�cult� especially for classes within the polynomial
hierarchy� In fact� though it is known that P � E �HS���� it is not even known whether

P
�
� PSPACE� not to speak of the famous P

�
� NP question�

A number of techniques have been developed to overcome this situation by at least
giving evidence that certain inclusions are strict� Linking the collapse of complexity classes
to a collapse of other complexity classes is a technique being used since the early years of
complexity theory� It unies the issues of the relative strength of di�erent computation

models� Earliest examples were found while studying the famous P
�
� NP question� for

instance� �If P � NP then NP � coNP�� Today this technique is also often used to add
more weight to the already existing evidence that two complexity classes are not equal by
showing that their equality would immediately provide a very unlikely collapse of other
complexity classes� for instance a collapse of the polynomial hierarchy� This technique has
also been used to link the collapse of various function classes to collapses of complexity
classes �Val��� Sel��b� VW��� HW��c��

Since the boolean hierarchy does form a renement between the rst and the second
levels of the polynomial hierarchy� as it is sandwiched between P and  p

� � does a collapse
of the boolean hierarchy imply a collapse of the polynomial hierarchy� In the trivial case�
the boolean hierarchy collapsing at its rst level which happens to be also the rst level
of the polynomial hierarchy� the answer is yes� A yes answer in the general case would
immediately yield that innity of the polynomial hierarchy �a belief shared by almost all
complexity theorists� implies innity of the boolean hierarchy�

A rst successful step into that direction has been made by Kadin �Kad��� in proving
that a collapse of the boolean hierarchy implies a collapse of the polynomial hierarchy to �p� �
This rst result is signicant in two ways� First� the structures of the polynomial and the
boolean hierarchies are tied together� Second� the underlying proof technique� the so�called



��	 Downward Collapse �

easy�hard technique� was introduced into complexity theory� The easy�hard technique has
much in!uenced research in computational complexity not only in the attempts of linking
boolean and polynomial hierarchy collapses even closer together but also� for instance� in
the recent interest in downward translation of equality� a line of research we will in detail
consider in Chapter ��

Modications to the easy�hard technique together with a more sophisticated use of
it allowed Wagner �Wag��� Wag���� Chang and Kadin �CK���� and Beigel� Chang� and
Ogihara �BCO��� to subsequently improve Kadin"s original result� The best known result
today has been obtained by Beigel� Chang� and Ogihara �BCO��� and shows that a collapse
of the boolean hierarchy at level m implies a collapse of the polynomial hierarchy to a level
within the mth level of the boolean hierarchy over �p� �

In Chapter � we will take a close look at the series of papers which led to this result�
After stating the key results of those ve papers� �Kad��� Wag��� Wag��� CK��� BCO���� we
analyze the development of the easy�hard technique and its use in �conditionally� collapsing
the polynomial hierarchy in Section ��	� The rened structure of complexity classes inside
the mth level of the boolean hierarchy over �p� � which was rst dened and studied by
Selivanov �Sel��a� Sel���� allows to pinpoint the induced collapse of the polynomial hierarchy
at an even deeper level than being observed in �BCO���� In Section ��� we prove our new
result which based on a careful analysis of the proof given in �BCO��� and double application
of one of its key ideas yields that a collapse of the boolean hierarchy at level m� m � 	�
implies a collapse of the polynomial hierarchy to BHm	DIFFm����

p
���

This result adds much insight to the connection between the boolean hierarchy and
the boolean hierarchy over �p� � Chang and Kadin �CK��� in proving BHm � coBHm ��
DIFFm��

p
�� � coDIFFm��

p
�� � PH argued that some underlying connection between the

boolean hierarchy and the boolean hierarchy over �p� is responsible for this result� In
particular� they asked whether there is some straightforward argument showing that BHm �
coBHm �� DIFFm��

p
�� � coDIFFm��

p
�� which could be used to prove the collapse of

the polynomial hierarchy� Though the result of Beigel� Chang� and Ogihara �BCO��� made
this question disappear from the list of open problems� our result sheds new light on this
connection� It is quite easy to verify that BHm � coBHm implies BHm	DIFFj��

p
�� �

co�BHm	DIFFj��
p
��� for all j � �� especially for j � m � �� Unfortunately this result

says nothing about the collapse of the polynomial hierarchy� In fact� the main di�culty to
overcome in our proof is to show that �p� � BHm	DIFFm����

p
���

��� Downward Collapse

The collapse of hierarchies has been a central topic in complexity theory from the beginning�
Relatedly� does the relative strength of more powerful computing paradigms depend on the
relative strength of less powerful ones� or vice versa� Results with this general !avor are
refered to as upward and downward collapse� respectively� The very nature of upward and
downward collapse can be observed� for example� at the architectural feature of the Roman
semicircular arch �see Figure ��	�� On one hand� the Roman arch collapses when removing



� Introduction

keystone

Figure ��	� The Roman Semicircular Arch Displays Upward and Downward Collapse

one of the building blocks at its foundation� A collapse at lower levels causes dramatic
collapses at higher levels� the collapse translates upwards� On the other hand� the arch
also collapses when removing its keystone and so displays downward collapse� The keystone
though located at the very top of the arch provides stability and strength to the entire
construction�

Formally� for complexity classes C�� C�� D�� and D� such that C� �C� � D� �D� �ideally
the inclusion is strict or at least strongly believed to be strict�� upward collapse would
be �If C� � C� then D� � D��� Similarly� a result �If D� � D� then C� � C�� is called
downward collapse� Roughly speaking� the equality D� � D� has the same e�ect on the
lower complexity classes C� and C� as a removal of the keystone of the arch had on its lower
building blocks� they collapse�

Upward collapse is frequently observed in computational complexity theory� Most hier�
archies due to their inductive denition display upward collapse properties� especially the
polynomial and the boolean hierarchies� For instance� �pk � $

p
k �� PH � � � � � �pk�� �

�pk �Sto��� and BHm � coBHm �� BH � � � � � BHm�� � BHm �CGH
����� The results

regarding the collapse of the polynomial hierarchy induced by a collapse of the boolean
hierarchy we review and prove in Chapter � are all upward collapse results�

Downward collapse is a rather rare event in structural complexity theory� Perhaps
the most well known result having the !avor of downward collapse though containing an
unspecied parameter is �If PH � PSPACE then �	k���pk � $

p
k � PH�� �Wra���� Examples

of downward collapse though not all satisfy our formal description above are �If NP �
BPP then NP � R� �Ko�	�� �If EH � E then P � BPP� �BFNA���� and �If PNP��� �
EXP then NP � EXP� �HKR���� There are also examples involving degenerate certicate
schemes �HRW��� and circuit�related classes �All��� HY���� Cases in which the collapse of
larger classes implies that smaller classes collapse on sets of small density can for instance
be found in �Boo��� HIS��� RRW��� �in contrast see �HJ�����

The rst downward collapse result linking classes of the bounded�query hierarchies and
classes of the polynomial hierarchy has been obtained by Hemaspaandra� Hemaspaandra�
and Hempel �HHH��a�� They showed that for all k � 	� P	

p
k
��� � P	

p
k
��� �� �pk � $

p
k� Note
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that this result contains no unspecied parameter� it is not restricted to sets of small density�
and the inclusion �pk �$

p
k � P

	p
k��� � P	

p
k��� does hold and is strongly believed to be strict�

The result follows from an innovative application of the easy�hard technique� a technique
developed by Kadin �Kad��� in order to link boolean and polynomial hierarchy collapses�
This result has been generalized into two directions� Buhrman and Fortnow �BF��� showed
that the analogue for k � 	 does also hold and furthermore constructed a relativized world
in which the k � � analogue fails� Hemaspaandra� Hemaspaandra� and Hempel �HHH���
generalized from one versus two queries to m versus m % � queries obtaining for k � 	

and m � �� P
	p
k

m
tt � P
	p
k

m��
tt �� DIFFm��
p
k� � coDIFFm��

p
k�� This latter result

displays crisply the strong connection between the levels of boolean and the bounded�truth�
table hierarchy over �pk� k � 	� In a very recent paper by Hemaspaandra� Hemaspaandra�
and Hempel �HHH��b� the key ideas from �BF��� and �HHH��� have been combined with
new methods to prove a very general downward collapse result� for m � � and k � ��

P
	p
k

m
tt � P
	p
k

m��
tt �� DIFFm��
p
k� � coDIFFm��

p
k��

We will in Chapter � review the history and the proof techniques of this recent out�
burst of downward collapse results and show a new downward collapse result that strength�
ens a theorem from �HHH��b�� Since the easy�hard technique plays a major role also
in this chapter"s proofs� we will very much alike the approach in Chapter � rst study
in detail its development in the downward collapse setting� This is done in Section ��	�
In Section ��� we prove our new result� We show that for all s�m � � and all 
 �
i � k � �� DIFFs��

p
i �	DIFFm��

p
k� � co�DIFFs��

p
i �	DIFFm��

p
k�� �� DIFFm��

p
k� �

coDIFFm��
p
k�� The proof of this result in some sense merges proof ideas from Chapter � and

Section ��	� In particular� the proof contains two applications of the easy�hard technique�
First� we make use of the easy�hard technique to provide the general framework for proving
the downward collapse as it was done in �HHH��� BF��� HHH��b�� And second� inside
one of the resulting cases the easy�hard technique is being used in the spirit of Chapter �
though in a more technical form� Chapter � closes with some remarks and applications of
the obtained results�

��� Query Order

The importance of order in everyday�life is beyond any doubt� So is the order in which we
access information sources� databases for instance�
In complexity theory� information sources are modeled by oracles� A natural arising

question thus is� does the order in which a deterministic oracle Turing machine accesses
oracles from di�erent complexity classes make a di�erence in the resulting computational
power� In Chapter � we study query order in computational complexity theory� In Sec�
tion ��	 we pursue this question in the context of the boolean hierarchy and provide the rst
query order result in complexity theory� In particular� we study the computational power of
PBHj �BHk � the class of languages that are accepted by deterministic polynomial�time Turing
machines that on every input make at most one query to a BHj oracle followed by at most
one query to a BHk oracle� Does P

BHj �BHk equal PBHk�BHj � or are they incomparable� or
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does one strictly contain the other� We show that� unless the polynomial hierarchy col�
lapses� the order of oracle access is crucial for the relative power of the complexity class�
In particular� assuming that the polynomial hierarchy does not collapse� we have that if
� 
 j 
 k then PBHj �BHk and PBHk�BHj di�er unless �j � k� � �j is even�k � j % ��� This
result is based on a characterization of query order classes in terms of reducibility closures
of NP� We show that for j� k � ��

PBHj �BHk �

�
Rp
j��k��
tt�NP� if j is even and k is odd�

Rp
j��k
tt�NP� otherwise�

Two interesting features of this characterization should be emphasized� First� informally
put� the second query counts more towards the power of the class than the rst query does�
This follows from the fact that in the context of the boolean hierarchy the two di�erent
second queries which� depending on the answer to the rst query� can be potentially asked
crucially a�ect the resulting computational power� In sharp contrast� the fact that two
di�erent second queries can be potentially asked is irrelevant for query order classes in

the polynomial hierarchy� where it has been shown that P	
p
j �	

p
k � P�	

p
j �	

p
k
 for all j �

k �HHH��b�� Second� there is a loss of one level when j is even and k is odd� In some sense�
j % 	k NP questions underpin this class� However� by arguing that a certain underlying
graph must contain an odd cycle� we show that j%	k�� queries su�ce� The main theorem
of Section ��	 is generalized to apply also to classes with tree�like query structure�

In Section ��� we study query order in the polynomial hierarchy� Query order in the
polynomial hierarchy is a topic being studied after the results of Section ��	 rst appeared
in �HHW���� The rst result on query order in the polynomial hierarchy has been obtained
by Hemaspaandra� Hemaspaandra� and Hempel �HHH��b�� They show that in sharp con�
trast to the boolean hierarchy query order never matters in the polynomial hierarchy� This
result has been generalized by Beigel and Chang �BC� and Wagner �Wag��� to cases of more
than two query rounds and more than one query in each round� We give a short overview
over these previous results� However� no paper studying general query order classes in the
polynomial hierarchy considers query order classes where two �or more� consecutive rounds
of parallel queries are made such that though all queries are made to the same oracle the
number of parallel queries made in each round di�ers� In order to close that gap we study

query order classes of the form P
	p
i �	

p
i

j�k
tt � the class of languages that are accepted by some de�
terministic polynomial�time Turing machine making one round of at most j parallel queries
to a �pi oracle followed by one round of at most k parallel queries to a �

p
i oracle� We

show that for all i� j� k � �� P
	p
i �	

p
i

j�k
tt � Rp
j�jk�k
tt��

p
i �� This result is interesting in two

ways� First� query order in the polynomial hierarchy does not matter also in this case� This
can be easily derived from the above result due to its symmetry� Second� though we have
PNPm
tt � P

BHm��� �see Lemma ��	��� an analogues statement for query order classes does not
hold in general unless the polynomial hierarchy collapses� In light of Theorem ��	�� and
the above characterization� we have PBHj �BHk � PNP�NPj�k
tt unless j � � or the polynomial
hierarchy collapses�
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In Section ��� we mention a number of results that are closely related to query order�
A general result regarding query order with respect to base classes other than P has been
obtained by Hemaspaandra� Hemaspaandra� Hempel �HHH��b�� Since the notion of query
order has been rst investigated in �HHW��� a number of results either growing out of the
study of query order or involving the notion of query order have been obtained in various
areas of computational complexity� Those results include the rst downward collapse result
completely within the polynomial hierarchy obtained by Hemaspaandra� Hemaspaandra�
and Hempel �HHH��� �see also Chapter ��� the study of self�specifying machines by Hemas�
paandra� Hempel and Wechsung �HHW��� HHW���� and results on robust completeness by
Hemaspaandra� Hemaspaandra� and Hempel �HHH��c��





Chapter �

Preliminaries

In this chapter we dene basic concepts of computational complexity that are used through�
out this thesis� With slight variations� everything in this chapter might also be found in any
standard book on computational complexity theory� for instance �WW��� BDG��� Pap����
We assume that the reader is familiar with the meaning and notation of the basic set
theoretic and logical concepts�

��� Strings� Languages� and Operators

Let N denote the set of natural numbers� Let Pol denote the set of all polynomials in one
variable over N�
Complexity theory studies the complexity of sets of strings over a nite alphabet� Let

� � f
� �g be our alphabet� Let & be a symbol not in �� & � �� and let � denote the
empty string� The concatenation of strings u and v is denoted by uv� For letters a � ��
let a� � � and an�� � aan for all n � N� Dene �� � f�g and �i�� � fuv j u � � � v � �ig
for all i � N� So �i is the set of all strings of length i over �� By �� we denote the set of
all nite strings over �� more formally� �� �

S
i�N
�i� The length of a string x� the unique i

such that x � �i� is denoted by jxj�
Let 
lex denote the standard �quasi�� lexicographical ordering on �

�� in particular for
strings u� v � ��� u 
lex v if and only if juj � jvj� or u � v� or juj � jvj and there exist some
w� u�� v� � �� such that u � w
u� and v � w�v��

We consider subsets �often called languages� of ��� For a set A � ��� A�n denotes the
set of all strings from A of length at most n� A�n � A� �

S
i�n
�i�� Similarly A�n � A��n�

For a nite set A� jjAjj denotes the cardinality of the set A� A language A is called sparse�
if and only if there exists a polynomial p such that for all n � N� jjA�njj 
 p�n�� The
characteristic function of a set A� �A� is dened as

�A�x� �

�
� if x � A�

 if x � A�
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The complement of a set A in ��� denoted by A� is the set of all strings from �� not being
in A� A � ���A� For languages A and B let A B � fx j x � �A�B�� �B �A�g denote
the symmetric di�erence of A and B� Dene A ' B � fhx� yi j x � A �� y � Bg�

It is often needed to map nite sequences of strings to strings� Let h�i be a bijective
function mapping from ����� to �� being computable and invertible in polynomial time�
Such pairing functions exist� A pairing function for nite sequences of strings can be
obtained from h�i in an obvious way and is also denoted by h�i� In places we will for
simplicity use h�i also to denote a pairing function that maps sequences of strings from
���f&g to ��� where & � �� Without loss of generality we require these pairing functions
for nite sequences of strings to have two additional properties� First� we require that the
length of the encoded sequence can be easily obtained� And second� we assume that for
every xed constant k� there exists a polynomial sk such that for all � 
 k and all sequences
of strings x�� x�� � � � � x��

jhx�� x�� � � � � x�ij 
 sk�maxfjx�j� jx�j� � � � � jx�jg��

In structural complexity theory sets of languages �also called complexity classes� are
studied� A variety of quite useful operators that map complexity classes to complexity
classes has been dened� Some of them will be of interest in this thesis and are dened
below� For a set of languages C� coC � fC j C � Cg� For a complexity class C� 	 � C is
dened to be the set of all languages L such that there exist a set C � C and a polynomial
p satisfying for all x � ���

x � L �� �	y � jyj 
 p�jxj���hx� yi � C��

Quite similarly� � � C is dened to be the set of all languages L such that there exist a set
C � C and a polynomial p satisfying for all x � ���

x � L �� ��y � jyj 
 p�jxj���hx� yi � C��

For complexity classes C and D let

C D � fC �D j C � C �D � Dg�

and

C	D � fC D j C � C �D � Dg�

Throughout this thesis we will try to provide gures that illustrate the inclusion struc�
ture of the studied complexity classes� Since � is a partial order on the set of all subsets
of �� we will use Hasse diagrams� In particular� in every gure a class C is contained in a
class D if there is a strictly upward directed path of bold or dotted lines leading from C to
D�
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��� Turing Machines and Reductions

Our computational model is that of a k�tape multi�head Turing machine� for a more formal
denition see �HU��� WW���� Every Turing machine can potentially be equipped with
oracles� Polynomial�time Turing machines are Turing machines that for a xed polynomial
p make on every input x at most p�jxj� computation steps before reaching a nal state�
We consider nondeterministic and deterministic polynomial�time �oracle� Turing machines�
DPTM and NPTM� respectively�
Without loss of generality let the Turing machines be clocked with clocks that are

independent of the oracle� MA denotes the DPTM �or NPTM� M with oracle A� By
MA�x� we denote the computation of the DPTM �or NPTM� M with oracle A on input
x� In places where we write M�x� though M was previously said to be an oracle machine
we refer to that part of the computation on input x that is independent of the oracle� A
DPTM MA accepts a language L if and only if on every input x � ��� MA�x� halts in
an accepting conguration �equivalently� MA accepts the input x� if and only if x � L�
An NPTM NA accepts a language L if and only if on every input x � ��� there exists an
accepting computation branch of NA�x� if and only if x � L� L�M� denotes the language
accepted by some DPTM or NPTM M �
Reductions are a standard method to compare languages with respect to their complex�

ity� Informally� a problem A reduces to a problem B if solutions for A can e�ciently be
computed with the help of one or several solutions for B� Many�one reductions �Kar�	� �also
known as Karp reductions�� truth�table reductions �LLS���� and Turing�reductions �Coo���
�also called Cook reductions� are the types of reductions we are going to be concerned with�

De
nition ����� Let A and B be two languages�

�� A is said to be many�one reducible to B �A
p
mB� if and only if there exists a

polynomial�time computable function f such that for all x � ���

x � A �� f�x� � B�

	� A is said to be truth�table reducible to B �A
p
tt B� if and only if there exists a

polynomial�time computable function f such that for all x � ��� f�x� computes a
number of strings y�� y�� � � � � ym and an m�ary boolean function 	 such that

x � A �� 	��B�y��� �B�y��� � � � � �B�ym�� � ��

�� A is said to be Turing�reducible to B �A
p
TB� if and only if there exists a DPTM M

such that for all x � ���

x � A �� MB�x� accepts�
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Bounding the number of strings computed by the function f in part 	 or the number of
oracle queries allowed to be made by the DPTM M in part � by a xed constant k leads to
the notions of k�truth�table �
p

k
tt � and k�Turing �

p
k
T � reducibility �LLS���� respectively�

in the obvious way�

For any reduction 
p
� dened above and any complexity class C� a set A is called 


p
��

complete for C if and only if A � C and for all C � C� C 
p
� A� R

p
��C� � fL j �	C � C��L 
p

�

C�g denotes the reducibility closure �hull� of C with respect to 
p
�� A complexity class C is

said to be closed under 
p
� if and only if R

p
��C� � C�

��� Central Complexity Classes and Hierarchies

Very informally� a complexity class is a set of languages that have the same complexity
with respect to some resource of a Turing machine� The complexity class P is the set of all
languages L � �� that are accepted by some DPTM� FP denotes the set of all functions
that are computable by some DPTM� Similarly� NP is the set of all languages L � �� that
are accepted by some NPTM� NP is closed under many�one reductions� SATISFIABILITY
�SAT�� the set of all satisable boolean formulas� is a many�one complete language for NP�
Observe that for every boolean formula F it holds that F � SAT �� F� � SAT � F� �
SAT� where F� and F� are obtained from F by assigning 
 and �� respectively� to one xed
variable� This property is called the self�reduction of SAT�

For a complexity class C� PC �FPC� and NPC denote the set of languages �functions�
that are accepted �computed� by some DPTM or NPTM� respectively� with some oracle
from C�

����� The Polynomial Hierarchy

The polynomial hierarchy was introduced by Meyer and Stockmeyer �MS�	� Sto��� as a
tool for classifying computational problems� Its importance in complexity theory has grown
since� The polynomial hierarchy� PH� is built inductively on P�

De
nition ����� �MS�	� Sto���

��  p
� � �

p
� � $

p
� � P�

	� For k � ��  p
k � P

	p
k�� � �pk � NP

	p
k�� � and $p

k � co�
p
k�

�� The polynomial hierarchy PH is dened by

PH �
�
k�N

�pk�

while its kth level consists of the classes  p
k� �

p
k� and $

p
k�
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Figure 	��� The Polynomial Hierarchy and its Levels
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So for instance�  p
� � P� �

p
� � NP�  

p
� � P

NP� and $p
� � coNP

NP� As it is standard�
the term polynomial hierarchy will be used simultaneously for the complexity class PH and
the hierarchy formed by the classes �pk� $

p
k� and  

p
k� k � ��

The �pk and $
p
k classes of the polynomial hierarchy can be characterized in terms of k

alternating operators 	 and � �MS����

�pk � 	 � � � 	 � � � Q� �z �
k alternating operators

�P�

where Q � 	 if k is odd and Q � � if k is even� Similarly�

$p
k � � � 	 � � � � � Q� �z �

k alternating operators

�P�

where Q � � if k is odd and Q � 	 if k is even�

The classes of the polynomial hierarchy are all closed under many�one reductions and
contain many�one complete sets� If L	p

k
and L	p

k��
� k � �� are complete languages for �pk

and �pk��� respectively� one can without loss of generality assume that

L	p
k
� fx j �	y � jyj 
 p�jxj���hx� yi � L	p

k��
g

for some polynomial p� One can even assume that p�n� � n for all n � N�
Though the question of whether the polynomial hierarchy collapses or not is still open

many conditions are known under which the polynomial hierarchy does collapse� In partic�
ular� the polynomial hierarchy is known to possess the upward collapse property �Sto����
For every k � ��

�� �pk � $
p
k �� PH � �pk�

	� �pk � �
p
k�� �� PH � �pk�

��  p
k � �

p
k �� PH � �pk�

It follows immediately from the denition of many�one reductions that L � �pk for some $
p
k

complete language L implies �pk � $
p
k and thus PH � �

p
k� This fact will be exploited in

Chapters � and ��

The extent of the collapse of the polynomial hierarchy has been studied intensely for
the case that the boolean hierarchy collapses �see Chapter ���

Much more can be said about the polynomial hierarchy� The rather sparse selection of
results presented above has been made with respect to the topics covered in this thesis� For
more results and references we refer the reader to any text book on complexity theory� for
instance� �BDG��� BDG�
� WW��� Pap����
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����� The Boolean Hierarchy

The structure of complexity classes inside  p
� has received much attention� Three hierarchies

inside  p
� are of particular interest for our work� the boolean �or di�erence� hierarchy� the

bounded�query hierarchy� and the bounded�truth�table hierarchy�

The notion of the boolean hierarchy over some class C being closed under union and in�
tersection in concept can be found in the work of Hausdor� �Hau���� It has been introduced
into complexity theory via the boolean hierarchy over NP independently by a number of
authors with a variety of denitions �Wec��� CH��� KSW��� CGH���� CGH����� We use
the denition based on nested di�erences of sets� Though for an arbitrary complexity class
C the notions of the di�erence hierarchy and the boolean hierarchy over C are not equivalent
�for instance� see �HR����� for C � �pk� k � �� they are �KSW��� CGH

�����

De
nition ����� For all k � ��

�� DIFF���
p
k� � �

p
k�

	� For m � �� DIFFm����
p
k� � �

p
k DIFFm��

p
k��

�� The boolean or di�erence hierarchy over �pk is dened as

BH��pk� �
�
m��

DIFFm��
p
k��

DIFFm��
p
k� and coDIFFm��

p
k� form its mth level�

We will refer to the boolean hierarchy over NP as the boolean hierarchy and use the
classical notation for it� that is BH�NP� � BH and DIFFm�NP� � BHm� So for instance�
BH� is exactly the class DP �PY����

The boolean hierarchy �over NP� is a well studied object� a few papers shall be men�
tioned� �Wec��� CH��� KSW��� CGH���� CGH���� Wag�
� Bei���� Many results of the
boolean hierarchy immediately carry over to the boolean hierarchy over �pk� k � �� It is
known that the levels of the boolean hierarchy over some �pk are closed under many�one
reductions and contain many�one complete sets� Furthermore� for a set L� L � DIFFm��

p
k�

if and only if there exist sets L�� L�� � � � � Lm � �pk such that L � L�� �L� � �� � � � �Lm�� �
Lm� � � � ��� One can without loss of generality even assume L� � L� � � � � � Lm �CGH

�����

The inclusion structure of the boolean hierarchy and the relationships between the
boolean hierarchy and the bounded�truth�table hierarchy are illustrated in Figure 	�	�

A number of techniques have been developed while studying boolean hierarchies� Two
of them will be heavily exploited in this thesis� The mind change technique� developed
by Wagner �Wag��� and later applied to complexity theory �Wec��� Wag�
� Bei���� is a
tool particularly well suited to study inclusion relations with respect to boolean hierar�
chies� The mind change technique �for an example see Chapter �� will have applications in
Chapter � when linking boolean and polynomial hierarchy collapses as well as in Chapter �
while characterizing query order classes� The easy�hard technique has been developed by
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Figure 	�	� The Boolean� Bounded�Query� and Bounded�Truth�Table Hierarchies

Kadin �Kad��� to prove a collapse of the polynomial hierarchy from the assumption that the
boolean hierarchy collapses� The easy�hard technique has turned into a key tool for prov�
ing collapses of complexity classes induced by a collapse of boolean or generalized boolean
hierarchies �Wag��� Wag��� CK��� BCO��� HHH��� BF��� HHH��b�� This interesting de�
velopment will in detail be discussed in Chapters � and ��
We mention that it is well known that the boolean hierarchy over �pk� k � �� possesses

the upward collapse property� In particular� for all m� k � ��

�� DIFFm��
p
k� � coDIFFm��

p
k� �� BH��pk� � DIFFm��

p
k��

	� DIFFm��
p
k� � DIFFm����

p
k� �� BH��pk� � DIFFm��

p
k��

Boolean hierarchies over other classes than �pk have also been investigated �GNW�
�
BJY�
� BCO��� HR��� HW��b��
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����� The Bounded�Truth�Table and the Bounded�Query Hierarchies

Starting from the denition of  p
k�� � P

	p
k itself researchers have studied limitations placed

on the way an oracle can be accessed� Limitations being used are bounding the total number
of queries or requiring all queries being made at once without knowing the answer to any
query� First results in that direction have been obtained in �Bei��� Wag�
� and much more
has been learned since�

De
nition ����� �� PC�j� denotes the set of all languages accepted by some DPTM
making on every input at most j queries to an oracle from C�

	� The bounded�query hierarchy over C� QH�C� �
S
j��
PC�j��

�� PCj
tt denotes the set of all languages accepted by some DPTM making on every input
at most j parallel queries �all queries have to be generated before asking one of them
to the oracle� to an oracle from C�

�� The bounded�truth�table hierarchy over C� QHk�C� �
S
j��
PCj
tt�

Since the the bounded�query hierarchy and the bounded�truth�table hierarchy over NP
where the rst those hierarchies studied we will henceforth refer to them simply as the
bounded�query hierarchy and the bounded�truth�table hierarchy�

For every k � �� the levels of the bounded�query hierarchy over �pk and the levels of the
bounded�truth�table hierarchy over �pk are exactly the bounded�Turing and bounded�truth�
table reducibility closures of �pk� respectively� More precisely� for all m� k � ��

�� P	
p
k�m� � Rp

m
T��
p
k��

	� P
	p
k

m
tt � R
p
m
tt��

p
k��

The levels of the boolean hierarchy� the bounded�query hierarchy� and the bounded�
truth�table hierarchy over �pk� k � �� intertwine� The following relations are known �KSW���
Wag�
� Bei��� �see also Figure 	�	�� For all m� k � ��

�� DIFFm��
p
k� � coDIFFm��

p
k� � P

	p
k

m
tt � DIFFm����
p
k� � coDIFFm����

p
k��

	� P	
p
k
�m� � P

	p
k

�m��
tt�

�� BH��pk� � QH��
p
k� � QHk��

p
k��

The above properties ensure that the collapse of one of the three hierarchies implies also
a collapse of the other two�
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Figure 	��� The Boolean Hierarchy over �pk� k � �� and its Rened Levels
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����
 A Re�nement of the Boolean Hierarchy over �p

k
� k � �

The operator 	 allows to rene the levels of the boolean hierarchy over �pk� k � � �see
Figure 	����
In particular� we have for every m � � and every pair of complexity classes C and D

such that P � C � D � �pk�

DIFFm��
p
k� � P

	p
k

m
tt � C	DIFFm��
p
k� � D	DIFFm��

p
k� � DIFFm����

p
k��

This renement� in a more general form� has rst been studied by Selivanov �Sel��a� Sel����
Selivanov extended the concept of the boolean hierarchy away from being based on one
single complexity class to being based on a family of complexity classes� It was observed by
Selivanov �Sel��a� and Wagner �Wag��� that the renement of the boolean hierarchy over
�pk� in particular the inclusion structure of the classes shown in Figure 	��� is strict unless
the polynomial hierarchy collapses�

��� Query Order

In Chapter � we study query order in computational complexity� Since query order has never
been studied before we have to dene the basic concepts and x appropriate notations�

De
nition ����� Let C and D be complexity classes�

�� PC�D denotes the set of languages that are accepted by some DPTM making on every
input at most one query to some oracle from C followed by at most one query to some
oracle from D�

	� P�C�D denotes the set of languages that are accepted by some DPTM making on every
input at most two parallel queries� at most one query to some oracle from C and at
most one query to some oracle from D�

The above dened classes are the basic and most natural query order classes� at most
one query to each of the two di�erent oracles� We denote the machines that accept the
languages of the above dened query order classes in total analogy to the denition of the
classes itself� for instance� MA�B denotes a DPTM that on every input makes at most one
query to oracle A followed by at most one query to oracle B�
In Section ��	 we study query order classes of the form PBHj �BHk � Some results regarding

query order classes P	
p
i �	

p
� are stated in Section ����

Two already existing notions are somewhat related to these basic query order classes�
First� note that C	D � P�C�D� In particular� �pj	�

p
k� j � k� is a class almost as powerful as

P�	
p
j �	

p
k being able to handle �� of the �� possible two�ary boolean functions �truth�tables��

But an equality �pj	�
p
k � P

�	p
j �	

p
k
 is very unlikely since it would imply a collapse of the

polynomial hierarchy �Sel��a� �see also �Wag����� The connection between the �	 classes�
which in a more general form appeared already in the work of Selivanov �Sel��a� Sel��� and
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the query order classes is in detail studied in �Wag���� The second notion related to query
order is based on a generalization of the �advice classes� notion of Karp and Lipton �KL�
��
For any function class F and any complexity class D dene D

F � fL j �	D � D��	f �
F���x � ����x � L �� hx� f�x�i � D�g �KT���� If F is the set of characteristic functions
from all languages of a complexity class C� then D

F � PC�D� where PC�D� denotes the
set of all languages accepted by some DPTM making on every input one query to an oracle
from C followed by one query to an oracle from D and having the additional property that
it accepts if and only if the D oracle query receives the answer �yes�� Classes of the form
PBHj �BHk� have been studied in �ABT���� There is a nontrivial relationship between the
classes PBHj �BHk� and our query order classes PBHj �BHk �see Section ��	��
The following more general query order classes have also been studied �HHW��� BC�

Wag����

De
nition ����� Let C� D� and E be complexity classes�

�� PC�D�E denotes the class of languages accepted by deterministic polynomial�time ma�
chines making one query to a C oracle followed� in case of a no answer to this rst
query� by one query to an oracle from D and� in case of a yes answer to the rst query�
by one query to an oracle from E �

	� By PC�D�E we denote the set of all languages accepted by some DPTM making on
every input at most one query to a C oracle followed by at most one query to an
oracle from D followed by at most one query to an oracle from E �

�� PC�Dj�k
tt denotes the set of languages that are accepted by some DPTM making on every
input one round of at most j parallel queries to some oracle from C followed by one
round of at most k parallel queries to some oracle from D�

�� P
�C�D
j�k
tt denotes the set of languages that are accepted by some DPTM making on every
input at most j % k parallel queries� at most j of those j % k queries to some oracle
from C and at most k of those j % k queries to some oracle from D�

Classes of the form PBHj �BHk�BHl are studied in Section ��	� Results on classes of the
form P

	p
i �	

p
�

j�k
tt can be found in Section ����

�� Miscellaneous

For every k � �� the k�dimensional hypercube is dened to be the graph with vertex
set f�a�� a�� � � � � ak� j ��i � � 
 i 
 k��ai � f
� �g�g such that two vertices are adjacent
�connected by an edge� if and only if they di�er in exactly one position� As is standard in
graph theory �BM���� a path in the hypercube is a sequence of distinct vertices such that
every pair of consecutive vertices is joined by an edge� For the k�dimensional hypercube�
the ith unit vector is the k tuple �
� � � � � 
� �z �

k�i

� �� 
� � � � � 
� �z �
i��

�� Vectors� especially unit vectors� are

added by position wise addition�



Chapter �

The Boolean and Polynomial

Hierarchies Connection

��� Introduction

Does the polynomial hierarchy collapse if the boolean hierarchy collapses� This question
arises naturally when studying the boolean hierarchy� Recall that the boolean hierarchy is a
renement of the polynomial hierarchy between the classes P and  p

� � An a�rmative answer
to the above question would provide yet another strong hint �aside from relativized sepa�
ration� that the boolean hierarchy is innite since it is widely believed that the polynomial
hierarchy does not collapse� Furthermore� an exact analysis to what level the polynomial
hierarchy collapses if the boolean hierarchy collapses at its mth level will certainly shed
light on the relationship between those two hierarchies�

The rst result linking a collapse of the boolean hierarchy to a collapse of the polynomial
hierarchy has been obtained by Kadin �Kad��� about �
 years ago� Kadin showed that a
collapse of the boolean hierarchy at levelm implies a collapse of the polynomial hierarchy to
�p� � People have tried since to improve the induced collapse of the polynomial hierarchy� In
fact� up to now Kadin"s result has been improved four times� by Wagner �Wag��� Wag����
Chang and Kadin �CK���� and Beigel� Chang� and Ogihara �BCO���� The best known
result today allows to conclude a collapse of the polynomial hierarchy to a level just inside
DIFFm��

p
�� �BCO����

In this section we will pursue the question of to what level the polynomial hierarchy
collapses if the boolean hierarchy collapses at level m� The goal of this section being closely
re!ected by its structure is twofold� On one hand we will review the work� results and proof
techniques of the above mentioned ve papers �Kad��� Wag��� Wag��� CK��� BCO��� in
the overview�like Section ��	� We provide a compact historic outline of this interesting line
of research together with a detailed analysis of the evolution of the easy�hard technique
which� introduced by Kadin �Kad���� has led to increasingly stronger results in the before
mentioned papers� The second goal of this chapter is to prove a deeper collapse of the
polynomial hierarchy which is done in Section ���� The proof of the main theorem of
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this chapter� Theorem ������ is based on a careful analysis of a proof given in �BCO���
together with a double application of one of its key ideas� We show that for all m � 	�
if BHm � coBHm then the polynomial hierarchy collapses to BHm	DIFFm����

p
��� If

DIFFm��
p
k� � coDIFFm��

p
k�� k � �� analogous claims do also hold� Theorem ����� sheds

new light on a question asked by Chang and Kadin �CK���� Together with the downward
collapse results from Chapter �� this allows to conclude a deeper collapse of the polynomial
hierarchy from the assumption that the bounded�truth�table hierarchy over �pk� k � ��
collapses�
All theorems of this section are examples of upward collapse results� a collapse of the

boolean hierarchy �sandwiched between P and  p
�� implies a collapse of the polynomial

hierarchy to a level above �p� � Recently� the easy�hard technique �modied as needed� has
also been crucial in proving downward collapse results �HHH��� BF��� HHH��b�� For an
overview and detailed analysis of this line of research see Chapter ��

��� A Review

Kadin �Kad��� showed that a collapse of the boolean hierarchy implies a collapse of the
polynomial hierarchy� He invented the easy�hard technique� a key ingredient in his proof
and all those that are built upon it and establish stronger results� Since this chapter studies
the collapse of the polynomial hierarchy induced by a collapse of the boolean hierarchy the
rst section consists of an overview�like analysis of the relevant previous work� In particular�
we study in detail the results and proof techniques of the following ve papers�

�� J� Kadin� The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Col�
lapses� SIAM Journal on Computing� �������	����	�	� ����� Erratum appears in the
same journal� 	
�	���
��

	� K� Wagner� Number�of�Query Hierarchies� Technical Report ���� Institut f�ur Math�
ematik� Universit�at Augsburg� Augsburg� Germany� October �����

�� K� Wagner� Number�of�Query Hierarchies� Technical Report �� Institut f�ur Infor�
matik� Universit�at W�urzburg� W�urzburg� Germany� February �����

�� R� Chang and J� Kadin� The Boolean Hierarchy and the Polynomial Hierarchy� A
Closer Connection� SIAM Journal on Computing� 	��	����
����� �����

�� R� Beigel� R� Chang� and M� Ogiwara� A Relationship Between Di�erence Hierarchies
and Relativized Polynomial Hierarchies� Mathematical Systems Theory� 	�����	���
��
� �����

We will concentrate on the improvements and the technical contributions each paper
made with respect to previous work in this line of research� After a short overview over
the main results obtained and an informal discussion of the technical advances made we
rigorously prove a special case of each of the main theorems in its original version�
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����� Previous Results

In the following we list the main results obtained together with pointers to the earliest and
most recent versions of the ve above mentioned papers�
Recall that due to BH� � NP and the upward collapse property of the polynomial

hierarchy we have that BH� � coBH� �� PH � NP�

Kadin ���� Kad��� Kad��� Kadin started a line of research that studies the ques�
tion of to what level the polynomial hierarchy collapses if the boolean hierarchy collapses�
He showed that a collapse of the boolean hierarchy at level m implies a collapse of the
polynomial hierarchy to its third level� �p� �

Theorem ����� �Kad��� Kad��� For all m � 	�

BHm � coBHm �� PH � �p� �

Wagner ���� Wag��� Wagner not just extended the result of Kadin to the unbounded
boolean hierarchy� but also improved it signicantly for the boolean hierarchy itself� Kadin"s
technique together with oracle replacement enabled Wagner to show that a collapse of the
boolean hierarchy over NP at level m implies a collapse of the polynomial hierarchy to  p

� �

Theorem ����� �Wag��� For all m � 	�

BHm � coBHm �� PH �  p
� �

Wagner ���� Wag��� Wagner observed that a modied denition of hard strings yields
an even stronger collapse of the polynomial hierarchy� In particular� he showed that a
collapse of the boolean hierarchy at level m implies a collapse of the polynomial hierarchy
to a level within  p

� � namely� the boolean closure of �
p
� � BH��

p
���

Theorem ����� �Wag��� For all m � 	�

BHm � coBHm �� PH � BH��p���

Chang and Kadin ���� CK��� CK��� Chang and Kadin rened the method origi�
nally used by Kadin to further tighten the connection between the boolean hierarchy and the
polynomial hierarchy� Unaware of Wagner"s work they improved his results� They showed
that a collapse of the boolean hierarchy at level m implies a collapse of the polynomial
hierarchy to a level within the boolean closure of �p� � namely� the mth level of the boolean
hierarchy over �p� �

Theorem ����� �CK��� CK��� For all m � 	�

BHm � coBHm �� PH � DIFFm��
p
���
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Beigel� Chang� and Ogihara ���� BCO��� BCO��� Beigel� Chang� and Ogihara�
while picking up ideas developed by Wagner� were able to draw an even stronger conclusion�
In particular� they showed that a collapse of the boolean hierarchy at level m implies a
collapse of the polynomial hierarchy to a level within the mth level of the boolean hierarchy

over �p� � namely� to
�
PNPm��
tt

�NP
� the class of languages accepted by some deterministic

polynomial�time machine making at most m � � parallel queries to an NPNP � �p� oracle
and an unlimited number of queries to an NP oracle�

Theorem ����� �BCO��� BCO��� For all m � 	�

BHm � coBHm �� PH �
�
PNPm��
tt

�NP
�

����� The Development of the Easy�Hard Technique

As already mentioned� the easy�hard technique plays a crucial role in each of the above
mentioned theorem"s proofs� The term easy�hard originates from Kadin"s observation that
in case the boolean hierarchy collapses at level m the strings of any particular length n in
a coNP complete language L divide into easy and hard strings� Hard strings are strings
that allow to translate a collapse of the boolean hierarchy from level m to level m � �
in a restricted sense� Several hard strings eventually allow to reduce the coNP complete
language L to an NP language� In contrast� if no hard strings at length n exist then all
strings in L of length n are easy and this allows to directly reduce L to an NP language�
Consequently� if we know whether there exist hard strings or not� and if� in case they exist�
we are able to e�ciently compute them� we can with their help reduce the coNP complete
language L to an NP language and eventually collapse the polynomial hierarchy� This
approach is central in each of the ve papers studied in this section� The major di�erence
among the ve papers and the main reason for the di�erence in their results is the way in
which the needed information about the hard strings �their existence and the strings itself�
is obtained� and in which way this information is then exploited to collapse the polynomial
hierarchy�

Kadin �Kad��� constructed a sparse set S such that S contains information about the
existence of hard strings for any length and in case there exist hard strings for some length
then a lexicographically extreme hard string for that length can be e�ciently extracted
from S� It is shown that coNP � NPS � which by a result of Yap �Yap��� implies PH � �p� �
Wagner used a quite di�erent approach in his two papers� �Wag��� Wag���� In both

papers the polynomial hierarchy is collapsed directly �without constructing a sparse oracle�
using oracle replacement and hard strings in form of advice� The main reason for the
stronger result in his second paper is a modied denition of easy and hard strings� Thus�
instead of hard strings giving a reduction for only the strings of one particular length
�implying that one hard string for each length is needed when collapsing the polynomial
hierarchy�� Wagner"s new denition yields that hard strings can give a reduction for all
strings having a length below a particular threshold�
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Chang and Kadin �CK���� independent of Wagner"s work� also used the stronger notion
of hardness� The observation that hard strings of larger length allow to e�ciently gain
information about the existence of hard strings at lower length together with an elegant
application of the nested di�erence structure underlying the levels of the boolean hierarchy
over �p� � leads to their nal result�

Beigel� Chang� and Ogihara �BCO��� further improved the results of Chang and Kadin�
�BCO��� follows the approach of Wagner� but with two major innovations� First� complete
languages for the levels of the boolean hierarchy are used that do not force to distinguish
between odd and even levels� Second� their proof exploits the mind change technique
to e�ciently check the existence of hard strings and their e�ect on the outcome of the
reduction using those hard strings� The second innovation goes hand in hand with a modied
argumentation for �conditionally� collapsing the polynomial hierarchy�

����� A Close Look at the Proofs

In the following we will prove for each of the Theorems ��	��� ��	�	� ��	��� ��	��� and ��	��
a special case to illustrate the underlying proof technique and the innovations made with
respect to previous work� We will start from the assumption DP � coDP�a collapse of the
boolean hierarchy at its second level�and prove the collapse of the polynomial hierarchy
obtained by the corresponding theorem as it was done in the original version�

For clarity of presentation we would like to make the following rather technical assump�
tions� Let s be a polynomial such that for all x� y� z � �� � f&g� jhx� yij 
 s�maxfjxj� jyjg�
and jhx� y� zij 
 s�maxfjxj� jyj� jzjg�� Furthermore� let us agree on the following convention�
Whenever we talk about polynomials in the remainder of this chapter let us assume that
those polynomials are of the form na % b for some integers a� b � 
� Since the polynomials
involved in the upcoming proofs always play the role of a function bounding the running
time of some Turing machine or the length of some variable and all complexity classes un�
der consideration have certain required properties we can make this assumption without
loss of generality� This convention has the advantage that a polynomial p now satises
p�n% �� � p�n� � n for all n� a condition we will need throughout this section"s proofs�

Kadin ���� Kad��� Kad���

Theorem ����� If DP � coDP then PH � �p� �

Proof� Recall that DP �PY��� is dened as DP � fL� � L� j L�� L� � NPg�

A Suppose DP � coDP� Let LNP be a many�one complete language for NP� It is not
hard to verify that LDP � fhx� yi j x � LNP � y � LNPg is a many�one complete
language for DP� According to our assumption� DP � coDP� there is a polynomial�
time computable function h reducing LDP to LDP� i�e�� for all x�� x� � �

��

hx�� x�i � LDP �� h�hx�� x�i� � LDP�
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Let h� and h�� be the polynomial�time computable functions such that for all x�� x� �
��� h�hx�� x�i� � hh��hx�� x�i�� h

���hx�� x�i�i� Hence�

x� � LNP � x� � LNP �� h��hx�� x�i� � LNP � h
���hx�� x�i� � LNP�

The easy�hard method is based on the fact that h is a many�one reduction from a
conjunction to a disjunction�

B The string x� is said to be easy if and only if �	x� � jx�j � jx�j��h
���hx�� x�i� � LNP��

Clearly� if x� is easy then x� � LNP� But note that checking whether a particular
string is easy can be done with an NP algorithm�

x� is said to be hard if and only if x� � LNP and ��x� � jx�j � jx�j��h
���hx�� x�i� � LNP��

Hence� if x� is a hard string we have for all x�� jx�j � jx�j�

x� � LNP �� h��hx�� x�i� � LNP�

Note that the strings in LNP divide into easy and hard strings�

C Dene the set S� � f� j� is the lexicographically smallest hard string of length j�jg and
the set S of marked prexes of S�� S � fy&jvj j yv � S�g� Note that S is sparse�

D Claim D� coNP � �NP�S �

We will prove the above claim by giving an �NP�S algorithm for LNP�

�� On input x� jxj � n� check whether S�n is empty or not� This can be done by
querying 
&n�� and �&n��� Obviously� S�n � � if and only if both queries are
answered no�

	� If S�n � � then there exists no hard string of length n� Hence� x � LNP if and
only if x is easy� Thus� guess x�� jx�j � n� compute h���hx�� xi�� and accept if
and only if h���hx�� xi� � LNP�

�� If S�n � � then there exists a hard string of length n� Retrieve the only string
not containing & �recall that this is the lexicographically smallest hard string of
length n� from S�n� call it �� with adaptive queries to S�n� Compute h��hx� �i�
and accept if and only if h��hx� �i� � LNP�

According to B� this algorithm is correct�

E By a result of Yap �Yap���� coNP � �NP�S for a sparse set S implies �p� � $
p
� and hence

PH � �p� �
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Wagner ���� Wag���

Theorem ����� If DP � coDP then PH � P	
p
� �

Proof� A and B As in the proof of Theorem ��	�� �Kadin ������

C Let LNP� L	p
�
� and L	p

�
be many�one complete languages for NP� �p� � and �

p
� � respectively�

and p�� p� be polynomials such that

L	p
�
� fx j �	y � jyj 
 p��jxj���hx� yi � LNP�g

and
L	p

�
� fx j �	y � jyj 
 p��jxj���hx� yi � L	p

�
�g�

D For all x � �� let

f�x� �

�
� if there exists a hard string of length jxj�

 if there exists no hard string of length jxj�

It is not hard to see that f � FP	
p
� ���� where FP	

p
� �j� is dened similar to P	

p
� �j� with

the modication that the base P machine computes a function instead of accepting a
language� Note that f�x� � f�y� if jxj � jyj�

We call h�l�&i a hard pair if and only if f��l� � 
� h�l� yi� y � ��� is called a hard
pair if and only if y is a hard string of length l�

E One hard pair su�ces to provide a reduction from LNP to an NP language�

Claim E� There exists a set A � NP such that for all x � ��� if h�jxj� �i is a hard pair

then

x � LNP �� hx� �i � A�

Let x � ��� Let h�jxj� �i be a hard pair� note that this implies � � ���f&g� Suppose
f��jxj� � 
� Hence � � & and for every string y such that jyj � jxj� y � LNP if and
only if y is easy� This holds� in particular� for x itself� According to B we thus have

x � LNP �� �	x� � jx�j � jxj��h���hx�� xi� � LNP��

Now suppose that f��jxj� � �� Hence � is a hard string of length jxj� According to B
we obtain

x � LNP �� h��hx� �i� � LNP�

We dene A � fhx� �i j �� � & � �	x� � jx�j � jxj��h���hx�� xi� � LNP�� � �� �
�� � h��hx� �i� � LNP�g� It is not hard to verify that A � NP and that A satises
Claim E�

F Applying Claim E� a series of hard pairs of growing length gives a reduction from L	p
�

to an NP language�
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Claim F� There exist a set B � NP and a polynomial q such that for all x � ��� if for
all 
 
 i 
 q�jxj�� h�i� �ii is a hard pair then

x � L	p
�
�� hx� ��� ��� � � � � �q�jxji � B�

Let x � ��� By denition of L	p
�
we have

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � LNP��

According to Claim E there exists a set A � NP such that for all y � ��� if h�jhx�y ij� �i
is a hard pair then

hx� yi � LNP �� hhx� yi� �i � A�

Hence� if h�i� �ii ��i � �
� � f&g� is a hard pair for all 
 
 i 
 s�p��jxj�� �recall that

s is a polynomial bounding the size of h�i� then

x � L	p
�
�� �	y � jyj 
 p��jxj���hhx� yi� �jhx�y iji � A��

Let q be a polynomial such that q�n� � s�p��n�� for all n� Dene

B � fhx� ��� ��� � � � � �q�jxji j �	y � jyj 
 p��jxj���hhx� yi� �jhx�y iji � A�g

and note that B � NP� This proves Claim F�

G Taking the result of Claim F one step further� hard pairs of growing length provide a
reduction from L	p

�
to a �p� language�

Claim G� There exist a set D � �p� and a polynomial p such that for all x � ��� if for
all 
 
 i 
 p�jxj�� h�i� �ii is a hard pair then

x � L	p
�
�� hx� ��� ��� � � � � �p�jxji � D�

The proof is similar to the proof of Claim F� Let x � ��� We have

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � L	p

�
��

According to Claim F there exist a set B � NP and a polynomial q such that for all
y� jyj 
 p��jxj�� if h�

i� �ii is a hard pair for all 
 
 i 
 q�s�p��jxj��� then

hx� yi � L	p
�
�� hhx� yi� ��� ��� � � � � �q�jhx�y iji � B�

and hence

x � L	p
�
�� �	y � jyj 
 p��jxj���hhx� yi� ��� ��� � � � � �q�jhx�y iji � B��

Let p be a polynomial such that p�n� � q�s�p��n��� for all n� Dene

D � fhx� ��� ��� � � � � �p�jxji j �	y � jyj 
 p��jxj���hhx� yi� ��� ��� � � � � �q�jhx�y iji � B�g�

Clearly� D � �p� �
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H Since the hard pairs needed in Claim G can be computed with queries to a �p� oracle we
nally obtain

Claim H� L	p
�
� P	

p
� �

Let D � �p� and p be a polynomial� both as dened in G� We have the following P
	p
�

algorithm for L	p
�
�

�� On input x� compute f����� f����� f����� � � � � f��p�jxj�� This can be done with
p�jxj� parallel queries to a �p� oracle since f � FP

	p
� ����

	� Query hx� f����� f����� f����� � � � � f��p�jxj�i� The �p� oracle queried in this part

of the P	
p
� algorithm is described by the following algorithm�

�a� On input hx� y�� y�� � � � � yki verify that k � p�jxj��

�b� For all 
 
 i 
 p�jxj� such that yi � 
 set �i � &�

�c� For all 
 
 i 
 p�jxj� such that yi � � guess �i� j�ij � i� and verify that
�i is a hard string� Recall that this verication can be done with a coNP
algorithm� Continue if this verication succeeds� otherwise reject�

�d� Accept if and only if hx� ��� ��� � � � � �p�jxji � D�

�� Accept �the input x� if and only if the query from part 	 returns yes�

It is not hard to verify that the above algorithm� in light of Claim G� proves Claim H
Note that the oracles queried in parts � and 	 di�er� Since �p� is closed under disjoint
union this can easily be avoided by using the disjoint union of the oracles and mod�
ifying the oracle queries in such a way that they are made to the correct part of the
disjoint union�

I Since L	p
�
is complete for �p� we conclude �

p
� � P

	p
� and thus PH � P	

p
� �

Wagner ���� Wag���

Theorem ����� If DP � coDP then PH � P	
p
� ����

Proof� The major di�erence to the proof of Theorem ��	�� lies in B of the upcoming
proof� a modied denition of easy and hard strings� Note that a straightforward adaption
of the proof of Theorem ��	�� to this new denition would su�ce to prove Theorem ��	���
However� Wagner used a slightly di�erent approach and obtained stronger intermediate
results than in �Wag���� Though those stronger intermediate results do not lead to a better
overall result here� they appear in the papers of Chang and Kadin �CK��� CK��� and Beigel�
Chang� and Ogihara �BCO��� BCO��� again and play an important role there�

A As in the proof of Theorem ��	�� �Kadin ������
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B Let l be an integer� The string x� is said to be easy for length l if and only if jx�j 
 l and
�	x� � jx�j 
 l��h���hx�� x�i� � LNP�� Clearly� if x� is easy for length l then x� � LNP�

x� is said to be hard for length l if and only if jx�j 
 l� x� � LNP� and ��x� � jx�j 

l��h���hx�� x�i� � LNP�� Hence� if x� is a hard string for length l we have for all x��
jx�j 
 l�

x� � LNP �� h��hx�� x�i� � LNP�

Note that the strings in �LNP�
�l
divide into easy and hard strings for length l�

C As in the proof of Theorem ��	�� �Wagner ������

D For all x � �� let

f�x� �

�
� if there exists a hard string for length jxj�

 if there exists no hard string for length jxj�

Note� f � FP	
p
� ��� and f�x� � f�y� if jxj � jyj�

We call h�l�&i a hard pair if and only if f��l� � 
� h�l� yi� y � ��� is called a hard
pair if and only if y is a hard string for length l�

E Similar to E in the proof of Theorem ��	�� �Wagner ����� �with the obvious adaptions
due to the changed denition of easy and hard strings� one hard pair gives a reduction
from LNP to an NP language�

Claim E� There exists a set A � NP such that for all x � �� and all l � jxj� if h�l� �i is
a hard pair then

x � LNP �� hx� �l� �i � A�

Let x � �� and l � jxj� Suppose that h�l� �i is a hard pair� hence � � �� � f&g�

If f��l� � 
 then � � & and for every string y� jyj 
 l� y � LNP if and only if y is
easy for length l� This holds� in particular� for x itself� According to B we thus have

x � LNP �� �	x� � jx�j 
 l��h���hx�� xi� � LNP��

If f��l� � � then � is a hard string for length l� According to B we obtain

x � LNP �� h��hx� �i� � LNP�

We dene A � fhx� �l� �i j �� � & � �	x� � jx�j 
 l��h���hx�� xi� � LNP�� � �� �
�� � h��hx� �i� � LNP�g� It is not hard to verify that A � NP� This completes the
proof of Claim E�

F In contrast to F in the proof of Theorem ��	�� �Wagner ������ the new denition of
easy and hard strings yields that one hard pair for su�ciently large length su�ces to
reduce L	p

�
to an NP language�
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Claim F� There exist a set B � NP and a polynomial q such that for all x � �� and all

l � q�jxj�� if h�l� �i is a hard pair then

x � L	p
�
�� hx� �l� �i � B�

Let x � ��� By denition of L	p
�
we have

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � LNP��

According to Claim E there exists a set A � NP such that if h�l� �i� l � s�p��jxj��� is
a hard pair then for all y� jyj 
 p��jxj��

hx� yi � LNP �� hhx� yi� �l� �i � A�

and hence
x � L	p

�
�� �	y � jyj 
 p��jxj���hhx� yi� �

l� �i � A��

Let q be a polynomial such that q�n� � s�p��n�� for all n� Dene

B � fhx� �l� �i j �	y � jyj 
 p��jxj���hhx� yi� �
l� �i � A�g

and note that B � NP� This proves Claim F�

G Applying Claim F twice provides a reduction from L	p
�
to an NP language requiring two

hard pairs�

Claim G� There exist a set C � NP and polynomials q� and q� such that for all x � ���
if h�q��jxj� ��i and h�

q��jxj� ��i are hard pairs then

x � L	p
�
�� hx� ��� ��i � C�

Let x � ��� We have

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � L	p

�
��

According to Claim F there exist a set B � NP and a polynomial q such that if
h�l� ��i� l � q�s�p��jxj���� is a hard pair then

x � L	p
�
�� �	y � jyj 
 p��jxj���hhx� yi� �

l� ��i � B��

Let q� be a polynomial such that q��n� � q�s�p��n��� for all n� Dene

D � fhx� �l� ��i j �	y � jyj 
 p��jxj���hhx� yi� �
l� ��i � B�g�

Note that D � �p� and let g be a many�one reduction from D to L	p
�
� Let bq be a

polynomial such that for all z � ��� jg�z�j 
 bq�jzj�� Hence we have� if h�q��jxj� ��i is
a hard pair then

x � L	p
�
�� g�hx� �q��jxj� ��i� � L	p

�
�
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Applying Claim F again we obtain that if h�l� ��i� l � q�bq�s�q��jxj����� is a hard pair
and j��j 
 q��jxj��

g�hx� �q��jxj� ��i� � L	p
�
�� hg�hx� �q��jxj� ��i�� �

l� ��i � B�

Altogether� if h�q��jxj� ��i� and h�
l� ��i� l � q�bq�s�q��jxj����� are hard pairs then

x � L	p
�
�� hg�hx� �q��jxj� ��i�� �

l� ��i � B�

Let q� be a polynomial such that q��n� � q�bq�s�q��n���� for all n� Dene C �
fhx� ��� ��i jhg�hx� �

q��jxj� ��i�� �
q��jxj� ��i � Bg� This completes the proof of Claim G�

Observe that� in light of the algorithm given in H below� a reduction of L	p
�
to the �p�

language �as it was done in the proof of Theorem ��	�� �Wagner ������ would su�ce�
This is implicitly done by the set D in the above proof of Claim G� Since this would
clearly require only one hard pair one could similarly to H derive even L	p

�
� P	

p
� ����

However� the possibility of reducing L	p
�
to an NP language rst appeared in �Wag���

and was crucially used in �CK��� CK��� and �BCO��� BCO����

H In contrast to H of the proof of Theorem ��	�� �Wagner ������ in light of Claim G� only
two values of f have to be computed�

Claim H� L	p
�
� P	

p
� ����

Let C � NP and q� and q� be polynomials� all three as dened in G� We give a P
	p
� ���

algorithm for L	p
�
�

�� On input x compute f��q��jxj� and f��q��jxj�� This amounts for two �p� queries�

	� Query hx� f��q��jxj�� f��q��jxj�i� The �p� oracle queried in this part of the P
	p
� ���

algorithm implicitly does the following�

�a� On input hx� y�� y�i compute q��jxj� and q��jxj��

�b� If y� � 
 set �� � &� If y� � � guess ��� j��j 
 q��jxj�� and verify that
�� is a hard string for length q��jxj�� Continue if this verication succeeds�
otherwise reject�

�c� If y� � 
 set �� � &� If y� � � guess ��� j��j 
 q��jxj�� and verify that
�� is a hard string for length q��jxj�� Continue if this verication succeeds�
otherwise reject�

�d� Accept if and only if hx� ��� ��i � C�

�� Accept �the input x� if and only if the query from part 	 returns yes�

The correctness of this algorithm is obvious� In particular� recall from H of the proof
of Theorem ��	�� �Wagner ����� that the use of di�erent �p� oracles does no harm to
the algorithm�

I Since L	p
�
is complete for �p� we have �

p
� � P

	p
� ��� and hence PH � P	

p
� ����
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Chang and Kadin ���� CK��� CK���

Theorem ����� If DP � coDP then PH � DIFF���
p
���

Proof� A As in the proof of Theorem ��	�� �Kadin ������

B�C�D�E�F� and G As in the proof of Theorem ��	�� �Wagner ������

H In contrast to G one hard pair su�ces to reduce a �p� complete language to a �
p
�

language�

Claim H� There exist a set D� � �
p
� and a polynomial bp� such that for all x � �� and

all l � bp��jxj�� if h�l� �i is a hard pair then

x � L	p
�
�� hx� �l� �i � D��

Claim H is the analogue of G in the proof of Theorem ��	�� �Wagner ����� with
the modications induced by the di�erent hard strings denition and is implicitly
contained in G of the proof of Theorem ��	�� �Wagner ������ In particular� settingbp� � q� and D� � D� where q� and D are as dened inG of the proof of Theorem ��	��
�Wagner ����� proves the claim�

I Dene S � f�l j f��l� � �g� Though f � FP	
p
� ���� testing whether f��l� � � can be done

with a �p� algorithm� as it is just testing whether there exists a hard string for length
l� So S � �p� �

Claim I� There exist a set T � NP and a polynomial pt such that for all l � N and all

l� � pt�l�� if h�
l� � �i is a hard pair then

�l � S �� h�l� �l
�

� �i � T�

The claim follows immediately from F�

J The above Claim I turns into the key tool to reduce a $p
� complete language to a �

p
�

language with the help of just one hard pair�

Claim J� There exist a set D� � �
p
� and a polynomial bp� such that for all x � �� and all

l � bp��jxj�� if h�l� �i is a hard pair then

x � L	p
�
�� hx� �l� �i � D��

It will soon be clear that Claim J is the key trick in the current proof� Let pt� q�� and
q� be polynomials and C � NP� all four as dened in G and I� Let bp� be a polynomial
such that bp��n� � pt�q��n�� for all n� D� is dened by the following �

p
� algorithm�

�� On input hx� �l� �i� compute q��jxj� and q��jxj��
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	� Assuming that h�l� �i is a hard pair and l � pt�q��jxj�� we determine f��
q��jxj�

by applying Claim I� This is done as follows� Test using an NP oracle query
whether h�q��jxj� �l� �i � T � Set j� � � if this is the case� otherwise j� � 
�

�� Assuming that h�l� �i is a hard pair and l � pt�q��jxj�� we determine f��
q��jxj�

by applying Claim I� This is done similar to step 	� Test using an NP oracle
query whether h�q��jxj� �l� �i � T � Set j� � � if this is the case� otherwise j� � 
�

�� If j� � � guess a string ��� j��j 
 q��jxj�� verify that �� is hard for length q��jxj��
continue if this is the case� and reject otherwise� If j� � 
 set �� � &�

�� If j� � � guess a string ��� j��j 
 q��jxj�� verify that �� is hard for length q��jxj��
continue if this is the case� and reject otherwise� If j� � 
 set �� � &�

�� Assuming that h�q��jxj� ��i and h�
q��jxj� ��i are hard pairs we determine whether

x � L	p
�
using Claim G� In other words� accept if and only if hx� ��� ��i � C�

Observe that if h�l� �i is a hard pair and l � pt�q��jxj��� step 	 indeed yields j� �
f��q��jxj� according to I� Similarly� if h�l� �i is a hard pair and l � pt�q��jxj��� step �
yields j� � f��q��jxj� according to I� Furthermore� if h�q��jxj� ��i and h�

q��jxj� ��i are
hard pairs then we accept in step � if and only if x 
� L	p

�
� But� if steps 	 and � yield

j� � f��q��jxj� and j� � f��q��jxj�� respectively� the algorithm indeed determines hard
pairs in steps � and � and hence the algorithm correctly accepts in step ��

Overall� the correctness of the above algorithm stands and falls with the correctness
of steps 	 and �� Hence setting bp��n� � pt�q��n�� for all n proves the claim �note that�
in light of our convention about polynomials� q��n� � q��n� for all n��

K Combining the results of Claims H and J while exploiting the di�erence structure of
DIFF���

p
�� yields

Claim K� L	p
�
� DIFF���

p
���

Let the sets D��D� � �
p
� and the polynomials bp� and bp� be as dened in H and J�

Let p be a polynomial such that p�n� � maxfbp��n�� bp��n�g for all n� Dene
E� � fx j hx� �p�jxj�&i � D�g�

E� � fx j �	� � ����� is a hard string for length p�jxj� and hx� �p�jxj� �i � D�g�

E� � fx j �	� � ����� is a hard string for length p�jxj� and hx� �p�jxj� �i � D�g�

Clearly� E�� E�� E� � �
p
� � Since �

p
� is closed under union we also have E� � E� � �

p
� �

Hence �E� � E�� � E� � DIFF���
p
��� We show L	p

�
� �E� � E�� � E�� To see this

consider the following case distinction� Let x � ���

Case � f��p�jxj� � 
�
Hence x � E� and x � E�� Furthermore� h�

p�jxj�&i is a hard pair and hence
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according to Claim H�

x � L	p
�

�� hx� �p�jxj�&i � D�

�� x � E�

�� x � �E� �E���E��

Case � f��p�jxj� � ��
Hence there exist hard strings for length p�jxj�� If x � L	p

�
then we clearly have

both� hx� �p�jxj� �i � D� and hx� �
p�jxj� �i � D� for all hard strings � for length

p�jxj�� according to Claims H and J� Hence x � �E� �E���E�� If x � L	p
�
then

hx� �p�jxj� �i � D� and hx� �
p�jxj� �i � D� for all hard strings � for length p�jxj��

according to Claims H and J� Independent of whether x � E� or x � E� we have
x � �E� �E���E��

L We have shown L	p
�
� DIFF���

p
�� and thus �

p
� � DIFF���

p
�� which immediately implies

PH � DIFF���
p
���

Beigel� Chang� and Ogihara ���� BCO��� BCO���

Theorem ������ If DP � coDP then PH �
�
PNP�
tt

�NP
�

Proof� Recall that
�
PNP�
tt

�NP
is the class of languages accepted by some DPTM making

at most one query to an NPNP � �p� oracle and polynomially many queries to an oracle
from NP�

A As in the proof of Theorem ��	�� �Kadin ������

B�C�D�E�F� and G As in the proof of Theorem ��	�� �Wagner ������

H Quite similar to H of the proof of Theorem ��	�� �Chang and Kadin ����� one hard pair
su�ces to reduce a P	

p
� language to a PNP language�

Claim H� Let L � P	
p
� � There exist a set D � PNP and a polynomial bp such that for all

x � ��� if h�bp�jxj� �i is a hard pair then

x � L �� hx� �i � D�

The proof is a straightforward application of F� Let L � P	
p
� � hence L � L�N

L
�
p
�

� � for
some DPTM N� running in time p for some polynomial p� According to F there exist
a language B � NP and a polynomial q such that for all x � �� and all l � q�jxj�� if
h�l� �i is a hard pair then

x � L	p
�
�� hx� �l� �i � B�
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We use this to reduce L to a PNP language with the help of one hard pair� Let bp be
a polynomial such that bp�n� � q�p�n�� for all n� Dene the DPTM NB

� as follows�

NB
� �hx� �i� simulates the work of N

L
�
p
�

� �x� but replaces every query v to L	p
�
by a

query hv� �bp�jxj� �i to B� Let D � L�NB
� �� Clearly� D � PNP�

I Claim I� L	p
�
�
�
PNP�
tt

�NP
�

According to Claim G there exist a language C � NP and polynomials q� and q� such
that for all x � ��� if h�q��jxj� ��i and h�

q��jxj� ��i are hard pairs then

x � L	p
�
�� hx� ��� ��i � C�

If no hard strings for length q��jxj� and q��jxj� exist then x � L	p
�
�� hx�&�&i � C�

But note that �C�hx�&�&i� can also be used in general for determining �L
�
p
�

�x� if we

know whether existing hard strings �� and �� for length q��jxj� and q��jxj�� respec�
tively� provide �C�hx�&�&i� � �C�hx� ��� ��i� or �C�hx�&�&i� � �C�hx� ��� ��i��
This approach is also known as the mind change technique� It enables us to give a�
PNP�
tt

�NP
algorithm for L	p

�
�

�� On input x� query hx�&�&i to C�

	� Query x in parallel to the two under �a� and �b� described �p� oracles�

�a� Accept the query x if and only if

i� there exists a hard string �� for length q��jxj� such that �C�hx� ���&i� �
�C�hx�&�&i�� or

ii� there exists a hard string �� for length q��jxj� such that �C�hx�&� ��i� �
�C�hx�&�&i�� or

iii� there exist two hard strings �� and �� for length q��jxj� and q��jxj��
respectively� such that �C�hx� ��� ��i� � �C�hx�&�&i��

�b� Accept the query x if and only if there exist two hard strings �� and �� for
length q��jxj� and q��jxj�� respectively� such that either

i� �C�hx� ��� ��i� � �C�hx� ���&i� and �C�hx� ���&i� � �C�hx�&�&i� or

ii� �C�hx� ��� ��i� � �C�hx�&� ��i� and �C�hx�&� ��i� � �C�hx�&�&i��

�� Accept if and only if the three queries from parts �� 	a� and 	b return in this
order either the answers �yes� no� no�� or �no� yes� no�� or �yes� yes� yes��

The correctness of this algorithm follows immediately from the construction� Note
that the use of di�erent �p� oracles in part 	 does not a�ect the correctness of our
algorithm as already pointed out in previous proofs� Note that part 	a corresponds
to checking whether the existence of hard strings causes at least one mind change�
whereas part 	b corresponds to determining whether the existence of hard strings
causes two mind changes�
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J The
�
PNP�
tt

�NP
algorithm for L	p

�
as given in I can be improved to a

�
PNP�
tt

�NP
algorithm

by exploiting Claim H�

Claim J� P	
p
� �

�
PNP�
tt

�NP
�

Let L � P	
p
� � Let D � PNP and bp be a polynomial� both as dened in H� We describe

a
�
PNP�
tt

�NP
algorithm for L using the same trick as in I�

�� On input x determine whether hx�&i � D� This can be done with the help of
queries to an NP oracle� since D � PNP�

	� Determine whether there exists a hard string � for length bp�jxj� such that
�D�hx� �i� � �D�hx�&i�� This can be done with one query to a �

p
� oracle�

�� Accept if and only if the �implicit� query �hx�&i � D �� of part � and the query
of part 	 return di�erent answers�

Note that step 	 corresponds to determining whether the existence of a hard string
causes a mind change�

K Since �p� �
�
PNP�
tt

�NP
�Claim I��

�
PNP�
tt

�NP
� P	

p
� � and P	

p
� �

�
PNP�
tt

�NP
�Claim J� we

have proven �p� �
�
PNP�
tt

�NP
and thus PH �

�
PNP�
tt

�NP
�

��� A New Result

����� A Deeper Collapse of the Polynomial Hierarchy if the Boolean Hi�
erarchy Collapses

The ve papers studied in the previous section obtained deeper and deeper collapses of
the polynomial hierarchy if the boolean hierarchy over NP collapses� The strongest re�
sult previously known is due to Beigel� Chang� and Ogihara �BCO���� see Theorem ��	���
Theorem ��	�� says that� given a collapse of the boolean hierarchy at level m� m � 	� the

polynomial hierarchy collapses to
�
PNPm��
tt

�NP
� a class contained in DIFFm��

p
���

A careful analysis of the proof of Theorem ��	�� as given in �BCO��� in combination
with a new trick� namely� applying an idea developed in �BCO��� BCO��� twice� yields the
following theorem�

Theorem ����� For all m � 	�

BHm � coBHm �� PH � BHm	DIFFm����
p
���

Note that for m � � the hypothesis of the above Theorem ����� implies a trivial collapse
of the polynomial hierarchy� namely� to NP itself� Theorem ����� has been independently
obtained by Reith and Wagner �RW����
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Let us compare the results of Theorem ��	�� and Theorem ������ Though both theorems
collapse the polynomial hierarchy to a class containing DIFFm����

p
�� and being contained

in DIFFm��
p
��� their results di�er substantially� It is immediate from a recent paper of

Wagner �Wag��� that
�
PNPm��
tt

�NP
is a strict superset of BHm	DIFFm����

p
�� unless the

polynomial hierarchy collapses� Furthermore� observe that
�
PNPm��
tt

�NP
involves m � �

parallel queries to a �p� oracle and an unlimited number of queries to an NP oracle� So

the P base machine of
�
PNPm��
tt

�NP
evaluates m � � bits of information originating from

the parallel �p� queries and polynomially many bits of information from the NP queries� In
contrast� BHm	DIFFm����

p
�� involves just two bits of information� which are evaluated via

a xed truth�table� namely� the XOR�truth�table� One bit of information comes from the
DIFFm����

p
�� part consisting of m� � underlying parallel queries to a �p� oracle evaluated

with one xed truth�table� The second bit of information� the one from the BHm part�
implicitly contains m parallel queries to an NP oracle� their answers again being evaluated
via a xed truth�table� In a nutshell� we have improved from unlimited many queries to
NP and m� ��truth�table queries to �p� � to m�xed�truth�table queries to NP and m� ��
xed�truth�table queries to �p� �
Proof of Theorem ������ The proof is structured in such a way that the analogies to
the proofs of the special cases in Section ��	 can be easily observed� Recall our conven�
tion about polynomials from the beginning of Section ��	��� Recall that � � f
� �g and
& � �� Let s be a polynomial such that for all � 
 j 
 m % � and all x�� x�� � � � � xj �
�� � f&g� jhx�� x�� � � � � xjij 
 s�maxfjx�j� jx�j� � � � � jxj jg�� Dene s

���n� � n and s�i�n� �
s�s�� � � s� �z �
i times

�n� � � � �� for all n and all i � ��

Suppose m � 	�

A Let LNP� L	p
�
� and L	p

�
be many�one complete languages for NP� �p� � and �

p
� � respec�

tively� and p�� p� be polynomials such that

L	p
�
� fx j �	y � jyj 
 p��jxj���hx� yi � LNP�g

and
L	p

�
� fx j �	y � jyj 
 p��jxj���hx� yi � L	p

�
�g�

Hence� LcoNP � LNP is a complete language for coNP� Dene LDIFF��coNP � LcoNP�
and for every i � 	� LDIFFi�coNP � fhx� yi j x � LcoNP � y � LDIFFi���coNPg� It is not
hard to verify that for all i � �� LDIFFi�coNP is many�one complete for DIFFi�coNP��

Note that DIFFm�coNP� � BHm if m is even and DIFFm�coNP� � coBHm if m is
odd� So in general�

BHm � coBHm �� DIFFm�coNP� � coDIFFm�coNP��

B Suppose BHm � coBHm� Hence DIFFm�coNP� � coDIFFm�coNP�� Thus there exists
a many�one reduction h from LDIFFm�coNP to LDIFFm�coNP� In other words� there
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exists a polynomial�time computable function h such that for all x�� x� � �
��

hx�� x�i � LDIFFm�coNP �� h�hx�� x�i� � LDIFFm�coNP�

Let h� and h�� be the polynomial�time computable functions such that for all x�� x� �
��� h�hx�� x�i� � hh��hx�� x�i�� h

���hx�� x�i�i� Hence� we have for all x�� x� � �
��

��� x� � LcoNP � x� 
� LDIFFm���coNP ��

h��hx�� x�i� 
� LcoNP � h
���hx�� x�i� � LDIFFm���coNP�

C Recall that we want to show a collapse of the polynomial hierarchy� Though we do not
claim that we can prove NP � coNP we will nevertheless show that an NP algorithm
for LcoNP exists which requires certain additional input� We will extend this to also
give NP algorithms for L	p

�
and L	p

�
� both algorithms requiring additional input�

Let n be an integer� In light of the equivalence �)�� we call the string x� m�easy for
length n if and only if jx�j 
 n and �	x� � jx�j 
 s�m���n���h��hx�� x�i� � LcoNP��
Clearly� if x� is m�easy for length n then x� � LcoNP�

A string x� is said to be m�hard for length n if and only if jx�j 
 n� x� � LcoNP� and
��x� � jx�j 
 s�m���n���h��hx�� x�i� � LcoNP�� It is not hard to verify that the strings
in �LcoNP�

�n divide into m�easy and m�hard strings for length n�

Case � There are no m�hard strings for length n�
Hence all strings in �LcoNP�

�n are m�easy for length n� Thus deciding whether
x� jxj � n� is in LcoNP is equivalent to deciding whether x is m�easy for length
n� Note that the latter can be done by the following NP algorithm�

�� Guess y� jyj 
 s�m���n��

	� Compute h�hx� yi��

�� Accept if and only if h��hx� yi� � LcoNP�

Case � There exist m�hard strings for length n�
Let �m be an m�hard string for length n� hence j�mj 
 n� For every a � ���
let h�a be the function such that for every u � �

�� h�a�u� � h���ha� ui�� Note
that h��m�u� is computable in time polynomial in maxfn� jujg� According to the

denition ofm�hard strings and equivalence �)� we have for all u� juj 
 s�m���n��

u � LDIFFm���coNP �� h��m�u� � LDIFFm���coNP�

Thus we have a situation similar to the one in B but m replaced by m� � and
also the equivalence holds only for an initial segment� In analogy to the denition
of h� and h�� let for every a � ��� h��a and h

��
�a be the functions such that for all

x�� x� � �
�� h�a�hx�� x�i� � hh��a�hx�� x�i�� h

��
�a�hx�� x�i�i�
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Let u � hu�� u�i� Hence for all u�� ju�j 
 n� and all u�� ju�j 
 s�m���n��

u� � LcoNP � u� � LDIFFm���coNP ��

h���m�hu�� u�i� � LcoNP � h
��
��m�hu�� u�i� � LDIFFm���coNP�

We call the string u� m� ��easy for length n if and only if ju�j 
 n and �	u� �
ju�j 
 s�m���n���h���m�hu�� u�i� � LcoNP�� If u� is m� ��easy for length n then
u� � LcoNP�

A string u� is said to bem���hard for length n if and only if ju�j 
 n� u� � LcoNP�
and ��u� � ju�j 
 s�m���n���h���m�hu�� u�i� � LcoNP��

It is not hard to verify that� given an m�hard string �m for length n� the strings
in �LcoNP�

�n divide into m� ��easy and m� ��hard strings for length n� Note
that m���hardness is only dened with respect to some particularm�hard string
�m�

Case ��� There exist no m� ��hard strings for length n�
Hence similar to Case �� all strings in �LcoNP�

�n are m � ��easy for length
n� deciding whether x� jxj � n� is in LcoNP is equivalent to deciding whether
x is m � ��easy for length n which� with the help of �m� can be done with
an NP algorithm�

Case ��� There exist m� ��hard strings for length n�
Let �m�� be an m���hard string for length n� j�m��j 
 n� For all a� b � ���
let h�a�b be the function such that for all v � �

�� h�a�b�v� � h���a�hb� vi�� Note

that h��m��m���v� is computable in time polynomial in maxfn� jvjg� Hence�

for all v� jvj 
 s�m���n��

v � LDIFFm���coNP �� h��m��m���v� � LDIFFm���coNP�

Continuing in that manner we dene for � � 	� ��hard and ��easy strings
for length n� Note that these terms are dened with respect to some xed
m�hard� m � ��hard� � � � � � % ��hard strings� In other words� a string is
only ��hard or ��easy with respect to a particular sequence of hard strings
�m� �m��� � � � � ����� We dene that there are no ��hard strings for length
n� and a string z is called ��easy for length n if and only if jzj 
 n and
h��m��m����������z� � LcoNP�

A sequence �m� �m��� � � � � ��� � � 	� is called a hard sequence for length n if and only
if for all j� � 
 j 
 m� �j is j�hard for length n with respect to �m� �m��� � � � � �j���

We call m� �% � the order of the hard sequence �m� �m��� � � � � ���

A sequence �m� �m��� � � � � �� is called a maximal hard sequence for length n if and
only if �m� �m��� � � � � �� is a hard sequence for length n and there are no ��� ���hard
strings �with respect to �m� �m��� � � � � ��� for length n� As a special case� & is called
a maximal hard sequence for length n if and only if there exists no m�hard string for
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length n� & is said to have order zero� Note that deciding whether� given a sequence
of strings s and an integer n� s is a hard sequence for length n can be done with a
coNP algorithm�

It is clear that for every n� a maximal hard sequence for length n always exists and
has order at most m� � since there are no ��hard strings for length n�

D One maximal hard sequence is needed to reduce LcoNP to an NP language�

Claim D� There exists a set A � NP such that for all x � �� and all l � jxj� if

�m� �m��� � � � � �� is a maximal hard sequence for length l then

x � LcoNP �� hx� �l� �m� �m��� � � � � ��i � A�

Let x � �� and let �m� �m��� � � � � �� be a maximal hard sequence for length l� l � jxj�
Note that � � 	� Since �m� �m��� � � � � �� is maximal hard� no string of length less or
equal to l is ��� ���hard with respect to �m� �m��� � � � � ��� Hence� for every string y�
jyj 
 l� y � �LcoNP�

�l if and only if y is ��� ���easy for length l� This holds especially
for x itself �recall jxj 
 l�� But testing whether x is ������easy for length l can clearly
be done by an NP algorithm when receiving x� �l� and �m� �m��� � � � � �� as inputs�
In particular� dene A � fhx� �l� �m� �m��� � � � � ��i j �� � 	 � h��m��m����������x� �

LcoNP� � �� � 	 � �	y � jyj 
 s����l���h���m��m���������
�hx� yi� � LcoNP�g�

E One maximal hard sequence for su�ciently large length also su�ces to give a reduction
from L	p

�
to an NP language�

Claim E� There exist a set B � NP and a polynomial q such that for all x � �� and all

l � q�jxj�� if �m� �m��� � � � � �� is a maximal hard sequence for length l then

x � L	p
�
�� hx� �l� �m� �m��� � � � � ��i � B�

Recall from A that for all x � ���

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � LcoNP��

Applying Claim D we obtain that there is a set A � NP such that for all x and all
l � s�p��jxj��� if �m� �m��� � � � � �� is a maximal hard sequence for length l then

x � L	p
�
�� �	y � jyj 
 p��jxj���hhx� yi� �

l� �m� �m��� � � � � ��i � A��

Note that the right�hand�side of the above equivalence clearly denes a NP language
B� Dene q to be a polynomial such that q�n� � s�p��n�� for all n� This proves the
claim�

F In contrast to D and E� two maximal hard sequences for di�erent length are required
when reducing L	p

�
to an NP language�
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Claim F� There exist a set C � NP and polynomials q�� q� such that for all x � ��� if
�m� �m��� � � � � �� and �

�
m� �

�
m��� � � � � �

�
�� are maximal hard sequences for length q��jxj�

and q��jxj�� respectively� then

x � L	p
�
�� hx� h�m� �m��� � � � � ��i� h�

�
m� �

�
m��� � � � � �

�
�� ii � C�

Recall from A that for all x � ���

x � L	p
�
�� �	y � jyj 
 p��jxj���hx� yi � L	p

�
��

Applying Claim E we obtain that there is a set B � NP and a polynomial q such that
for all x � �� and all l � q�s�p��jxj���� if �m� �m��� � � � � �� is a maximal hard sequence
for length l then

x � L	p
�
�� �	y � jyj 
 p��jxj���hhx� yi� �

l� �m� �m��� � � � � ��i � B��

Dene q� to be a polynomial such that q��n� � q�s�p��n��� for all n� Dene L
� �

fhx� �l� �m� �m��� � � � � ��i j �	y � jyj 
 p��jxj���hhx� yi� �
l� �m� �m��� � � � � ��i � B�g�

Note that L� � �p� and let g be a many�one reduction from L� to L	p
�
� Hence we

have for all x � ��� if �m� �m��� � � � � �� is a maximal hard sequence for length q��jxj�
then

x � L	p
�
�� g�hx� �q��jxj� �m� �m��� � � � � ��i� � L	p

�
�

Applying Claim E for the second time we obtain that for all x � ��� if �m� �m��� � � � � ��
is a maximal hard sequence for length q��jxj� and �

�
m� �

�
m��� � � � � �

�
�� is a maximal hard

sequence for length l� l � q�jg�hx� �q��jxj� �m� �m��� � � � � ��i�j�� then

x � L	p
�
�� hg�hx� �q��jxj� �m� �m��� � � � � ��i�� �

l� ��m� �
�
m��� � � � � �

�
��i � B�

Let bq be a polynomial such that jg�z�j is bounded by bq�jzj� for all z� Dene q� to be
a polynomial such that q��n� � q�bq�s�q��n���� for all n� Set
C � fhx� h�m� �m��� � � � � ��i� h�

�
m� �

�
m��� � � � � �

�
��ii j

hg�hx� �q��jxj� �m� �m��� � � � � ��i�� �
q��jxj� ��m� �

�
m��� � � � � �

�
��i � Bg

and note that clearly C � NP� Furthermore� it is not hard to verify that C indeed
satises Claim F�

G Applying the mind change technique in light of Claim C� we can conclude that L	p
�
�

NP	DIFF�m����
p
���

Claim G� PH � NP	DIFF�m����
p
���

To prove the claim it su�ces to show that L	p
�
� NP	DIFF�m����

p
���

A few denitions will be helpful� For sequences of strings u � �u�� u�� � � � � uj� and
v � �v�� v�� � � � � vj��� v is called an extension of u if and only if j 
 j� and for all
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� 
 i 
 j� ui � vi� v is called a proper extension of u if and only if v is an extension of
u and j � j�� A similar denition is made for pairs of sequences of strings� For �u� v�
and �u�� v��� where u� u�� v� v� are sequences of strings we call �u�� v�� an extension of
�u� v� if and only if u� is an extension of u and v� is an extension of v� �u�� v�� is called
a proper extension of �u� v� if and only if �u�� v�� is an extension of �u� v�� and u� or v�

is a proper extension of u or v� respectively�

Let ���n�� ���n� to be the orders of the longest maximal hard sequences for lengths
q��n� and q��n�� respectively� where q� and q� are the polynomials spoken of in
Claim F� According to Claim F� for all x� x � L	p

�
if and only if there exist two

hard sequences s� and s� for length q��jxj� and q��jxj� of order ���jxj� and ���jxj�� re�
spectively� such that hx� s�� s�i � C� However� in order to decide whether x � L	p

�
or

not� rst computing s� and s� and then checking whether hx� s�� s�i � C might exceed
the computational power of NP	DIFF�m����

p
��� So we use a di�erent strategy�

On one hand� if no m�hard strings for length q��jxj� and q��jxj� exist� then �L
�
p
�

�x� �

�C�hx�&�&i�� On the other hand� if m�hard strings for length q��jxj� and q��jxj�
exist it might well be the case that for the maximal hard sequences s� and s��
�L

�
p
�

�x� � �C�hx� s�� s�i� � �C�hx�&�&i�� But instead of determining �C�hx� s�� s�i�

we compute �C�hx�&�&i� and determine whether �C�hx�&�&i� � �C�hx� s�� s�i� or
not� With this knowledge it is then easy to compute �L

�
p
�

�x�� This approach is known

as the mind change technique�

Dene Q� � fx j hx� h&i� h&ii � Cg� Dene for � 
 j�

Qj � fx j there exist r�� s�� r�� s�� � � � �rj � sj such that

�� for all � 
 i 
 j� ri and si are hard sequences for length
q��jxj� and q��jxj�� respectively�

	� for all � 
 i 
 j � �� �ri��� si��� is a proper extension of
�ri� si�� and

�� �C�hx� h&i� h&ii� � �C�hx� hr�i� hs�ii and for all � 
 i 

j � �� �C�hx� hrii� hsiii� � �C�hx� hri��i� hsi��ii�g�

Observe that Q� � NP and Qj � �
p
� � j � �� It follows from the denition of Qj �

j � � that Q� � Q� � � � � � Since all hard sequences have order at most m � � �and
thus ���n� 
 m � � and ���n� 
 m � �� and part � of the denition of Qj requires
�r�� s�� � �&�&� we obtain that for all j � 	m� 	� Qj � ��

Let x � ��� Let c be the largest i such that x � Qi� Observe that �C�hx�&�&i� �
�Qc�x� if and only if c is odd� Hence�

x � L	p
�
�� �C�hx�&�&i� % c � � �mod 	��

But note that c �mod 	� � � �mod 	� if and only if x � Q� � �Q� � �� � � � �Q�m�� �
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Q�m��� � � � ��� It follows that for all x � �
��

x � L	p
�
�� x � Q� �Q� � �Q� � �� � � � �Q�m�� �Q�m��� � � � ����

This shows L	p
�
� NP	DIFF�m����

p
���

H Applying the mind change technique to the result of Claim G while exploiting Claim E
yields L	p

�
� BH�m��	DIFFm����

p
���

Claim H� PH � BH�m��	DIFFm����
p
���

In light of Claim G and the fact that NP	DIFF�m����
p
�� � DIFF�m����

p
��� it su�ces

to show DIFF�m����
p
�� � BH�m��	DIFFm����

p
���

Let L � DIFF�m����
p
��� hence there exist sets L�� L�� � � � � L�m�� � �p� such that

L � L� � �L� � �� � � � �L�m�� � L�m��� � � � ��� According to Claim E �note that
Claim E can be easily extended to hold for all �p� languages and not just for L	p

�
�

there exist sets B�� B�� � � � � B�m�� � NP and polynomials q
�
�� q

�
�� � � � � q

�
�m�� such that

for all x � �� and all � 
 i 
 	m��� if �im� �
i
m��� � � � � �

i
�i
is a maximal hard sequence

for length li� li � q�i�jxj�� then

x � Li �� hx� �li � �im� �
i
m��� � � � � �

i
�i
i � Bi�

Let bp be a polynomial such that bp�n� � q�i�n� for all n and all � 
 i 
 	m� �� Dene
D � fhx� �m� �m��� � � � � ��i j hx� �

bp�jxj� �m� �m��� � � � � ��i � B���B���� � ���B�m���
B�m��� � � � ��g� Note that D � BH�m��� We have for all x � �

�� if �m� �m��� � � � � ��
is a maximal hard sequence for length bp�jxj� then

x � L �� hx� �m� �m��� � � � � ��i � D�

Now we use a similar idea as in the proof of Claim G� In particular� recall the denitions
from the beginning of its proof� Dene P� � fx j hx�&i � Dg� Dene for j � ��

Pj � fx j there exist s��s�� � � � �sj such that

�� for all � 
 i 
 j� si is a hard sequence for length bp�jxj��
	� for all � 
 i 
 j � �� si�� is a proper extension of si� and

�� �D�hx�&i� � �D�hx� s�i and for all � 
 i 
 j � ��
�D�hx� sii� � �D�hx� si��i�g�

Note that P� � BH�m�� and Pj � �
p
� � j � �� Since all hard sequences have order at

most m� � and part � of the denition of Pj requires s� � & we obtain that for all
j � m � �� Pj � �� Similar to the proof of Claim G it is not hard to verify that for
all x � ���

x � L �� x � P� �P� � �P� � �� � � � �Pm�� � Pm��� � � � ����

Hence L � BH�m��	DIFFm����
p
��� This completes the proof of Claim H�
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I Applying the mind change technique again� this time to the result of Claim H� gives the
claim of the theorem being proven�

Claim I� PH � BHm	DIFFm����
p
���

Observe that BH�m��	DIFFm����
p
�� � DIFFm��

p
��� In light of Claim H� it su�ces

to show DIFFm��
p
�� � BHm	DIFFm����

p
�� which can be done quite analogous to

the proof of Claim H�

����� Concluding Remarks

At the end of this chapter we will make a few remarks on Theorem ������ Recall that Chang
and Kadin �CK����see Theorem ��	��� showed that for all m � 	�

BHm � coBHm �� DIFFm��
p
�� � coDIFFm��

p
�� � PH�

Chang and Kadin concluded from that result that there is a close connection between
the boolean hierarchy and the boolean hierarchy over �p� � Relatedly� they asked whether
there is a straightforward argument showing that BHm � coBHm �� DIFFm��

p
�� �

coDIFFm��
p
��� Though the result of Chang and Kadin has later been improved by Beigel�

Chang� and Ogihara �BCO��� our Theorem ����� sheds new light on this question� Ob�
serve that it is quite obvious that BHm � coBHm � BH implies BHm	DIFFj��

p
�� �

co�BHm	DIFFj��
p
��� for all j � �� in particular� for j � m� �� However� this rather triv�

ial observation does not help in proving Theorem ������ In fact� the proof consists exactly
in showing that �p� � BHm	DIFFm����

p
���

It is not hard to see that the proof of Theorem ����� can be easily extended to yield a
similar result for a collapse of the boolean hierarchy over some �pk� k � ��

Corollary ����� For all m � 	 and all k � ��

DIFFm��
p
k� � coDIFFm��

p
k� �� PH � DIFFm��

p
k�	DIFFm����

p
k����

To generalize this result even further� one can of course extend this result from �pk to
arbitrary complexity classes C having certain properties� such as� for instance� being closed
under 	 and conjunctive�truth�table reductions and having many�one complete sets�
In light of the intertwined inclusion structure of the boolean hierarchy and the bounded�

truth�table hierarchy� Theorem ����� also establishes a previously unknown collapse of the
polynomial hierarchy if the bounded�truth�table hierarchy collapses�

Corollary ����� For all m � ��

PNPm
tt � P
NP
m��
tt �� PH � BHm��	DIFFm��

p
���
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Clearly� an analogous result for the bounded�truth�table hierarchy over �pk� k � ��
does also hold� However� Hemaspaandra� Hemaspaandra� and Hempel �HHH��b� have
shown the following downward translation of equality �see Theorem ��	���� For all m � �

and all k � �� P
	p
k

m
tt � P
	p
k

m��
tt �� DIFFm��
p
k� � coDIFFm��

p
k�� Combining this

result with Corollary ����	 we obtain a improvement over a straightforward generalization
of Corollary ����� for �pk� k � ��

Theorem ����� For all m � 	 and all k � ��

P
	p
k

m
tt � P
	p
k

m��
tt �� PH � DIFFm��
p
k�	DIFFm����

p
k����

Observe that form � � the hypothesis of the above Theorem ����� even implies PH � �pk
�see Theorem ��	�� and Theorem ��	����
To the end� we mention that there is an alternative way of proving Theorem ������

A close inspection of the proof of Beigel� Chang� and Ogihara �BCO��� shows that what
actually being shown is the following result�

BHm � coBHm �� PH �  p
�	DIFFm����

p
���

This together with a recent result of Chang �Cha�� namely�

BHm � coBHm ��  p
� � BHm�

proves Theorem ������ However� as our proof of Theorem ����� shows� Theorem ����� can
be proven with only the tools provided by the papers we have reviewed in Section ��	�





Chapter �

Downward Collapse

��� Introduction

Does the collapse of lower complexity classes imply a collapse of higher complexity classes�
Does the collapse of higher complexity classes cause lower complexity classes to collapse�
These question are known as upward and downward collapse� respectively� As a special
variant of linking collapses of complexity classes� proving downward and upward collapse is a
very elegant and powerful method to tie together the relative powers of various computation
models�

Usually� hierarchies in complexity theory that are inductively dened in a bottom�up
manner display upward collapse� for instance� the polynomial hierarchy� Examples for
upward collapse have long been known� one prominent example being P � NP �� PH �
P �MS�	�� Also� all results mentioned and proven in Chapter � are examples of upward
collapse� for instance� for all m � 	� if BHm � coBHm then PH � BHm	DIFFm����

p
���

In contrast� downward collapse results are rarely observed� Though one can nd a
number of examples with the general !avor of downward collapse in the literature �equivalent
notions are downward translation of equality and upward separation� most of them are not
quite satisfying with respect to the term �downward�� Some results are limited to sparse sets
only �Boo��� HIS��� RRW���� while others contain unspecied parameters �Wra���� Clearly�
for complexity classes C�� C�� D�� and D� such that C��C� � D��D� and it is not known that
C� � C� � D� � D�� a result D� � D� �� C� � C� would describe exactly what one might
expect from the notion of downward collapse� However� it is known that many potential
downward collapse results �in the above sense� require non relativizable proof techniques and
are quite unlikely to hold� For instance� it is known that BH� � coBH� �� NP � coNP
does not hold in all relativized worlds �CGH�����

In ���� Hemaspaandra� Hemaspaandra� and Hempel �HHH��a� obtained the rst down�
ward collapse result �in the sense as formally dened above� linking classes of bounded�
query hierarchies and classes of the polynomial hierarchy and triggered a recent outburst of
downward collapse results �BF��� HHH��� HHH��b�� It was shown in �HHH��a� that if one
Turing query to a �pk oracle� k � 	� is as powerful as two Turing queries to a �

p
k oracle then
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�pk is closed under complementation and hence as powerful as the entire polynomial hierar�
chy� Buhrman and Fortnow �BF��� extended this result to the k � 	 case� Hemaspaandra�
Hemaspaandra� and Hempel �HHH��� showed that a m versus m%� queries analogue does
also hold� displaying downward collapse between the levels of the bounded�truth�table hi�
erarchy and the boolean hierarchy over �pk� k � 	� In �HHH��b� the approaches of �BF���
and �HHH��� were combined with new techniques to extend the results of both papers es�
tablishing the k � 	 analogue of the main result from �HHH���� Though all of the followup
results are based on the proof technique used in �HHH��a�� which itself is a modication
of Kadin"s easy�hard technique �Kad��� �see also Section ��	�� each new downward collapse
result added some crucial and elegant enrichment to the proof technique itself�
In this chapter we will review this interesting development and prove a new downward

collapse result� The chapter is divided into two parts� Quite similar to the structure of
Chapter � the rst part� Section ��	� is devoted to a detailed analysis of the previous
work� In Section ��� we prove the main theorem of this chapter� Theorem ������ which
strengthens a result from �HHH��b� and removes an asymmetry in that result"s hypothesis�
In particular� we show that for all s�m � � and all 
 � i � k��� if DIFFs��

p
i �	DIFFm��

p
k�

is closed under complementation� then DIFFm��
p
k� � coDIFFm��

p
k�� The Chapter closes

with a number of remarks and applications of Theorem ������

��� A Review

After the recent !ow of downward collapse results we feel that the time is right to pause
and look back� what has been achieved� what technical advances have been made� Doing
exactly that we review the following four papers in this section�

�� E� Hemaspaandra� L� Hemaspaandra� and H� Hempel� An Upward Separation in the
Polynomial Hierarchy� Technical Report Math�Inf������� Institut f�ur Informatik�
Friedrich�Schiller�Universit�at Jena� Jena� Germany� June �����

	� E� Hemaspaandra� L� Hemaspaandra� and H� Hempel� A Downward Collapse Within
the Polynomial Hierarchy� SIAM Journal on Computing� To appear�

�� H� Buhrman and L� Fortnow� Two queries� In Proceedings of the ��th Annual IEEE

Conference on Computational Complexity� IEEE Computer Society Press� June �����
To appear�

�� E� Hemaspaandra� L� Hemaspaandra� and H� Hempel� Translating Equality Down�
wards� Technical Report TR����� Department of Computer Science� University of
Rochester� Rochester� NY� April �����

Similar to Section ��	 we rst state the main results obtained� second informally discuss
the development of the proof technique while emphasizing the new contributions made in
each of papers under investigation� and third rigorously prove a special case of each paper"s
main theorems�
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���� Previous Results

We give a short overview over the results obtained in each of the four papers we are going
to review� For completeness we added the appropriate citations of the earliest and most
recent versions�

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��a� Motivated by the
question of whether certain query order classes �see Chapter � for results in this interesting
new area in complexity theory� are distinct and whether the collapse of those query order
classes induces a collapse of the polynomial hierarchy� Hemaspaandra� Hemaspaandra� and
Hempel came up with a surprising downward collapse result� A collapse of the bounded�
query hierarchy over �pk� k � 	� at its rst level implies a collapse of the polynomial hierarchy
to �pk itself� informally� the polynomial hierarchy collapses to a level that is below the level
of the bounded�query hierarchy at which the initial collapse occurred� This was the the rst
downward collapse result completely within the polynomial hierarchy�

Theorem ����� �HHH��a� For k � 	�

P	
p
k
��� � P	

p
k
��� �� PH � �pk � $

p
k�

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��b� HHH��� General�
izing the ideas developed in �HHH��a�� the authors extended their results to hold in a similar
fashion also for m versus m%� queries� It turned out that a collapse of the bounded�truth�
table hierarchy over �pk� k � 	� implies a collapse of the boolean hierarchy over �pk one
level below the trivially implied collapse of the boolean hierarchy� More precisely� a collapse
of the bounded�truth�table hierarchy over �pk at level m implies a collapse of the boolean
hierarchy over �pk at level m�

Theorem ����� �HHH��b� HHH��� For all m � � and all k � 	�

P
	p
k

m
tt � P
	p
k

m��
tt �� DIFFm��
p
k� � coDIFFm��

p
k��

Observe that the result of Theorem ��	�� now appears in a di�erent light� Theorem ��	��
might give the impression that the bounded�query hierarchy over �pk� k � 	� is tightly
connected to �pk itself� But Theorem ��	�	 claries that this is a mere coincidence since on
one hand the rst level of the bounded�query hierarchy over �pk and the rst level of the
bounded�truth�table hierarchy over �pk coincide� and on the other hand� the rst level of
the boolean hierarchy over �pk happens to be the kth level of the polynomial hierarchy�
Theorem ��	�	 together with the result of Theorem ������ yields also a collapse of the

polynomial hierarchy� In Theorem ����� we have stated that for all m � 	 �for the m � �
case see Theorem ��	��� and all k � 	�

P
	p
k

m
tt � P
	p
k

m��
tt �� PH � DIFFm��
p
k�	DIFFm����

p
k����
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Note that the collapse of the polynomial hierarchy occurs� roughly speaking� one level lower
in the boolean hierarchy over �pk�� than could be concluded from the same hypothesis
without Theorem ��	�	�

Buhrman and Fortnow ���� BF��� BF��� Buhrman and Fortnow extended the
result of Theorem ��	�� to the k � 	 case� they proved that if one query to a �p� oracle is as
powerful as two queries to a �p� oracle then �

p
� is closed under complementation� establishing

a downward collapse result in the second level of the polynomial hierarchy�

Theorem ����� �BF��� If P	
p
� ��� � P	

p
� ��� then PH � �p� � $

p
� �

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��b� In an attempt to
also extend the result of Theorem ��	�	 to the k � 	 case Hemaspaandra� Hemaspaandra�
and Hempel �HHH��b� combined the approaches of �HHH��� and �BF��� with new ideas to
obtain a result that implies Theorems ��	��� ��	�	� ��	��� and more�

Theorem ����� �HHH��b� For all m � � and all k � ��

P
	p
k

m
tt � P
	p
k

m��
tt �� DIFFm��
p
k� � coDIFFm��

p
k��

This is a very general downward collapse result� as themth level of the boolean hierarchy

over �pk is contained in P
	p
k

m
tt� In light of Theorem ������ the above Theorem ��	�� also
gives a collapse of the polynomial hierarchy that was previously unknown to hold �see
Theorem ������� for all m � 	 and all k � ��

P
	p
k

m
tt � P
	p
k

m��
tt �� PH � DIFFm��
p
k�	DIFFm����

p
k����

For the m � � case see Theorems ��	�� and ��	���


���� The Development of the Proof Method

Common in all of the above theorem"s proofs is the use of the easy�hard technique� Orig�
inally invented by Kadin �Kad��� and applied for proving a polynomial hierarchy collapse
from a collapse of the boolean hierarchy� it has been �modied as needed� crucial in proving
the downward collapse results we study�
Applications of the easy�hard technique in its original version �see Section ��	� require

the search for hard sequences �strings�� Not just the mere information about the existence
or nonexistence of hard sequences was exploited in proving �conditional� collapses of the
polynomial hierarchy but rather the hard sequences itself� The line of research that has been
reviewed in Chapter � has led to more and more sophisticated methods to gain information
about the hard sequences and to eventually compute them� The fact that all results of
Chapter � are upward collapse results is more then everything else due to the common need
of hard sequences�
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Hemaspaandra� Hemaspaandra� and Hempel �HHH��a� observed that in certain settings
every string is exactly one of the following� either hard or easy� Thus� one can completely
discard the search for hard strings� One simply looks at the input itself� determines whether
it is an easy or hard string� and completes the computation in one or the other way� This
approach led to the result

P	
p
k
��� � P	

p
k
��� �� �pk � $

p
k � PH

for k � 	 �HHH��a�� In �HHH��� and �BF��� this result is extended in two di�erent direc�
tions� The approach of �HHH��a� works only for ��vs�	 query access to �pk� k � 	� where
the easy�hard test for the input is responsible for the k � 	 bound� Buhrman and Fort�
now �BF��� extended the result to the ��vs�	 query case for k � 	� They did so in modifying
the test of whether the input is easy or hard to nondeterministically simply assume both
that the input is easy and that the input is hard� Since in any case one of the nondetermin�
istic computation branches starts from the wrong assumption it has to be guaranteed that
the branch starting from the wrong assumption does no harm to the overall algorithm� This
is achieved by shielding each of the nondeterministic branches against falsely accepting the
input� �HHH���� on the other hand� removes the ��vs�	 restriction� Since languages from
DIFFm��

p
k� are accepted by a collection of nondeterministic machines one has to ensure

that their computations follow a common scheme� This is achieved by implementing �
�
bit communication� between machines by having the machines independently latch onto a
certain lexicographically extreme string signaled by the input�

However� recall that the two improvements just mentioned(from k � 	 to k � �
via �BF��� and from ��vs�	 to m�vs�m% � via �HHH���(are incomparable� Neither paper
allows both improvements to work simultaneously� However� this was achieved in �HHH��b��
via a new twist� �HHH��b� provides an improved way of allowing the underlying �pk ma�
chines of DIFF��pk� languages to work together� In particular� �HHH��b� does so by exploit�
ing the so�called telescoping normal form of boolean �or di�erence� hierarchies �CGH����(a
normal form that in concept dates as far back as the work of Hausdor� �Hau����


���� A Detailed Analysis of the Proofs

The development of the proof method underlying the Theorems ��	��� ��	�	� ��	��� and ��	��
can best be seen by proving �in its original version� a special case of each of the be�
fore mentioned theorems� Starting from an assumption� P	

p
� ��� � P	

p
� ���� P	

p
� ��� � P	

p
� ����

P	
p
� ��� � P	

p
� ���� or P	

p
� ��� � P	

p
� ���� respectively� we will prove the downward collapse result

obtained and also state the induced collapse of the polynomial hierarchy which follows from
Theorem ������

For simplicity of representation let s be a polynomial such that for all x� y� z � ���
jhx� yij 
 s�maxfjxj� jyjg� and jhx� y� zij 
 s�maxfjxj� jyj� jzjg�� Furthermore� let us renew
the convention on polynomials already stated in Section ��	� Whenever we talk about
polynomials in the remainder of this section let us assume that those polynomials are of the
form na%b for some integers a� b � 
� This convention can be made without loss of generality
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in our context and has the advantage that a polynomial p now satises p�n%�� � p�n� � n
for all n� a condition we will need throughout this section"s proofs�

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��a�

Theorem ����� If P	
p
� ��� � P	

p
� ��� then �p� � $

p
� � PH�

Proof� Main Claim If P�P�	
p
� � P�NP�	

p
� then �p� � $

p
� �

Recall that P�P�	
p
� and P�NP�	

p
� are the classes of languages that can be accepted by

some DPTM making in parallel at most one query to a P or NP oracle� respectively� and
at most one query to a �p� oracle �see Section 	����

Since P	
p
� ��� � P�P�	

p
� � P�NP�	

p
� � P	

p
� ��� the theorem follows immediately from the

above claim� Thus� it remains to prove Main Claim�

Proof of Main Claim� A Suppose P�P�	
p
� � P�NP�	

p
�� Let LP and LPNP��� be many�

one complete languages for PP��� � P and PNP���� respectively� Let L	p
�
be a �p�

complete language� In order to prove Main Claim it su�ces to give a �p� algorithm
for L	p

�
�

B Claim B� LP
' L	p

�
and LPNP���

' L	p
�
are many�one complete languages for P�P�	

p
� and

P�NP�	
p
�� respectively�

We only show the claim for LPNP���
' L	p

�
� Recall that for any two sets A and B�

A ' B � fhx� yi j x � A �� y � Bg� Obviously� LPNP���
' L	p

�
� P�NP�	

p
�� Let L be

an arbitrary language from P�NP�	
p
�� Without loss of generality let L be accepted by

a DPTM N making� on every input x� in parallel exactly one query xA to A and one
query xB to B� where A � NP and B � �p� � Hence L � L�N �A�B�� Dene

C � fx jN �A�B�x� accepts if xA is answered correctly and xB is answered nog and

D � fx j the acceptance�rejection behavior of N �A�B�x� after answering the query
xA correctly strictly depends on the answer to xB� and xB � Bg�

Note that the set D can also be seen as the set of all x such that xB � B and the
partial truth�table of N �A�B�x� with respect to a correct answer to xA has at least
one mind change� Clearly� C � PNP��� and D � �p� � Furthermore� it is not hard to
verify that for all x � ���

x � L �� hx� xi � C ' D�

But note that we also have for all x � ���

hx� xi � C ' D �� hf�x�� g�x�i � LPNP���
' L	p

�
�

where f and g are polynomial�time computable functions reducing C to LPNP��� and D
to L	p

�
� respectively� This shows that L is many�one reducible to LPNP���

' L	p
�
which

completes the proof of the claim�
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C Since by assumption P�P�	
p
� � P�NP�	

p
� we have a many�one reduction from LPNP���

' L	p
�

to LP
' L	p

�
� In other words� there exists a polynomial�time computable function h

such that for all x�� x� � �
��

hx�� x�i � LPNP���
' L	p

�
�� h�hx�� x�i� � LP

' L	p
�
�

Let h� and h�� be the polynomial�time computable functions such that for all x�� x� �
��� h�hx�� x�i� � hh��hx�� x�i�� h

���hx�� x�i�i and thus

�x� � LPNP��� �� x� 
� L	p
�
� �� �h��hx�� x�i� � LP �� h���hx�� x�i� 
� L	p

�
��

D Let l be an integer� The string x� is said to be easy for length l if and only if �	x� �
jx�j 
 l��x� � LPNP��� �� h��hx�� x�i� � LP��

x� is said to be hard for length l if and only if jx�j 
 l and x� is not easy for length l�
that is� if and only if ��x� � jx�j 
 l��x� � LPNP��� �� h��hx�� x�i� � LP��

Thus� every string is exactly one of the following� either easy or hard for length l�
This observation will be used to divide the problem of giving a �p� algorithm for L	p

�

into two sub problems� which we are going to solve in E and F� Note that testing
whether a string x is easy for length r�jxj�� where r is some polynomial� can be done
by a �p� algorithm�

E The upcoming Claim E solves the sub problem for the strings being hard for a certain
length�

Claim E� There exist a set A � �p� and a polynomial q such that for all x � ��� if x is

hard for length q�jxj� then
x � L	p

�
�� x � A�

Let p be a polynomial such that for all x � ���

x � L	p
�
�� ��y � jyj 
 p�jxj���	z � jzj 
 p�jxj���hx� y� zi � LPNP�����

Recall� if x is a hard string for length l� where l is some integer� then

��x� � jx�j 
 l��x� � LPNP��� �� h��hx�� xi� � LP��

Let q be a polynomial such that q�n� � s�p�n�� for all n� Suppose that x is a hard
string for length q�jxj�� Hence for all y� z � ��� jyj� jzj 
 p�jxj��

hx� y� zi � LPNP��� �� h��hhx� y� zi� xi� � LP

and thus

x � L	p
�
�� ��y � jyj 
 p�jxj���	z � jzj 
 p�jxj���h��hhx� y� zi� xi� � LP��

Note that h��hv� xi� is computable in time polynomial in maxfjvj� jxjg� Set

A � fx j ��y � jyj 
 p�jxj���	z � jzj 
 p�jxj���h��hhx� y� zi� xi� � LP�g�

Note that A � $p
� and thus A � �p� �
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F We now solve the sub problem for the strings x being easy for length q�jxj��

Claim F� Let q be the polynomial de�ned in E� There exists a set B � �p� such that for

all x � ��� if x is easy for length q�jxj� then

x � L	p
�
�� x � B�

Dene B � fx j �	x� � jx�j 
 q�jxj��
��x� � LPNP��� �� h��hx�� xi� � LP� � h

���hx�� xi� � L	p
�
�g�

Note that B � �p� � In light of C and D� this proves the claim�

G Combining Claims E and F with a preliminary test whether the input x is hard or easy
for length q�jxj� we obtain a �p� algorithm for L	p

�
�

Claim G� L	p
�
� �p��

Let A�B � �p� and q be a polynomial� all three as dened in E and F� In light of
Claims E and F� the following algorithm is a �p� algorithm for L	p

�
�

�� On input x determine whether the input x is easy or hard for length q�jxj��
Recall that this can be done with one �p� oracle query according to D�

	� If the input x is hard for length q�jxj� then accept if and only if x � A�

�� If the input x is easy for length q�jxj� then accept if and only if x � B�

Note that the use of di�erent oracles in the above algorithm does not a�ect its correct�
ness as it can be easily be avoided by using the disjoint union of the oracles instead�

H Since L	p
�
is complete for $p

� we have shown $
p
� � �

p
� and hence PH � �

p
� �

End of Proof of Main Claim

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��b� HHH���

Theorem ����� If P
	p
�

�
tt � P
	p
�

�
tt then DIFF���
p
�� � coDIFF���

p
���

Proof� Main Claim If P
�P�	p

�
���
tt � P

�NP�	p
�

���
tt then DIFF���
p
�� � coDIFF���

p
���

Recall that P
�P�	p

�
���
tt and P

�NP�	p
�

���
tt are the classes of languages that are accepted by some
DPTM making in parallel at most one query to a P or NP oracle� respectively� and at most

two queries to a �p� oracle �see Section 	���� Since P
	p
�

�
tt � P
�P�	p

�
���
tt � P

�NP�	p
�

���
tt � P
	p
�

�
tt� the
theorem follows immediately from the above claim� Thus� it su�ces to show the correctness
of the main claim�
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Proof of Main Claim� A Suppose P
�P�	p

�
���
tt � P

�NP�	p
�

���
tt � Let LP and LPNP��� be many�

one complete languages for PP��� � P and PNP���� respectively� Let LDIFF��	
p
�
be a

DIFF���
p
�� complete language� We will give a DIFF���

p
�� algorithm for LDIFF��	

p
�
�

Let L�� L� � �
p
� such that LDIFF��	

p
� 
� L� � L��

B Claim B� LP
' LDIFF��	

p
�

and LPNP���
' LDIFF��	

p
� 

are many�one complete languages for

P
�P�	p

�
���
tt and P

�NP�	p
�

���
tt � respectively�

The proof is similar to B in the proof of Theorem ��	�� �Hemaspaandra� Hemaspaan�
dra� and Hempel ������ But now the LDIFF��	

p
�
part of LPNP���

' LDIFF��	
p
�
accounts

essentially for determining if there is exactly one mind change in the partial truth�table
with respect to a correctly answered NP query�

C Since by assumption P
�P�	p

�
���
tt � P

�NP�	p
�

���
tt it follows that there is a many�one reduction h

from LPNP���
' LDIFF��	

p
�
to LP

' LDIFF��	
p
�
� While continuing as in C in the proof of

Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ����� and replacing L	p
�

by LDIFF��	
p
� 
we obtain for all x�� x� � �

��

�x� � LPNP��� �� x� 
� LDIFF��	
p
� 
� ��

�h��hx�� x�i� � LP �� h���hx�� x�i� 
� LDIFF��	
p
� 
��

D As in the proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ������

E As in the proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ����� we
solve the sub problem for the strings being hard for a certain length rst�

Claim E� There exist sets A�� A� � �
p
� and a polynomial q such that for all x � ��� if x

is a hard string for length q�jxj� then

x � LDIFF��	
p
�

�� x � A� �A��

A straightforward application of the key idea of E from the proof of Theorem ��	��
�Hemaspaandra� Hemaspaandra� and Hempel ����� leads to a DIFF���

p
�� algorithm

to test whether x � LDIFF��	
p
�
if x is a hard string� Without loss of generality let p�

and p� be two polynomials and f�� f� � FP be two functions such that for all x � �
�

and all i � �� 	� jfi�x�j 
 pi�jxj� and

x � Li �� �	y � jyj 
 pi�jxj����z � jzj 
 pi�jxj���hfi�x�� y� zi � LPNP��� ��

Let q be a polynomial such that q�n� � maxfs�p��n��� s�p��n��g for all n� Let x be
hard for length q�jxj�� Hence we have for all x�� jx�j 
 q�jxj�� x� � LPNP��� ��
h��hx�� xi� � LP� Thus� for all i � �� 	�

x � Li �� �	y � jyj 
 pi�jxj����z � jzj 
 pi�jxj���h
��hhfi�x�� y� zi� xi� � LP��
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Dene for i � �� 	� A�
i � fx j�	y � jyj 
 pi�jxj����z � jzj 
 pi�jxj���h

��hhfi�x�� y� zi� xi� �
LPg� Note that A

�
�� A

�
� � �

p
� and that for all x � �

�� if x is hard for length q�jxj� then

x � LDIFF��	
p
�

�� x � A�
� � A�

�� Since coDIFF���
p
�� � P

	p
� ��� � DIFF���

p
�� there

exist sets A�� A� � �
p
� such that A� �A� � A�

� �A�
�� Hence� if x is a hard string for

length q�jxj� then
x � LDIFF��	

p
�

�� x � A� �A��

F Now follows the solution of the sub problem for the strings x being easy for length q�jxj��

Claim F� Let q be the polynomial de�ned in E� There exist sets B�� B� � �
p
� such that

for all x � ��� if x is an easy string for length q�jxj� then

x � LDIFF��	
p
�

�� x � B� �B��

Recall LDIFF��	
p
� 
� L� � L�� where L�� L� � �

p
� � Dene for i � �� 	�

Bi � fx j �	x� � jx�j 
 q�jxj����x� � LPNP��� �� h��hx�� xi� � LP��
��v � v �lex x���v � LPNP��� �� h��hv� xi� � LP�� h

���hx�� xi� � Li�g�

Obviously� B�� B� � �
p
� � In light of C and the denition of B� and B�� it is not hard

to verify that if x is an easy string for length q�jxj� then

x � LDIFF��	
p
�

�� x � B� �B��

G Combining the results of E and F with a preliminary test whether the input x is hard
or easy for length q�jxj�� we obtain a DIFF���

p
�� algorithm for LDIFF��	

p
� 
�

Claim G� LDIFF��	
p
�
� DIFF���

p
���

Let A�� A�� B�� B� � �
p
� and q be a polynomial� all as dened in E and F� For i � �� 	

let bLi be the language accepted by the following algorithm�
�� On input x determine whether the input x is easy or hard for length q�jxj�� This
can be done with one �p� oracle query according to D�

	� If the input x is hard for length q�jxj� then accept if and only if x � Ai�

�� If the input x is easy for length q�jxj� accept if and only if x � Bi�

Clearly� cL��cL� � �
p
� � Furthermore� for all x � �

�� x � LDIFF��	
p
�

�� x � cL� �cL�

due to Claims E and F� Hence LDIFF��	
p
� 
� DIFF���

p
���

H Since LDIFF��	
p
� 
is complete for coDIFF���

p
�� we obtain DIFF���

p
�� � coDIFF���

p
���

End of Proof of Main Claim

In light of Theorem ������ we have the following collapse of the polynomial hierarchy�

Corollary ����� If P
	p
�

�
tt � P
	p
�

�
tt then PH � DIFF���
p
��	�

p
� �
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Buhrman and Fortnow ���� BF���

Theorem ����� If P	
p
� ��� � P	

p
� ��� then �p� � $

p
� � PH�

Proof� Main Claim If P	
p
� ��� � NP	�p� then �p� � $

p
� �

Recall NP	�p� � fA B j A � NP � B � �p�g� Since P
	p
� ��� � NP	�p� � P

	p
� ��� the

theorem follows immediately from the above claim� So we will prove the theorem by proving
the main claim�

Proof of Main Claim� A Assume P	
p
� ��� � NP	�p� � Let LP and L	p

�
be complete lan�

guages for P and �p� � respectively� LP
' L	p

�
is complete for P�P�	

p
� � P	

p
� ���� This

can be shown quite analogous to B from the proof of Theorem ��	�� �Hemaspaandra�
Hemaspaandra� and Hempel ������ Furthermore� observe that SAT' L	p

�
� NP	�p� �

B Since P	
p
� ��� � NP	�p� we have SAT

' L	p
�
� P	

p
� ���� Consequently� there is a many�

one reduction h from SAT' L	p
�
to LP

' L	p
�
� Continuing as in C in the proof of

Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ����� while replacing
L	p

�
by L	p

�
and LPNP��� by SAT yields for all x�� x� � �

��

�x� � SAT �� x� 
� L	p
�
� �� �h��hx�� x�i� � LP �� h���hx�� x�i� 
� L	p

�
��

C As D in the proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel �����
but replace LPNP��� by SAT�

D Observe that the proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel
����� is not valid for �p� instead of �

p
� � The crucial point in the proof of Theorem ��	��

is the test in the nal algorithm whether a string is easy or hard for a certain length
�done by a �p� oracle query�� Since the nal algorithm of the current proof has to be
a �p� algorithm� one has to avoid the preliminary easy�hard test and thus one needs
to shield each of the sub algorithms against falsely accepting�

Claim D� There exist a set A � coNP and a polynomial q such that

�� A � L	p
�
and

	� for all x � ��� if x is hard for length q�jxj� then

x � L	p
�
�� x � A�

Without loss of generality let for all x � ���

x 
� L	p
�
�� ��z � jzj 
 p��jxj���hx� zi � SAT��

for some polynomial p�� Dene q to be a polynomial such that q�n� � s�p��n�� for all
n� Assume that x is a hard string for length q�jxj�� Hence�

��� ��x� � jx�j 
 q�jxj���x� � SAT �� h��hx�� xi� � LP��

Consider the following coNP algorithm�
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�� On input x guess z� jzj 
 p��jxj��

	� Assume �)� and use the self�reduction of SAT to nd a potential witness for
hx� zi � SAT with the help of �)� in deterministic polynomial time� This is
done as follows� Let hx� zi encode the boolean formula F � We construct �F
an assignment for F � Fix an ordering for the variables in F � Replacing the rst
variable in F by 
 ��� leads to a boolean formula F� �F��� let the string v� encode
F�� Compute h�hv�� xi� and test whether h

��hv�� xi� � LP� If h
��hv�� xi� � LP

then� under assumption �)�� F� � SAT� Thus� set the value for the rst variable in
�F to 
 and repeat this procedure with F� until �F assigns a value to each variable
in F � If h��hv�� xi� � LP then� under assumption �)�� F� � SAT implying that a
satisfying assignment for F � if there exists one� assigns � to the rst variable� So
set the value for the rst variable in �F to � and repeat this procedure with F�
until �F assigns a value to each variable in F �

�� Accept if and only if the string constructed in step 	 is a witness for hx� zi � SAT�
In other words� accept if and only if the assignment �F constructed in step 	
satises F �

Let A be the language accepted by this algorithm� A � coNP� If x is a hard string for
length q�jxj� then �)� in fact holds and it is not hard to verify that

x � L	p
�
�� x � A�

But note that even if x is not a hard string for length q�jxj� we have that x � A
implies x � L	p

�
� This follows from the fact that the algorithm only accepts �as it is a

coNP algorithm� if for all z� jzj 
 p�jxj�� the string constructed in step 	 is a witness
for hx� zi � SAT�

E The sub algorithm for the strings x being easy for length q�jxj� given in F from the proof
of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ����� has already the
required shielding feature as spoken of in the beginning ofD and can be easily adapted
to the current proof�

Claim E� Let q be the polynomial de�ned in D� There exists a set B � �p� such that

�� B � L	p
�
and

	� for all x � ��� if x is an easy string for length q�jxj� then

x � L	p
�
�� x � B�

It is not hard to see that Claim E can be shown quite analogous to F from the
proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel ����� with re�
spect to the obvious adaptions as for instance a replacement of L	p

�
by L	p

�
and

LPNP��� by SAT� Hence� for the modied set B from F in the proof of Theorem ��	��
�Hemaspaandra� Hemaspaandra� and Hempel ����� holds� x � B if and only if
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�	x� � jx�j 
 q�jxj����x� � SAT �� h��hx�� xi� � LP� � h���hx�� xi� � L	p
�
�� Note

that x � B if and only if x is easy for length q�jxj� and x � L	p
�
� In particular� if x is

hard for length q�jxj� then x � B�

F Running the sub algorithms from Claims D and E in parallel gives a �p� algorithm for
L	p

�
�

Claim F� L	p
�
� �p��

Let A � coNP� B � �p� � and q be a polynomial� all three as dened in D and E� We
have the following �p� algorithm for L	p

�
�

�� On input x guess whether the string x is hard or easy for length q�jxj��

	� If the algorithm has guessed that x is a hard string for length q�jxj� accept if
and only if x � A�

�� If �x is an easy string for length q�jxj�� was guessed in step � then accept if and
only if x � B�

Recall from D and E that the sub algorithm emerging from the wrong guess does not
accept if x � L	p

�
�

G Since L	p
�
is many�one complete for $p

� we obtain $
p
� � �

p
� and thus PH � �

p
� �

End of Proof of Main Claim

Hemaspaandra� Hemaspaandra� and Hempel ���� HHH��b�

Theorem ����� If P
	p
�

�
tt � P
	p
�

�
tt then DIFF���
p
�� � coDIFF���

p
���

Proof�

Main Claim If P	DIFF���
p
�� � NP	DIFF���

p
�� then DIFF���

p
�� � coDIFF���

p
���

Recall the denition of C	D � fC D j C � C �D � Dg for complexity classes C�D

from Chapter 	� Since P
	p
�

�
tt � P	DIFF���
p
�� � NP	DIFF���

p
�� � P

	p
�

�
tt the theorem
follows immediately from the above claim� It remains to prove the main claim�

Proof of Main Claim� A Suppose P	DIFF���
p
�� � NP	DIFF���

p
��� Let LP� LNP�

and LDIFF��	
p
�
be complete languages for P� NP� and DIFF���

p
��� respectively� Let

L�� L� � �
p
� such that LDIFF��	

p
�
� L� � L��

B Claim B� The languages LP
' LDIFF��	

p
� 

and LNP
' LDIFF��	

p
�

are many�one complete

for P	DIFF���
p
�� and NP	DIFF���

p
��� respectively�

The proof is straightforward and thus omitted�
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C Since by assumption P	DIFF���
p
�� � NP	DIFF���

p
��� LNP

' LDIFF��	
p
�
many�one re�

duces to LP
' LDIFF��	

p
�
� Continue as inC in the proof of Theorem ��	�� �Hemaspaan�

dra� Hemaspaandra� and Hempel ����� but replace L	p
�
by LDIFF��	

p
�
and LPNP��� by

LNP� Thus for all x�� x� � �
��

�x� � LNP �� x� 
� LDIFF��	
p
�
� ��

�h��hx�� x�i� � LP �� h���hx�� x�i� 
� LDIFF��	
p
� 
��

D As D in the proof of Theorem ��	�� �Hemaspaandra� Hemaspaandra� and Hempel �����
but replace LPNP��� by LNP�

E As D of the proof of Theorem ��	�� �Buhrman and Fortnow ����� but replace L	p
�
by

L��

Claim E� There exist a set A � coNP and a polynomial q such that

�� A � L� and

	� for all x � ��� if x is hard for length q�jxj� then

x � L� �� x � A�

F The result of E can be extended to yield a �p� algorithm for the strings x in L	p
�
being

hard for length q�jxj� that is protected against accepting if the input string x in fact
is an easy string for length q�jxj� and x � L	p

�
�

Claim F� Let q be the polynomial de�ned in E� There exists a set A� � �p� such that

�� A� � LDIFF��	
p
�

and

	� for all x � ��� if x is a hard string for length q�jxj� then

x � LDIFF��	
p
� 

�� x � A��

Let L�� L� � �
p
� and A � coNP be as dened in A and E� Dene A� � A�L�� Clearly�

A� � �p� � Note that

x � A� �� x � A � x � L�

�� x � L� � x � L�

�� x � L� � L�

�� x 
� L� � L�

�� x � LDIFF��	
p
�
�

Hence A� � LDIFF��	
p
�
� Furthermore� in case x is hard for length q�jxj� the second

line in the above implication chain turns into an equivalence according to E�
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G There is also a sub algorithm for the strings x being easy for length q�jxj�� Observe that
a straightforward adaption of F from the proof of Theorem ��	�� �Hemaspaandra�
Hemaspaandra� and Hempel ����� does not work here� since the sets Bi constructed
there would �even with the adaption to the current situation� remain �p� sets� but one
needs �p� sets here�

Claim G� Let q be the polynomial de�ned in E� There exist sets B�� B� � �
p
� such that�

�� B� �B� � LDIFF��	
p
�

and

	� for all x � ��� if x is an easy string for length q�jxj� then

x � LDIFF��	
p
�

�� x � B� �B��

Recall that LDIFF��	
p
�
� L� � L� where L�� L� � �

p
� � Without loss of generality let

L� � L� �CGH
����� Dene for i � �� 	�

Bi � fx j �	x� � jx�j 
 q�jxj����x� � LNP �� h��hx�� xi� � LP� � h
���hx�� xi� � Li�g�

Note that B�� B� � �
p
� and B� � B�� We will prove the claim by showing that for all

x � ��� x � B� �B� if and only if x is easy for length q�jxj� and x � L� � L��

Let x � ��� Observe that for all i � �� 	� x � B��B� implies that x is easy for length
q�jxj�� So it su�ces to show that if x is easy for length q�jxj� then x � LDIFF��	

p
�

��
x � B� �B��

Let x be easy for length q�jxj�� Let t � max�f
g � fi � f�� 	g j x � Big�� Let z� be a
string such that

�	x� � jx�j 
 q�jxj�� �z� � h���hx�� xi��
�x� � LNP �� h��hx�� xi� � LP��

�t � 
 �� z� � Lt���

Such a string z� exists since x is easy for length q�jxj�� Note that x � L� � L� ��
z� � L� � L�� This follows from the denition of z� and the fact the equivalence

�x� � LNP �� x 
� LDIFF��	
p
�
� ��

�h��hx�� xi� � LP �� h���hx�� xi� 
� LDIFF��	
p
�
�

does hold for all x� � �
� according to C� Furthermore� x � B� � B� if and only if

z� � L� � L� due to the denition of z�� B�� B�� and t� Thus�

x � LDIFF��	
p
� 

�� x � L� � L�

�� z� � L� � L�

�� x � B� �B��
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H Combining Claims F and G while exploiting the structure of DIFF���
p
�� shows

Claim H� LDIFF��	
p
�
� DIFF���

p
���

Let the sets A�� B�� B� � �
p
� be as dened in F and G� We show the above claim by

proving LDIFF��	
p
�
� �B� �A

���B��

Suppose x � LDIFF��	
p
�
� Note that x is exactly one of the following� either easy or hard

for length q�jxj�� If x is easy for that length then x � B� �B� according to Claim G�
If x is hard for length q�jxj� then x � A� according to Claim F and x 
� B� according
to the denition of B� in G� In both cases we certainly have x � �B� �A

���B��

Now suppose x � �B� � A
�� � B�� Hence x � B� � A

�� If x � A� then x � LDIFF��	
p
�

according to Claim F� If x � A� then x � B� � B�� But this implies x � LDIFF��	
p
�

according to Claim G�

I Since LDIFF��	
p
� 
is complete for coDIFF���

p
�� we obtain DIFF���

p
�� � coDIFF���

p
���

End of Proof of Main Claim

Theorem ��	�� together with Theorem ����� allows to conclude a collapse of the polyno�
mial hierarchy�

Corollary ������ If P
	p
�

�
tt � P
	p
�

�
tt then PH � DIFF���
p
��	�

p
� �

��� A New Result

The key result of �HHH��b� is based on the following theorem�

Theorem ����� �HHH��b� For all m � � and all 
 � i � k � �� if �pi	DIFFm��
p
k� is

closed under complementation� then DIFFm��
p
k� � coDIFFm��

p
k��

This� clearly� is a true downward collapse result� Removing the asymmetry in its hy�
pothesis we extend this result to also hold for all levels of the boolean hierarchy over �pi � In
particular� we show that for all s�m � � and all 
 � i � k � �� if DIFFs��

p
i �	DIFFm��

p
k�

is closed under complementation� then DIFFm��
p
k� � coDIFFm��

p
k�� Our proof is based

on the approach of �HHH��b� combined with the observation that the results on the con�
nection between a collapse of the boolean hierarchy and a collapse of the polynomial hier�
archy �see Chapter �� also apply to prexes of ��� Hence our proof employs the easy�hard
technique in two directions� On one hand� we make use of the recent modications of
the easy�hard technique that allowed to prove the downward collapse results we have re�
viewed in the previous section �HHH��a� HHH��� BF��� HHH��b�� On the other hand� we
exploit the easy�hard technique �in a more technical way� in its original version and exten�
sions �Kad��� Wag��� Wag��� CK��� BCO��� that subsequently tightened the connection
between the boolean hierarchy and the polynomial hierarchy� Our result has a number of
applications to query order classes�
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���� The Easy�Hard Technique in Double Use

In this sub section we prove the main result of this chapter� Theorem ������
Our rst lemma establishes that classes of the form C	D in some cases contain well

structured many�one complete sets�

Lemma ����� Let C and D be complexity classes� If C is 
p
m �complete for C and D is


p
m �complete for D� then C ' D is 


p
m �complete for C	D�

Proof� Let C and D be many�one complete for C and D� respectively� First observe that
C ' D � fhx� yi j x � Cg fhx� yi j y � Dg and thus C ' D � C	D� For the hardness claim�
suppose that A � C	D� Hence there exist sets A� � C and A� � D such that A � A� A��
Let f� and f� be polynomial�time computable functions many�one reducing A� to C and
A� to D respectively� Thus� for all x � �

��

x � A �� �x � A� �� x � A��

�� �f��x� � C �� f��x� � D�

�� hf��x�� f��x�i � C ' D�

This shows that A is many�one reducible to C ' D�
We now state the main theorem of this chapter�

Theorem ����� Let s�m � � and 
 � i � k � �� If DIFFs��
p
i �	DIFFm��

p
k� is closed

under complementation� then DIFFm��
p
k� � coDIFFm��

p
k��

In Figure ��� we give an overview over the previously known downward collapse results�
The gure illustrates that our new result not just strengthens a claim from �HHH��b� but
also a result from �HHH����
Proof of Theorem ������ Since for s � � the claim to be proven is exactly the claim of
Theorem ����� we henceforward assume s � 	�
Let s � 	� m � �� and 
 � i � k � ��

A Let L	p
i
� L	p

i	�
� and L	p

i	�
be 
p

m �complete languages for �
p
i � �

p
i��� and �

p
i��� respec�

tively� that satisfy�

L	p
i	�
� fx j �	y � jyj � jxj��hx� yi 
� L	p

i
�g�

and
L	p

i	�
� fx j �	y � jyj � jxj��hx� yi 
� L	p

i	�
�g�

Let L	p
k
be a 
p

m �complete language for �
p
k and let LDIFFm�	p

k
be 
p

m �complete for

DIFFm��
p
k�� Let L�p

i
� L	p

i
and dene LDIFF���

p
i 
� L�p

i
and for j � 	� LDIFFj��

p
i 
�

�By Stockmeyer�s �Sto��� standard quanti	er characterization of the polynomial hierarchy�s levels
 such
sets do exist�
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DIFFm��
p
k�

coDIFFm����
p
k� DIFFm����

p
k�

P
�
p
i
��DIFFm
�

p
k
��

co��p
i	��DIFFm��p

k�� �p
i	��DIFFm��p

k�

�p
i	��DIFFm��p

k�

P
DIFFs
�
�
p
i
��DIFFm
�

p
k
��

co�DIFFs	���
p
i ��DIFFm��p

k�� DIFFs	���
p
i ��DIFFm��p

k�

P
DIFFs
�
p
i
��DIFFm
�

p
k
��

co�DIFFs��
p
i ��DIFFm��p

k�� DIFFs��
p
i ��DIFFm��p

k�

P
�
p
i
�DIFFm
�

p
k
��

co��p
i�DIFFm��p

k�� �p
i�DIFFm��p

k�

�p
i�DIFFm��p

k�

PDIFFm
�
p
k
����

coDIFFm��
p
k�

�HHH��b�

�HHH���

Theorem �����

�HHH��b�

�HHH��b�

Figure ���� Inclusion structure and results overview(a collapse of all classes in a dotted
box implies DIFFm��

p
k� � coDIFFm��

p
k� �
 � i � k � ���
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fhx� yi j x � L�p
i
� y 
� LDIFFj����

p
i 
g� Note that LDIFFj��

p
i 
is many�one complete for

DIFFj�$
p
i � for all j � �� Observe that DIFFj��

p
i � � DIFFj�$

p
i � if j is even and

DIFFj��
p
i � � coDIFFj�$

p
i � if j is odd� Let LDIFFs�	

p
i 
� LDIFFs��

p
i 
if s is even and

LDIFFs�	
p
i 
� LDIFFs��

p
i 
if s is odd� Then LDIFFs�	

p
i 
is 
p

m �complete for DIFFs��
p
i ��

B Recall that LDIFFs�	
p
i 
' LDIFFm�	p

k
 is many�one complete for DIFFs��

p
i �	DIFFm��

p
k�

by Lemma ����	�

C Since by assumption DIFFs��
p
i �	DIFFm��

p
k� is closed under complementation� there

exists a many�one reduction from LDIFFs�	
p
i 
' LDIFFm�	p

k
to its complement� That is�

there exists a polynomial�time computable function h such that for all x�� x� � �
��

hx�� x�i � LDIFFs�	
p
i 
' LDIFFm�	p

k
� h�hx�� x�i� � LDIFFs�	

p
i 
' LDIFFm�	p

k
�

Let h� and h�� be two polynomial�time computable functions� such that for all x�� x� �
��� h�hx�� x�i� � hh��hx�� x�i�� h

���hx�� x�i�i� Hence� for all x�� x� � �
��

�x� � LDIFFs�	
p
i 
� x� 
� LDIFFm�	p

k
� ��

�h��hx�� x�i� � LDIFFs�	
p
i 
� h���hx�� x�i� � LDIFFm�	p

k
��

D We say that a string x is easy for length n if there exists a string x� such that jx�j 
 n
and �x� � LDIFFs�	

p
i 
� h��hx�� xi� � LDIFFs�	

p
i 
�� Note that with a �pi�� algorithm

one can test whether a string x is easy for length r�jxj�� where r is some polynomial�

We say that x is hard for length n if jxj 
 n and x is not easy for length n� i�e�� if
jxj 
 n and� for all x� with jx�j 
 n� �x� � LDIFFs�	

p
i 
� h��hx�� xi� 
� LDIFFs�	

p
i 
��

Let for all a � ��� ha denote the function such that for all y � �
�� ha�y� � h��hy� ai��

Observe that if x is a hard string for length n� then x induces a many�one reduction

from
	
LDIFFs�	

p
i 


�n
to LDIFFs�	

p
i 
� namely� hx� for all x� such that jx�j 
 n�

x� � LDIFFs�	
p
i 

�� hx�x�� � LDIFFs�	
p
i 
�

Note that hx�x�� is computable in time polynomial in maxfjxj� jx�jg� Since every
string x� jxj 
 n� is exactly one of the following� either easy or hard for length n�
we divide the problem of giving a DIFFm��

p
k� algorithm for LDIFFm�	p

k
into two sub

problems� one being responsible for all strings x that are easy for length q�jxj�� and
one for all strings x that are hard for length q�jxj�� where q is a polynomial we will
specify exactly soon�

E We rst give a P	
p
k�� algorithm for all strings x in LDIFFm�	p

k
that are hard for length

q�jxj��
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Claim E� There exist a set A � P	
p
k�� and a polynomial q satisfying ��bm � 
��q�bm%�� �

q�bm� � 
� such that for all x � ��� if x is hard for length q�jxj� then

x 
� LDIFFm�	p
k
 �� x � A�

It is known that a collapse of the boolean hierarchy over �pi implies a collapse of
the polynomial hierarchy �see Chapter � for references and results�� The best known
results conclude a collapse of the polynomial hierarchy to a level within the boolean
hierarchy over �pi��� In other words� if LDIFFs�	

p
i 
many�one reduces to LDIFFs�	

p
i 
then

there is �at least� a P	
p
i	� algorithm for L	p

i	�
� Though a hard string for length n only

induces a many�one reduction between initial segments of LDIFFs�	
p
i 
and LDIFFs�	

p
i 
�

we would nevertheless like to derive a P	
p
i	� algorithm for some �to be specied soon�

of L	p
i	�
� The following lemma does exactly that�

Lemma ����� Let s � 	� m � �� and 
 � i � k � ��
Suppose that DIFFs��

p
i �	DIFFm��

p
k� is closed under complementation� There exist

a set D � P	
p
i	� and a polynomial r such that for all n� �a� r�n% �� � r�n� � 
 and

�b� for all x � ��� if x is a hard string for length r�n� then for all y � �����n�

y � L	p
i	�

�� hx� �n� yi � D�

We defer the proof of Lemma ����� and rst nish the proof of Claim E and the proof
of our theorem�

If x is a hard string for length q�jxj� we will use the result of Lemma ����� to obtain

a P	
p
k�� algorithm for all strings x in LDIFFm�	p

k
 that are hard for length q�jxj�� and

hence �since P	
p
k�� is closed under complementation� certainly a P	

p
k�� algorithm for

all strings x in LDIFFm�	p
k
 that are hard for length q�jxj��

To be more precise� suppose that x is a hard string for length r�n�� According to

the above Lemma ������ x induces a P	
p
i	� algorithm for all strings in

	
L	p

i	�


�n
that runs in time polynomial in n� What we would like to conclude is a P	

p
k��

algorithm for
	
LDIFFm�	p

k


�jxj
� Recall that LDIFFm�	p

k
� L���L���L��� � � �Lm���

Lm� � � � ��� where Lj � �
p
k for all j� Since L	p

k
is complete for �pk� there exist functions

f�� � � � � fm many�one reducing L�� � � � � Lm to L	p
k
� respectively� Let the output sizes of

all the fj"s be bounded by the polynomial p
�� which without loss of generality satises

��bm � 
��p��bm % �� � p��bm� � 
�� Hence an x�induced P	p
k�� algorithm for strings

in
	
L	p

k


�p��jxj
su�ces to give us a P	

p
k�� algorithm for strings in

	
LDIFFm�	p

k



�jxj
�
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But Lemma ����� gives us exactly this� if k � i%	 and if x is hard for length r�p��jxj���
More formally� note that if x is a hard string for length r�p��jxj�� we have that

x � LDIFFm�	p
k
 �� x � L� � �L� � �� � � � �Lm�� � Lm� � � � ��

�� f��x� � L	p
k
� ��f��x� � L	p

k
� ��� � � � ��fm�x� � D�� � � � ��

�� hx� �p
��jxj� f��x�i � D� � ��� � � � ��hx� �p

��jxj� fm�x�i � D�� � � � ��

Set A� � fx j hx� �p
��jxj� f��x�i � D����� � � ���hx� �p

��jxj� fm�x�i � D�� � � � �g and note

that clearly A� � P	
p
k�� �

Consequently� if k � i % 	 set A � A� and let q be a polynomial satisfying ��bm �

��q�bm%�� � q�bm� � 
� and for all n� q�n� � r�p��n��� Note that this proves Claim E
for k � i% 	�

For the case k � i % 	� let M be a �p
k��i�� machine recognizing L	p

k
with oracle

queries to L	p
i	�
and running in time q� for some polynomial q� satisfying ��bm �


��q��bm% �� � q��bm� � 
�� We can certainly replace the L	p
i	�
queries by queries to a

P	
p
i	� oracle and thus obtain a �pk�� algorithm �running in time polynomial in jxj� for	

L	p
k


�p��jxj
� if we ensure that Lemma ����� gives us an x�induced P	

p
i	� algorithm

for all strings in
	
L	p

i	�


�q��p��jxj
� Thus� if k � i%	 we need x to be hard for length

r�q��p��jxj����

More formally� if k � i%	 dene D� to be the set accepted by the following algorithm�

On input hx� yi simulate M
L
�
p
i	� �y� but replace every query z made by M

L
�
p
i	� �y� to

L	p
i	�
by a query hx� �q

��jyj� zi to D� Since M is a �p
k��i�� machine and D � P	

p
i	�

we conclude that D� � �pk��� Recall from Lemma ����� that for all n� if x is a hard
string for length r�n� then for all z� jzj 
 n�

z � L	p
i	�

�� hx� �n� zi � D�

Since for all n� M
L
�
p
i	� �y�� jyj 
 n� can only generate queries z of length at most q��n�

we have that if x is a hard string for length r�q��n�� then for all y� jyj 
 n�

y � L	p
k
�� hx� yi � D��

Hence� for all n� if x is hard for length r�q��p��n��� then for all � 
 i 
 m and all y�
jyj 
 n�

fi�y� � L	p
k
�� hx� fi�y�i � D��

Dene A� � fx j hx� f��x�i � D� ���hx� f��x�i � D� ���� � � ���hx� fm�x�i � D�� � � � ��g

and note that clearly A� � P	
p
k�� � It follows that if x is a hard string for length
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r�q��p��jxj��� then

x � LDIFFm�	p
k
 �� x � L� � �L� � �� � � � �Lm�� � Lm� � � � ��

�� f��x� � L	p
k
� ��f��x� � L	p

k
� ��� � � � ��fm�x� � D�� � � � ��

�� hx� f��x�i � D� � ��� � � � ��hx� fm�x�i � D�� � � � �

�� x � A��

So� for k � i%	 set A � A� and let q be a polynomial satisfying ��bm � 
��q�bm%�� �
q�bm� � 
� and for all n� q�n� � r�q��p��n���� It is not hard to verify that this proves
Claim E if k � i% 	�

F We now give a DIFFm��
p
k� algorithm for all strings x in LDIFFm�	p

k
 that are easy for

length q�jxj��

Claim F� Let q be the polynomial de�ned in E� There exist sets B�� B�� � � � � Bm � �pk such
that for all x � ��� if x is easy for length q�jxj� then

x � LDIFFm�	p
k

�� x � B� � �B� � �� � � �Bm�� �Bm� � � � ���

Let q be the polynomial dened in E� Clearly� we have the following algorithm to
test whether x � LDIFFm�	p

k
 in the case that �our input� x is an easy string for

length q�jxj�� On input x� guess x� with jx�j 
 q�jxj� and accept if and only if
�x� � LDIFFs�	

p
i 
� h��hx�� xi� � LDIFFs�	

p
i 
� and h���hx�� xi� � LDIFFm�	p

k
� This

algorithm is not necessarily a DIFFm��
p
k� algorithm� but it does inspire the following

DIFFm��
p
k� algorithm to test whether x � LDIFFm�	p

k
in the case that x is an easy

string for length q�jxj��

Let L�� L�� � � � � Lm be languages in �pk such that LDIFFm�	p
k
 � L� � �L� � �L� �

� � � �Lm�� � Lm� � � � �� and L� � L� � � � � � Lm�� � Lm �this can be done� as it is
simply the �telescoping� normal form of the levels of the boolean hierarchy over �pk�
see �CGH���� Hau����� For � 
 r 
 m� dene Br as the language accepted by the
following �pk machine� On input x� guess x� with jx�j 
 q�jxj� and accept if and only
if �x� � LDIFFs�	

p
i 
� h��hx�� xi� � LDIFFs�	

p
i 
� and h���hx�� xi� � Lr�

Note that Br � �
p
k for each r� and that B� � B� � � � � � Bm�� � Bm� We will

show that if x is an easy string for length q�jxj�� then x � LDIFFm�	p
k
 if and only if

x � B� � �B� � �B� � � � � �Bm�� �Bm� � � � ���

So suppose that x is an easy string for q�jxj�� Dene r� to be the unique integer such
that �a� 
 
 r� 
 m� �b� x � Bs� for � 
 s� 
 r�� and �c� x � Bs� for s

� � r�� It is
immediate that x � B� � �B� � �B� � � � � �Bm�� �Bm� � � � �� if and only if r

� is odd�

Let w be some string such that�

� �	x� � jx�j 
 q�jxj��
�h���hx�� xi� � w � �x� � LDIFFs�	

p
i 
� h��hx�� xi� � LDIFFs�	

p
i 
��� and
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� w � Lr� if r
� � 
�

Note that such a w exists� since x is easy for length q�jxj�� By the denition of
r� �namely� since x � Bs� for s

� � r��� w � Ls� for all s
� � r�� It follows that

w � LDIFFm�	p
k
 if and only if r

� is odd�

It is clear� keeping in mind the denition of h �and h�� h���� that

x � LDIFFm�	p
k

�� w � LDIFFm�	p
k

�� r� is odd

�� x � B� � �B� � �B� � � � � �Bm�� �Bm� � � � ���

This completes the proof of Claim F�

G Combining the results of Claims E and F we obtain

Claim G� LDIFFm�	p
k
 � DIFFm��

p
k��

We prove Claim G by showing that LDIFFm�	p
k
 �

cL� � �cL� � �cL� � �� � � �L̂m�� �cLm� � � � ��� for some sets cL��cL�� � � � � cLm � �pk�

Let the sets A � P	
p
k�� � B�� B�� � � � � Bm � �pk and the polynomial q be as dened in

E and F� For � 
 r 
 m� let cLr be the set accepted by the following �pk algorithm�
�� On input x determine whether the input x is an easy string for length q�jxj�� This
can be done with a one �pk�� oracle query� as checking whether the input is an
easy string for length q�jxj� can be done by one query to �pi��� and i%� 
 k� �
by our i � k � � hypothesis�

	� If the previous step determined that the input is not an easy string� then the
input must be a hard string for length q�jxj�� If r � � then accept if and only if
x � A� If r � � then reject�

�� If the rst step determined that the input x is easy for length q�jxj�� then accept
if and only if x � Br�

Note that the �pk�� oracle �implicitly described� in the above algorithm is being used
for a number of di�erent sets� However� as �pk�� is closed under disjoint union� this
presents no problem as we can use the disjoint union of the sets� while modifying the
queries so they address the appropriate part of the disjoint union�

It follows that� for all x � ���

x � LDIFFm�	p
k
 �� x � cL� � �cL� � �cL� � � � � �L̂m�� � cLm� � � � ���

H Since LDIFFm�	p
k
 is complete for coDIFFm��

p
k�� we conclude that DIFFm��

p
k� is closed

under complementation� DIFFm��
p
k� � coDIFFm��

p
k��
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We now give the proof of Lemma ������ The upcoming proof should be seen in the
context with the proof of Theorem ����� as some notations we are going to use are dened
there�

Proof of Lemma ������ Our proof closely follows the proof of Theorem ����� in order to
emphasize the technical di�erences that make the current proof valid� Let t be a polynomial
such that jhx�� x�� � � � � xjij 
 t�maxfjx�j� jx�j� � � � � jxj jg� for all � 
 j 
 	s % 	 and all
x�� x�� � � � � xj � �

�� Without loss of generality let t be such that t�n% �� � t�n� � 
 for all
n� Dene t���n� � n and t�j�n� � t�t�� � � t� �z �

j times

�n� � � � �� for all n and all j � ��

Recall the denitions from A of the proof of Theorem ����� regarding L	p
i
� L	p

i	�
� L	p

i	�
�

LDIFFs��
p
i 
� and LDIFFs�	

p
i 
�

Dene r to be a polynomial such that r�n%�� � r�n� � 
 and r�n� � t�s���n� for all n�
Let n be an integer� Suppose that x is a hard string for length r�n� in the sense as dened
in D of the proof of Theorem ������ Then� for all y such that jyj 
 r�n��

y � LDIFFs�	
p
i 

�� hx�y� � LDIFFs�	
p
i 
�

or equivalently

y � LDIFFs��
p
i 

�� hx�y� � LDIFFs��
p
i 
�

Recall that hx�y� can be computed in time polynomial in maxfjxj� jyjg� Let for all a � �
��

h�a and h
��
a be the functions such that for all y � �

�� ha�y� � hh�a�y�� h
��
a�y�i� Clearly� h

�
x�y�

and h��x�y� can be computed in time polynomial in maxfjxj� jyjg� Thus� for all y�� y� � �
�

such that jy�j 
 n and jy�j 
 t�s���n��

��� y� � L�p
i
� y� � LDIFFs����

p
i 

�� h�x�hy�� y�i� � L�p
i
� h��x�hy�� y�i� � LDIFFs����

p
i 
�

We say that y� is s�easy for length n if and only if jy�j 
 n and �	y� � jy�j 

t�s���n���h�x�hy�� y�i� � L�p

i
�� y� is said to be s�hard for length n if and only if jy�j 
 n�

y� � L�p
i
� and ��y� � jy�j 
 t�s���n���h�x�hy�� y�i� � L�p

i
�� Observe that the above notions

are dened with respect to our hard string x� since h�x�hy�� y�i depends on x� y�� and y��
Furthermore� according to �)�� if y� is s�easy for length n then y� � L�p

i
�

Suppose there exists an s�hard string �s for length n� Let for all a� b � ��� h�a�b be
the function such that for all z � ��� h�a�b�z� � h��a�hb� zi�� Note that h�x��s�y� can be
computed in time polynomial in maxfjxj� j�sj� jyjg� In analogy to the above we dene s���
easy and s � ��hard strings� If an s � ��hard string exists we can repeat the process and
dene s� 	�easy and s � 	�hard strings and so on� Note that the denition of j�easy and
j�hard strings can only be made with respect to our hard string x� some xed s�hard string
�s� some xed s � ��hard string �s��� � � � � some xed j % ��hard string �j��� If we have
found a sequence of strings ��s� �s��� � � � � ��� such that every �j is j�hard with respect to
�x� �s� �s��� � � � � �j��� then we have for all y� jyj 
 n�

y � L�p
i
�� h�x��s��s����������y� 
� L�p

i
�
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We say that a string y is ��easy for length n if and only if jyj 
 n and h�x��s��s����������y� 
�
L�p

i
� We dene that no string is ��hard for length n�

�x� is called a hard sequence for length n� A sequence �x� �s� �s��� � � � � ��� of strings is
called a hard sequence for length n if and only if �s is s�hard with respect to x and for all
j� � 
 j 
 s� �� �j is j�hard with respect to �x� �s� �s��� � � � � �j���� Note that given a hard
sequence �x� �s� �s��� � � � � ���� the strings in �L�p

i
��n divide into �� ��easy and �� ��hard

strings �with respect to �x� �s� �s��� � � � � ���� for length n�
�x� is called a maximal hard sequence if and only if there exists no s�hard string for length

n� A hard sequence �x� �s� �s��� � � � � ��� is called a maximal hard sequence for length n if
and only if there exists no ����hard string for length n with respect to �x� �s� �s��� � � � � ����
If we in the following denote a maximal hard sequence by �x� �s� �s��� � � � � ��� we explicitly
include the case that the maximal hard sequence might be �x� or �x� �s��

Claim �� There exists a set A � �pi such that if �x� �s� �s��� � � � � ��� is a maximal hard

sequence for length n then for all y and n satisfying jyj 
 n it holds that�

y � L�p
i
�� hx� �n� �s� �s��� � � � � ��� yi � A�

Proof of Claim �� Let �x� �s� �s��� � � � � ��� be a maximal hard sequence for length n� Note
that � � 	 and that the strings in �L�p

i
��n are exactly the strings of length at most n that are

������easy with respect to �x� �s� �s��� � � � � ���� But it is immediate from the denition that
testing whether a string y is ������easy for length n with respect to �x� �s� �s��� � � � � ��� can
be done by a �pi algorithm running in time polynomial in n� If � � �� check jyj 
 n� guess y��
jy�j 
 t�����n�� compute h��x��s��s���������

and accept if and only if h��x��s��s���������
� L�p

i
� If

� � 	� check jyj 
 n� and accept if and only if h�x��s��s����������y� 
� L�p
i
�

Claim �� There exist a set B � �pi and a polynomial bp such that ��n � 
��bp�n% �� �bp�n� � 
� and if �x� �s� �s��� � � � � ��� is a maximal hard sequence for length bp�n� then for all

y and n satisfying jyj 
 n it holds that�

y � L	p
i	�

�� hx� �n� �s� �s��� � � � � ��� yi � B�

Proof of Claim 	� Let A � �pi as in Claim �� Let y be a string such that jyj 
 n� According
to the denition of L	p

i	�
�

y � L	p
i	�

�� �	z � jzj � jyj��hy� zi 
� L	p
i
��

Recall that L�p
i
� L	p

i
� Dene bp to be a polynomial such that bp�n % �� � bp�n� � 
 andbp�n� � t�n� for all n� In light of Claim �� we obtain that if �x� �s� �s��� � � � � ��� is a maximal

hard sequence for length bp�n� then
y � L	p

i	�
�� �	z � jzj � jyj��hx� �bp�n� �s� �s��� � � � � ��� hy� zii � A��

We dene B � fhx� �n� �s� �s��� � � � � �j � yi j�	z � jzj � jyj��hx� �bp�n� �s� �s��� � � � � �j� hy� zii �
A�g� Clearly B � �pi � This proves the claim�
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Claim �� There exist a set C � �pi�� and a polynomial bp� such that ��n � 
��bp��n%�� �bp��n� � 
 and if �x� �s� �s��� � � � � ��� is a maximal hard sequence for length bp��n�� then for

all y and n satisfying jyj 
 n it holds that�

y � L	p
i	�

�� hx� �n� �s� �s��� � � � � ��� yi � C�

Proof of Claim �� Let B � �pi and bp be a polynomial� both as dened in Claim 	� Let y
be a string such that jyj 
 n� According to the denition of L	p

i	�
�

y � L	p
i	�

�� �	z � jzj � jyj��hy� zi 
� L	p
i	�
��

Dene bp� to be a polynomial such that bp��n%�� � bp��n� � 
 and bp��n� � bp�t�n�� for all n�
In light of Claim 	� we obtain that if �x� �s� �s��� � � � � ��� is a maximal hard sequence for
length bp��n� then

y � L	p
i	�

�� �	z � jzj � jyj��hx� �bp��n� �s� �s��� � � � � ��� hy� zii � B��

Set C � fhx� �n� �s� �s��� � � � � �j � yi j �	z � jzj � jyj��hx� �bp��n� �s� �s��� � � � � �j � hy� zii � B�g�
Clearly C � �pi���

Claim �� There exists a set D � P	
p
i	� such that for all y and n satisfying jyj 
 n it

holds that�

y � L	p
i	�

�� hx� �n� yi � D�

Proof of Claim 
� Let C � �pi�� and bp� be a polynomial� both as dened in Claim �� Note
that

fhx� �n� �s� �s��� � � � � ��i j �x� �s� �s��� � � � � ��� is a hard sequence for length bp��n�g
is a $p

i set� Consequently� the set of strings hx� �
n� ki such that there exists a hard sequence

for length bp��n� of length k is a �pi�� set�
The following P	

p
i	� algorithm accepts hx� �n� yi if and only if y � L	p

i	�
� On input

hx� �n� yi compute the largest k such that there exists a hard sequence for length bp��n�
of length k� Then guess strings �s� �s��� � � � � �s�k�� of length at most bp��n�� Verify
that �x� �s� �s��� � � � � �s�k��� is a hard sequence for length bp��n� and accept if and only
if hx� �n� �s� �s��� � � � � �s�k��� yi � C�


���� Applications and Concluding Remarks

It is evident that Theorem ����� misses one interesting case� namely� the case i � k��� Note
that the i � k case has been considered in detail in Chapter �� Why is our proof unable to
also establish the i � k � � case� First of all� we crucially rely on a preliminary easy�hard
test for every input in the nal DIFFm��

p
k� algorithm for LDIFFm�	p

k
� As has been noted

already in Section ��	 this test is responsible for the i � k� � constraint� But besides that�
there is a second place where we can not overcome i � k � �� Recall that Lemma ������
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very informally put� shows that if x is a hard string for su�ciently large length there is a
P	

p
i	� algorithm for some strings in L	p

i	�
� Observe that the proof of Lemma ����� does not

require i � k��� Though with a bit more e�ort one can even in the i � k�� case show that
there exists a DIFFs��

p
i �	DIFFs����

p
i��� algorithm for some of L	p

i	�
it is not at all clear

how to combine the resulting DIFFs��
p
i �	DIFFs����

p
k� algorithm for LDIFFm�	p

k
 with the

DIFFm��
p
k� algorithm for LDIFFm�	p

k
 emerging from the �x is easy� case� if no preliminary

easy�hard test is made�
However� proving the i � k�� analogue of Theorem ����� would instantaneously improve

Theorem ������ Suppose the statement of Theorem ����� could be extended to remain valid
also for 
 � i � k��� Furthermore� assume that BHm � coBHm� m � 	� According to The�
orem ����� we conclude BHm	DIFFm����

p
�� � co�BHm	DIFFm����

p
��� � PH� By the

above mentioned hypothetic strengthened downward collapse claim this would immediately
imply DIFFm����

p
�� � coDIFFm����

p
�� � PH� a truly surprising result�

Theorem ����� has a number of interesting applications� Query order classes of the form

P
�	p

i �	
p
k

s�m
tt � i � k� have been studied in �BC� and �Wag���� Beigel and Chang �BC� mention

that P
�	p

i �	
p
k


s�m
tt � P
�	p

i �	
p
k


s���m
tt implies that the polynomial hierarchy collapses�
In light of Theorem ����� and Corollary ����	� we can make this claim for i � k�� more

precise�

Theorem ����� For all s�m � � and all 
 � i � k � �� if P
�	p

i �	
p
k


s�m
tt � P
�	p

i �	
p
k


s���m
tt then
PH � DIFFm��

p
k�	DIFFm����

p
k����

Proof� It is not hard to verify that for all s�m � � and all i� k � 
�

P
�	p

i �	
p
k


s�m
tt � DIFFs����
p
i �	DIFFm��

p
k� � P

�	p
i �	

p
k


s���m
tt�

In fact� one can via standard mind�change manipulations show �see also �Wag���� that

P
�	p

i �	
p
k


s�m
tt � P�DIFFs�	
p
i �DIFFm�	p

k
�

Thus�

P
�	p

i �	
p
k

s�m
tt � P
�	p

i �	
p
k

s���m
tt �� DIFFs����
p
i �	DIFFm��

p
k� � co�DIFFs����

p
i �	DIFFm��

p
k���

For 
 � i � k � � we conclude DIFFm��
p
k� � coDIFFm��

p
k� from our Theorem ������ In

light of Corollary ����	� this collapse in the boolean hierarchy over �pk implies a collapse of
the polynomial hierarchy to DIFFm��

p
k�	DIFFm����

p
k����





Chapter �

Query Order

�� Introduction

The order in which information sources are accessed is important in every aspect of our life�
Does this observation carry over into complexity theory� In complexity theory information
sources are usually modeled by oracles� Oracles are used for a number of purposes� one of
them being relativization with full complexity classes� Relativization with full complexity
classes is routinely done in structural complexity theory� The most well known application
can be found in the denition of the polynomial hierarchy� However� until now relativiza�
tion with full complexity classes has been limited to allow just one oracle from one single
complexity class per machine� Allowing a base machine to access two di�erent oracles from
di�erent complexity classes naturally leads to the question of whether the order in which
the two di�erent oracles are accessed is crucial for the computational power of the so dened
class� Query order is a task that has never before been studied in complexity theory�

In this chapter we study the importance of query order� In Section ��	 we ask whether
the order of queries is crucial if the oracle sets are taken from di�erent levels of the boolean
hierarchy� We show that the order of queries to levels of the boolean hierarchy is important
for the computational power of the resulting class unless the polynomial hierarchy collapses�
We achieve this by characterizing query order classes in terms of reducibility closures of NP�
In particular� we prove that for j� k � �� PBHj �BHk � Rp

j��k��
tt�NP� if j is even and k is

odd� and PBHj �BHk � Rp
j��k
tt�NP� otherwise� This result has applications for the case of

more complicated tree�like query structures� where similar characterizations are obtained�

In Section ��� we study query order in the polynomial hierarchy� Section ��� is di�
vided into two parts� The rst part gives an overview over query order results in the
polynomial hierarchy that have been obtained since the results of Section ��	 rst appeared
in �HHW���� The most interesting query order classes� one query to each of two oracles
from di�erent levels of the polynomial have been studied by Hemaspaandra� Hemaspaan�
dra� and Hempel �HHH��b�� In a nutshell� query order does not matter in the polynomial
hierarchy� Generalizing query order classes to more than one query in each round� Beigel
and Chang �BC� have shown an analogous result when the two oracles are from di�erent
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levels of the polynomial hierarchy� The order of �parallel� query rounds does not matter�
They left open the case that the two oracles are taken from the same level� a question we
will solve in the second part of Section ���� Wagner �Wag��� has proven several results
that show the close connection between query order classes in the polynomial hierarchy and
Selivanov"s generalized boolean hierarchies �Sel��a� Sel����

In the second part of Section ��� we show that also in the case that two consecutive
rounds of parallel queries are made to oracles from the same level of the polynomial hier�

archy� the order of query rounds is irrelevant� for all i� j� k � �� P
	p
i �	

p
i

j�k
tt � P
	p
i �	

p
i

k�j
tt � However�
in general the two rounds of queries can not be made simultaneously unless the polynomial
hierarchy collapses� Our result follows from a general characterization that we prove� for

all i� j� k � �� P
	p
i �	

p
i

j�k
tt � R
p
j�jk�k
tt��

p
i ��

In Section ��� we give a short overview over results that grew out of the study of query
order classes or are related to query order�

�� Query Order in the Boolean Hierarchy

We ask whether the order of queries matters in the boolean hierarchy� In particular� for
classes BHj and BHk from the boolean hierarchy �CGH

���� CGH����� we ask whether one
question to a BHj oracle followed by one question to a BHk oracle is more powerful than
one question to a BHk oracle followed by one question to a BHj oracle� That is� we seek
the relative powers of the classes PBHj �BHk and PBHk�BHj �

All the results of Section ��	 follow from a general characterization of classes of the form
PBHj �BHk � We prove via the mind change technique that� for j� k � ��

PBHj �BHk �

�
Rp
j��k��
tt�NP� if j is even and k is odd�

Rp
j��k
tt�NP� otherwise�

This shows that in almost all cases� PBHj �BHk is so powerful that it can do anything that can
be done with j %	k truth�table queries to NP� Since� based on the answer to the rst BHj
query� there are two possible BHk queries that might follow� j % 	k is exactly the number
of queries asked in a brute force truth�table simulation of PBHj �BHk � Thus� our result shows
that �in almost all cases� the power of the class is not reduced by the nonlinear structure
of the j % 	k queries underlying PBHj �BHk(that is� the power is not reduced by the fact
that in any given run only j % k underlying NP queries will be even implicitly asked �via
the BHj query and the one asked BHk query�� We say �in almost all cases� as if j is even
and k is odd� we prove there is a power reduction of exactly one level�

In Subsection ��	�	 we consider classes of the form PBHj �BHk�BHl and also classes with
a more complicated query structure� We generalize the above characterization to apply
broadly to classes with tree�like query structure�
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���� The Base Case

In this section we will handle classes only of the form PBHj �BHk � We show that for no j�
k� j�� and k� are PBHj �BHk and PBHj� �BHk� incomparable� The main theorem of this section�
Theorem ��	�� shows that for all j� k � �� PBHj �BHk � Rp

j��k��
tt�NP� if j is even and

k is odd� and PBHj �BHk � Rp
j��k
tt�NP� otherwise� Our proof employs the mind change

technique� which predates complexity theory� In particular� we show that PBHj �BHk has at
most j%	k �j%	k�� if j is even and k is odd� mind changes� and that BHj��k �BHj��k��
if j is even and k is odd� is contained in PBHj �BHk �

The mind change technique or equivalent manipulation �see �Wag��� for an early appli�
cation in automata theory� was applied to complexity theory in each of the early papers on
the boolean hierarchy� including the work of Cai et al� �CGH���� �see also �Wec��� CH�����
K�obler et al� �KSW���� Wagner �Wag�
�� and Beigel �Bei���� These papers use mind changes
for a number of purposes� Most crucially they use the maximum number of mind changes
�what a mind change is will soon be made clear� of a class as an upper bound that can be
used to prove that the class is contained in some other class� In the other direction� they also
use the number of mind changes that certain classes(especially the classes of the boolean
hierarchy due to their normal form as nested subtractions of telescoping sets �CGH����(
possess to show that they can simulate other classes� Even for classes that have the same
number of mind changes� relativized separations are obtained via showing that the mind
changes are of di�erent character �mind change sequences are of two types� depending on
whether they start with acceptance or rejection�� The technique has also proven useful in
many other more recent papers� e�g�� �CK��� Cha��� BCO��� �see also Chapter ���

To make clear the basic nature of mind change arguments� in a simple form� we give an
example� We informally argue that each set that is m�truth�table reducible to NP is in fact
in Rp

�
tt�BHm��

Lemma ����� For every m � �� Rp
m
tt�NP� � R

p
�
tt�BHm��

Proof� This fact �stated slightly di�erently� is due to K�obler et al� �KSW���� and the
proof !avor presented here is most akin to the approach of Beigel �Bei���� Consider an m�
truth�table reduction to an NP set� F � Let L be the language accepted by them�truth�table
reduction to F � Consider some input x and without loss of generality assume m queries are
generated� Let us suppose for the moment that the reduction rejects when all m queries
receive the answer �no�� Consider the m�dimensional hypercube such that one dimension
is associated with each query �
 in that dimension means the query is answered no and �
means it is answered yes�� So the origin is associated with all queries getting the answer
�no� and the point ����������� is associated with all queries getting the answer �yes�� Now�
also label each vertex with either A �accept� or R �reject� based on what the truth�table
would do given the answers represented by that vertex� So under our supposition� the
origin has the label R� Finally� label each vertex with an integer as follows� Label the
origin with 
� Inductively label each remaining vertex with the maximum integer induced
by the vertices that immediately precede it �i�e�� those that are the same as it except one yes
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answer has been changed to a no answer�� A preceding vertex v with integer label i induces
in a successor v� the integer i%� if v and v� have di�erent A�R labels� and i if they have the
same label� Note that vertices given even labels correspond to rejection and those given odd
labels correspond to acceptance� Informally� a mind change is just changing one or more
strings from no to yes in a way that moves us from a vertex labeled i to one labeled i% ��
For � 
 i 
 m� let Bi be the NP set that accepts x if �in the queries�labeling generated by
the action of the truth�table on input x� for some vertex v labeled i all the queries v claims
are yes are indeed in the NP set F � Note that B� � B� � B� � � � � � as if a node labeled v
is in Bj � j � 	� then certainly its predecessor node with label j�� must be in Bj��� as that
predecessor represents a subset of the strings v represents� But now note that L is exactly
B� � �B� � �B� � �� � � � �Bm�� � Bm� � � � ���� Why� Let the vertex w �say with integer
label iw� represent the true answers to the queries� Note that by construction� x � Bq for
all q 
 iw but x � Bq for any q � iw� As the Bi were alternating in terms of representing
acceptance and rejection� and given the format B�� �B�� �B�� �� � � � �Bm���Bm� � � � ����
the set B� � �B� � �B� � �� � � � �Bm�� � Bm� � � � ���� will do exactly what Biw represents�
namely� the action on the correct answers� Thus� we have just given a proof that an m�
truth�table reduction that rejects whenever all answers are no can be simulated by a set in
BHm� Of course� one cannot validly assume that the reduction rejects whenever all answers
are no� But it is not hard to see �analogously to the above� that the case of inputs where the
reduction accepts when all answers are no can �analogously to the above� be handled via
the complement of a BHm set� and that �since what the truth�table reduction does when
all answers are no is itself polynomial�time computable� via a set in Rp

�
tt�BHm� we can
accept an arbitrary set in Rp

m
tt�NP�� Of course� it is clear by brute force simulation that
Rp
�
tt�BHm� � R

p
m
tt�NP�� and so it holds that R

p
�
tt�BHm� � R

p
m
tt�NP��

What actually is being shown above is that Rp
�
tt�BHm� can handle m appropriately

structured mind changes� starting either from reject or accept� In the following theorem�
the crucial things we show are that �a� PBHj �BHk can simulate� starting at either accept or
reject� j%	k �respectively� j%	k� �� mind changes if j is odd or k is even �respectively� if
j is even and k is odd�� and �b� for j even and k odd� PBHj �BHk can never have more than
j % 	k � � mind changes� We achieve �b� by examining the possible mind change !ow of a
PBHj �BHk machine� j even and k odd� and showing that either a mind change is !agrantly
wasted� or a certain underlying graph has an odd length directed cycle �which thus is not
two�colorable� and from this will lose one mind change��
Since our arguments in the proofs of this section use paths in hypercubes� we will nd

useful the concept of an ascending path in a hypercube� Let K � f
� �gd be the d�
dimensional hypercube� Then every path p in K can be described as a linear combination
of unit vectors u�� � � � � ud� where ui is the ith unit vector� We call p an ascending path in
K leading from �
� 
� � � � � 
� to v if and only if it can be identied with a sum

ui� % ui� % � � �% uin

of distinct unit vectors u� � such that the vertices of this path p are

v� � �
� � � � � 
�� v� � ui� � v� � ui� % ui� � � � � � v � ui� % ui� % � � �% uin �
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Accept

Reject

Reject

q��x� � B �

Accept

yes

no

yes

no

yes

no

Input x q��x� � A �

q��x� � B �

Figure ���� Query Tree of a Machine Having Acceptance Scheme �	�

We will call this sum the description of p� Note that the order of the u"s matters� as
a permutation of the u"s results in another path� We call p an ascending path �without
specifying starting point and endpoint� if p is an ascending path leading from �
� 
� � � � � 
�
to ��� �� � � � � ���
Before turning to results� we will rst study the structure of ascending paths in labeled

hypercubes and give some necessary denitions� Building upon them� we will then prove
Lemma ��	��� which states that PBHj �BHk can handle exactly j % 	k �j % 	k � � if j is even
and k is odd� mind changes�
Let M be a PBHj �BHk machine with oracles A � BHj and B � BHk and let x � �

�� On
input x� M rst makes a query q��x� to A and then if the answer to the rst query was no
asks query q��x� to B and if the answer to the rst query was yes asks query q��x� to B
�see also Figure ����� Without loss of generality assume that on every input x exactly two
queries are asked�
Every set C � BHl can be written as the nested di�erence of sets C�� C�� � � � � Cl � NP

C � C� � �C� � �� � � � �Cl�� � Cl� � � � ��

and following Cai et al� �CGH���� we even can assume that

Cl � Cl�� � � � � � C� � C��

Hence a query �q � C�� can certainly be solved via l queries �q � C���� �q � C���� � � � �
�q � Cl��
In light of this comment� we let

A � A� � �A� � �� � � � �Aj�� �Aj� � � � �� where Ai � NP for i � �� 	� � � � � j

and Aj � � � � � A�� and

B � B� � �B� � �� � � � �Bk�� �Bk� � � � �� where Bi � NP for i � �� 	� � � � � k

and Bk � � � � � B��
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q��x� �Input x

A

A�

A�

A�

A�

B�

B�

B�

B�

B�

B�

B�

B�

Accept

Reject

Reject

Accept

q��x � A

q��x �� A

q��x � B

q��x �� B

q��x � B

q��x �� B

q��x� �

q��x� �

Figure ��	� Rened Query Tree of a PBH��BH� Machine Having Acceptance Scheme �	�� The
inclusion structure of the underlying NP sets is shown� A black dot indicates a potential
membership situation for the asked query whereas its attached arrow points to the resulting
oracle answer received by the base machine�

An example displaying the connection between the membership of a query with respect
to the underlying NP sets and the actual oracle answer received by the base machine is
given in Figure ��	�
For the sake of deniteness let us assume that the queries

q��x� � A�� � � � � q��x� � Aj � q��x� � B�� � � � � q��x� � Bk� q��x� � B�� � � � � q��x� � Bk

correspond in this order to the j % 	k dimensions of the �j % 	k��dimensional hypercube
H � f
� �gj��k � More precisely� a vector �a�� � � � � aj��k� � H is understood to consist of the
answers to the above�mentioned queries� where 
 means no and � means yes�
Since a query �q � C�� for some C � BHl and C � C� � �C� � �� � � �Cl�� � Cl� � � � ��

can be solved by evaluating the answers to �q � C���� �q � C���� ���� �q � Cl�� every
node v � H gives us answers to �q��x� � A�� �by evaluating the rst j components of v��
to �q��x� � B�� �by evaluating the k components of v that immediately follow the rst j
components of v� and to �q��x� � B�� �by evaluating the last k of v"s components�� This
gives us a labeling of all vertices of H� We simply assign label A �Accept� to vertex v � H
if MA�B�x� accepts if the answers to the two asked questions are as determined by v� If
MA�B�x� rejects in this case we assign label R �Reject� to v�
So let HM �x� be the �j%	k��dimensional hypercube labeled according toM

A�B�x�� The
number of mind changes on an ascending path p of HM �x� leading from �
� 
� � � � � 
� to a
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vertex t is by denition the number of label changes when moving from �
� 
� � � � � 
� to t
along p� The number of mind changes of an internal node v of HM �x� is the maximum
number of mind changes on an ascending path leading from �
� 
� � � � � 
� to v� And nally�
the number of mind changes of a PBHj �BHk machineM is by denition the maximum number
�we take the maximum over all x � ��� of mind changes of the vertex ��� �� � � � � �� in HM�x��
in other words� this number is the maximum number of label changes on an ascending path
in HM �x� for some x � �

��
We say we lose a mind change �between two adjacent vertices vi and vi��� along an

ascending path if when moving from vi to vi�� the machine does not change its acceptance
behavior�
One can easily verify the following fact�

Fact ����� If M is a PBHj �BHk machine such that on input x the acceptance behavior is
independent of the answer to one or more of the two possible second queries �that is� if for
at least one of the second queries both a yes and a no answer yield the same acceptance or
rejection behavior�� then we lose at least one mind change on every path in HM�x��

So from now on let MA�B�x� be a PBHj �BHk machine that has on input x one of the
following four acceptance schemes �for an example see Figure �����

��� M accepts if and only if exactly one of the two sequential queries is answered yes�

��� M accepts if and only if either both or neither of the two asked queries is answered yes
�see also Figure �����

��� M accepts if and only if the second query is answered yes�

��� M accepts if and only if the second query is answered no�

Fact ����� If p is an ascending path in HM�x� such that p contains adjacent vertices v and
v % ud such that

d 
 j and the �d��th component of v is 
 for some d� � d�

then p loses a mind change�

Proof� Since A � BHj and thus A � A���A���� � ���Aj���Aj� � � � �� and there is a 
 in
the �d��th component of v and v % ud� both vertices yield the same answer to �q��x� � A��
The � in the dth component of v%ud has no a�ect at all on the answer to �q��x� � A�� and
so on the outcome ofMA�B�x�� Hence� both vertices have the same label and p loses a mind
change�
Similarly� one can prove that if p is an ascending path and p contains two adjacent

vertices v and v % ud such that j � d� � d 
 j % k and the �d��th component of v is 
 or
j % k � d� � d 
 j % 	k and the �d��th component of v is 
 then p also loses one mind
change�
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So from now on let us focus only on paths p that change their rst j� second k and last
k dimensions from the smallest to the highest dimension in each group� This allows us to
simplify the description of paths as follows� Let e� be the following operator on H�

e���a�� � � � � aj��k�� �

�
�a�� � � � � ai��� �� � � � � aj��k� if i 
 j� ai � 
 � ��j � j � i��aj � ���
�a�� � � � � aj��k� otherwise�

The operators e� and e� act on the index groups �j % �� � � � � j % k� and �j % k % �� � � � � j %
	k�� respectively� in the same manner� the zero component with smallest index among
the zero components is incremented by �� The only reasonable paths to consider are
those emerging from repeated applications of e�� e� and e� to �
� � � � � 
�� We will use
�ei� � ei� � � � � � eij	�k� to denote the path with vertices v� � �
� � � � � 
�� v� � ei��v��� v� �
ei��v��� � � � � vj��k � eij	�k�vj��k��� � ��� �� � � � � ���
The next fact gives su�cient conditions for an ascending path to lose a mind change� namely�

Fact ����� On any ascending path p a mind change loss occurs if�

Case ��� there is an e� after an odd number of e�"s in the description of p� or

Case ��� there is an e� after an even number of e�"s in the description of p� or

Case � the description of p contains a sequence of odd length at least � that starts and
ends with e� and contains no other e�"s�

Proof� We will call the occurrence of Case ��� �Case ��	� in p an �e��loss� ��e��loss�� and
the occurrence of Case 	 an �odd episode�� In general we call a subpath of p of length at
least � that starts and ends with e� and contains no other e� an episode�
Intuitively p loses a mind change in the case of Case ��� ���	�� since in the actual

computation M�x� does not really ask query q��x� �q��x�� and so a change in the answers
to the k underlying NP queries of q��x� �q��x�� does not a�ect the outcome of the overall
computation�
Intuitively in Case 	 the following argument holds� If the description of p contains an

odd episode� say starting with eil � e� and ending with eil� � e�� then vl��� vl� � � � � vl� form
an even�length subpath p� of p� If the odd episode contains both e�"s and e�"s then note
that Case � applies and we are done� In fact due to Case �� we may hence forward assume
the odd episode� between the starting and the ending e�"s� has only e�"s �respectively e�"s��
if we have an even �respectively odd� number of e�"s up to and including the e� starting
the odd episode� So in this case vl�� and vl� have the same label Accept�Reject� The
acceptance behavior of MA�B�x� due to vl�� and vl� is the same� because after two e�"s
the answer to �q��x� � A�� is the same as it was before the two e�"s� and the e�"s �e�"s�
have not in!uenced the answer to q��x� �q��x��� Thus we have a subpath of even length�
namely� vl��� vl� � � � � vl� � whose starting point and endpoint have the same Accept�Reject
label� To assign to each vertex of this path an Accept�Reject label in such a way that no
mind changes are lost is equivalent to the impossible task of 	�coloring an odd cycle� Hence
we lose at least one mind change for every occurrence of an odd episode�
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Before stating and proving the main theorem of this section� we show the following
lemma� Lemma ��	��� which tells how many mind changes PBHj �BHk can handle� We say a
complexity class PBHj �BHk can handle exactly m mind changes if and only if �a� no PBHj �BHk

machine has more than m mind changes and �b� there is a specic PBHj �BHk machine that
has m mind changes� It is known �see� e�g�� �CGH���� KSW��� Bei���� that Rp

k
tt�NP� can
handle exactly k mind changes�

Lemma ����� The class PBHj �BHk can handle exactly m mind changes� where

m �

�
j % 	k � � if j is even and k is odd�
j % 	k otherwise�

Proof� We rst consider the case in which j is even and k is odd�
We want to argue that for every PBHj �BHk machine M and every x � ��� on every

ascending path in the j % 	k dimensional� appropriately labeled� hypercube HM�x� there
are at most j % 	k � � mind changes� Let x � �� and M be a PBHj �BHk machine with the
oracles A and B� Due to Facts ��	�� and ��	�	� it su�ces to consider a PBHj �BHk machine
M with one of the four previously mentioned acceptance schemes on input x and to show
that every path p having the introduced description loses at least one mind change� Let
M�x� be such a machine and p be such a path� There are two possibilities�

Case A The description of p contains an e��loss or an e��loss�
According to Fact ��	��� p loses at least one mind change�

Case B The description of p contains neither an e�� loss nor an e��loss�
Hence the description of p consists of blocks of consecutive e�"s and e�"s separated by
blocks of e�"s� Since the description of p contains k e�"s and k is odd� there is a block of
e�"s of odd size in p� Since we have no e��loss and j is even this block is surrounded by
e�"s� Thus we have an odd episode in the description of p and� according to Fact ��	���
p loses a mind change�

So no PBHj �BHk machine can realize more than j % 	k � � mind changes�
It remains to show that there is a PBHj �BHk machine and an input x � �� such that in

the associated hypercube HM �x� there is a path having exactly j % 	k � � mind changes�
Let us consider the path p��

p� � �e�� e�� � � � � e�� �z �
k

� e�� e�� � � � � e�� �z �
j��

� e�� e�� � � � � e�� �z �
k

� e���

Consider the deterministic oracle machine W that asks two sequential queries �all three
underlying queries di�er pairwise� and accepts an input x if and only if the second query of
W �x� was answered yes �acceptance scheme ����� We know as just shown that all ascending
path of HW �x� have at most j % 	k � � mind changes� Note that for every x � �� the
path p� loses only one mind change and thus P

BHj �BHk can handle exactly j % 	k � � mind
changes�
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We now turn to the j is odd or k is even case of the lemma being proven�

Since our hypercube has in all three cases j % 	k dimensions PBHj �BHk can handle at
most j % 	k mind changes�

If j is odd� we consider the path

p� � �e�� e�� � � � � e�� �z �
k

� e�� e�� � � � � e�� �z �
j

� e�� e�� � � � � e�� �z �
k

�

and the machine with three pairwise di�erent underlying queries having for every input x
acceptance scheme ��� or ��� for k odd or even� respectively� If j is even and k even we
consider path p� and the machine having acceptance scheme ��� for every input�

In each of these cases the considered machine changes its mind along the associated
path exactly j%	k times� Hence for j odd or k even the class PBHj �BHk can handle exactly
j % 	k mind changes�

Now we are ready to prove our main theorem of this section�

Theorem ����� For j� k � ��

PBHj �BHk �

�
Rp
j��k��
tt�NP� if j is even and k is odd�

Rp
j��k
tt�NP� otherwise�

Proof� In order to avoid unnecessary case distinctions we prove the fact for arbitrary j
and k and simply denote the appropriate number of mind changes by m� namely� j%	k� �
if j is even and k is odd and j % 	k otherwise �see Lemma ��	���� First� we would like
to show that PBHj �BHk � Rp

m
tt�NP�� We show this by explicitly giving the appropriate
truth�table�reduction�

Let A � PBHj �BHk and let m be the number of mind changes �see Lemma ��	��� the
class PBHj �BHk can handle� Let M be a deterministic oracle machine� witnessing A �
PBHj �BHk � via the sets S� � BHj and S� � BHk� It is not hard to verify that the set
Q � fhx� ki j M�x� has at least k mind changesg is an NP set� Note that if M�x� on a
particular input x rejects �respectively accepts� if both queries have the answer �no� then
MS��S��x� accepts if and only if the node �of the implicit hypercube� associated with the
actual answers has an odd �respectively even� number of mind changes�

Dene the variables o� y�� y�� � � � � ym and the m�ary boolean function 	�
o � 
 if MS��S��x� rejects if both queries are answered no�
o � � if MS��S��x� accepts if both queries are answered no�

y� � hx� �i�
y� � hx� 	i�
y� � hx� �i�

���
ym � hx�mi�

and 	�z�� z�� � � � � zm� � � �� �maxfl j zl � �g% o� � � �mod 	��
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Clearly we can compute the just dened variables for a given x and also evaluate
the function 	 at ��Q�y��� �Q�y��� � � � � �Q�ym�� in polynomial time� And nally� we have
x � A �� 	��Q�y��� �Q�y��� � � � � �Q�ym�� � �� Thus A � Rp

m
tt�NP��
It remains to show that Rp

m
tt�NP� � P
BHj �BHk � Recall Rp

k
tt�NP� � R
p
�
tt�BHk� from

Lemma ��	��� Since the class PBHj �BHk is closed under 
p
�
tt reductions it su�ces to prove

BHm � PBHj �BHk �
So let B � BHm� Following Cai et al� �CGH

���� we may assume that the set B is of
the form B � B� � �B� � �B� � �� � � � �Bm�� �Bm� � � � ��� with B�� B�� � � � � Bm � NP and
B� � B� � � � � � Bm�
We show B � PBHj �BHk by using ideas of the second part of the proof of Lemma ����

namely� by implementing the specic good path p�� respectively p�� B is accepted by a
PBHj �BHk machine MO��O� as follows�

Case � j is odd�
Dene the two oracle sets O� and O��

O� � Bk�� � �Bk�� � �� � � � �Bk�j�� �Bk�j� � � � ���

and

O� � fhy� 	i j y � B� � �B� � �� � � � �Bk�� �Bk� � � � ��g�

fhy� �i j y � Bj�k�� � �Bj�k�� � �� � � � �Bj��k�� �Bj��k� � � � ��g�

Note that O� � BHj and O� � BHk� On input x M rst queries �x � O��� In case of
a no answer M�x� queries hx� 	i � O� and in case of a yes answer to the rst query
M�x� asks hx� �i � O��

Case ��� k is odd�
M�x� accepts if and only if the second query is answered yes�

Case ��� k is even�
M�x� accepts if and only if exactly one of the two queries is answered yes�

Case � j is even�
Dene the two oracle sets O� and O��

O� � Bk�� � �Bk�� � �� � � � �Bk�j�� �Bm� � � � ���

and

O� � fhy� 	i j y � B� � �B� � �� � � � �Bk�� �Bk� � � � ��g�

fhy� �i j y � Bj�k � �Bj�k�� � �� � � � �Bm�� �Bm��� � � � ��g�

Note that O� � BHj and O� � BHk� On input x M rst queries �x � O��� In case of
a no answer M�x� queries hx� 	i � O� and in case of a yes answer to the rst query
M�x� asks hx� �i � O��
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Case ��� k is odd�
M�x� accepts if and only if the second query is answered yes�

Case ��� k is even�
M�x� accepts if and only if exactly one of the two queries is answered yes�

It is interesting to note which properties of NP are actually required in the above proof
for the result to hold� The proof essentially rests on the fact that the key set Q �describing
that� for given x and m� the PBHj �BHk machine M on input x has at least m mind changes�
is an NP set� So considering an arbitrary underlying class C� for proving Q � C it su�ces
to note that Q is in the class 	b � Rp

c�btt�C��
� and to assume that C be closed under 	b and

conjunctive bounded�truth�table reductions� Indeed� the 	b quantier describes that there
is a path in the boolean hypercube HM �x�� and via the 


p
c�btt�reduction it can be checked

that this path is an ascending path and all the answers the vertices on that path claim
to be yes answers indeed correspond to query strings that belong to the class C� Similar
observations have been stated in earlier papers �Bei��� BCO���� In terms of the present
paper� note in particular that the assertion of Theorem ��	�� holds true for all classes C
closed under union� intersection� and polynomial�time many�one reductions� C�P� R� and
FewP all have these closure properties� to name just a few examples� If the underlying
class C is closed under polynomially bounded 	 quantication and unbounded conjunctive
truth�table reductions� it is not hard to see that this analysis can even be done safely up to
the case of logarithmically bounded query classes� as the number of paths in the hypercube
is polynomial and thus generates a polynomial�sized disjunction�

From Theorem ��	�� we can immediately conclude that order matters for queries to the
boolean hierarchy unless the boolean hierarchy itself collapses�

Corollary ����� �� If �j � k� � �j is even and k � j % ��� � 
 j 
 k� then PBHj �BHk �
PBHk�BHj �

	� Unless the boolean hierarchy �and thus the polynomial hierarchy� collapses� for any
� 
 j 
 k� PBHj �BHk � PBHk�BHj unless �j � k� � �j is even and k � j % ���

The corollary holds� in light of the theorem� simply because the boolean hierarchy and
the bounded�truth�table hierarchy are interleaved �KSW��� in such a way that the boolean
hierarchy levels are sandwiched between levels of the bounded�truth�table hierarchy� and
thus if two di�erent levels of the bounded�truth�table hierarchy are the same �say levels r
and s� r � s�� then some level �in particular� BHr��� of the boolean hierarchy is closed
under complementation� and thus� by the downward separation property of the boolean
hierarchy �CGH����� the boolean hierarchy would collapse� Furthermore� Kadin �Kad���
has shown that if the boolean hierarchy collapses then the polynomial hierarchy collapses�

�Here
 �p
cbtt denotes the conjunctive boundedtruthtable reducibility
 and for any class K
 �b � K is

de	ned to be the class of languages A for which there exists a set B � K and a constant bound m such that
x � A if and only if there exists a string y of length at most m with hx� yi � B�
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andWagner� Chang and Kadin� and Beigel� Chang� and Ogihara have improved the strength
of this connection �Wag��� Wag��� CK��� BCO��� �see Chapter ��� The strongest known
connection is established in Theorem ������ for m � 	� if BHm � coBHm� then PH �
BHm	DIFFm����

p
���

In light of this discussion� we can make more clear exactly what collapse is spoken of in
the second part of the above corollary� In particular� the collapse of the polynomial hierarchy
is �at least� to BHk��j��	DIFFk��j��

p
��� Though one level is gained by the m� � in the

Theorem ����� connection between the boolean hierarchy and the polynomial hierarchy� one
level is lost in the collapse of the boolean hierarchy that follows from a given collapse in the
bounded�truth�table hierarchy� Observe that in light of the results of Chapter �� especially
Theorem ��	��� a slightly deeper collapse of the polynomial hierarchy can be concluded if
query order classes in the boolean hierarchy over some �pk� k � �� are equal�

���� The General Case

In the previous subsection� we studied classes of the form PBHj �BHk � We completely char�
acterized them in terms of reducibility hulls of NP and noted that in this setting the order
of access to di�erent oracles matters quite a bit� What can be said about� for example�
the class PBHj �BHk�BHl� Is it equal to PBHj �BHk�BHl� We will see that the answer is no in
certain cases� Even more generally� what can be said about the classes of languages that
are accepted by deterministic oracle machines with tree�like query structures and with each
query being made to a �potentially� di�erent oracle from a �potentially� di�erent level of the
boolean hierarchy� Is it possible that with a more complicated query structure we might
lose even more than the one mind change lost in the case of PBHj �BHk with j even and k
odd� From the results of the section� it will be clear that the answer to this question is yes�
mind changes can� in certain specic circumstances� accumulate�

First of all� we can immediately derive a characterization of the class PBHj �BHk�BHl from
the results of the previous section� namely�

Theorem ����� For j� k� l � ��

PBHj �BHk�BHl �

�
Rp
j�k�l��
tt�NP� if j is even and l is odd�

Rp
j�k�l
tt�NP� otherwise�

Proof� Note that in Lemma ��	�� we handle the special case of k � l� However� notice
that the mind change loss for j even and k odd is due only to the fact that the query made
after the rst query is answered yes is made to an oracle from an odd level� namely� k� of
the boolean hierarchy� In particular� the mind change loss is not tied to the query we ask
in case the rst query is answered no� Thus we have that the class PBHj �BHk�BHl can handle
exactly m mind changes where

m �

�
j % k % l � � if j is even and l is odd�
j % k % l otherwise�
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Similarly to the proof of Theorem ��	�� one can now show the equality we claim�
Note that for every j� k� l � �� we obviously have

PBHj �BHk�BHl � PR
p

�
tt�BHj�R
p

�
tt�BHk�R
p

�
tt�BHl

and thus the following corollary holds�

Corollary ����� For j� k� l � ��

PR
p

�
tt�BHj�R
p

�
tt�BHk�R
p

�
tt�BHl �

�
Rp
j�k�l��
tt�NP� if j is even and l is odd�

Rp
j�k�l
tt�NP� otherwise�

The last corollary is the key tool to use in evaluating any class of languages that are
accepted by deterministic oracle machines with tree�like query structures and with each
query being made to a �potentially� di�erent oracle from a �potentially� di�erent level of
the boolean hierarchy�
We formalize some notions to use in studying this� Let T be a binary tree� not necessarily

complete� such that each internal node vi �a� has exactly two children� and �b� is labeled
by a natural number ni �whose purpose will be explained below�� For such a tree T � dene
fT by fT �vi� � ni� Henceforward� we will write f for fT in contexts in which T is clear�
Let rootT be the root of the tree �we will assign to this node the name v�� and let LTT
and RTT respectively be the left and right subtrees of the root� We will denote the class of
sets that are accepted by a deterministic oracle machine with a T �like query structure by
P�T � Here the structure of the tree T gives the potential computation tree of every P�T 

machine in the sense that inductively if a query at node v is answered no �yes� we keep
on moving through the tree in the left �right� subtree of v� And at each internal node vi
of T the natural number ni gives the level of the boolean hierarchy from which the oracle
queried at that node is taken�
For example consider the tree T �see Figure ����� in which f�v�� � 	� f�v�� � 	�

f�v�� � �� f�v�� � �� and f�v�� � �� A P
�T  machine works as follows� The rst query is

made to a DP oracle� If the answer to that rst query is no a second query is made to the
DP oracle associated with v�� and if the answer to the rst query is yes the second query is
made to the BH� oracle associated with v�� A third query is made only if the answer to the
rst query is yes� in this case� the oracle set of the third query is in NP if the answer to the
second query is no� and is in BH� if the answer to the second query is yes� Note that for
every input x � �� every P�T  machine M�x� assigns a label A �Accept� or R �Reject� to
each leaf of T with its own specic acceptance behavior �which� in particular� may depend
on x��
If T is the complete tree of depth � �i�e�� a root plus two leaves�� then by denition

m�T � � f�rootT � � and otherwise dene

m�T � �

��
f�rootT � %m�LTT � %m�RTT �� � if f�rootT � � 
 �mod 	� and

m�RTT � � � �mod 	��
f�rootT � %m�LTT � %m�RTT � otherwise�
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n� � 	
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v�

n� � 	

v�
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Figure ���� Example Tree T

For our example tree T we have m�T � � �
� The main theorem of this section will
prove m�T � determines the number of bounded�truth�table accesses to NP that completely
characterizes the class P�T � It follows from the main theorem that� for example� P�T  �
Rp
��
tt�NP��

Theorem ������ P�T  � Rp
m�T 
tt�NP��

Proof� The proof consists of an obvious induction over the depth d of the tree� Note that
the correctness of the base case of the induction� d � 	� is given by Theorem ��	��� The
proof of the inductive step follows immediately from the obvious fact that

P�T  � PBHf
rootT �
�P
LTT ��P
RTT �

�

combined with Lemma ��	�� �Rp
k
tt�NP� � R

p
�
tt�BHk�� and Corollary ��	���

���� Remarks

Of course� the main theorem of this section� Theorem ��	��� applies far more generally� From
it� for any j� k� j�� and k�� one can either immediately conclude PBHj �BHk � PBHj� �BHk� � or
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can immediately conclude that the classes PBHj �BHk and PBHj� �BHk� are not equal unless
the polynomial hierarchy collapses to BHminf��j�k� ��j��k�g��	DIFFminf��j�k� ��j��k�g��

p
���

where 	�a� b� equals a% 	b� � if a is even and b is odd and a% 	b otherwise�
The point of Theorem ��	�� is that from the even�odd structure of PBHj �BHk classes

one can immediately tell their number of mind changes� and thus their strength� without
having to do a separate� detailed� mind change analysis for each j and k pair� For example�
one can quickly see that one query to DP followed by one query to BH� yields exactly the
languages in Rp

��
tt�NP��
Theorem ��	�� should be compared with the work of Agrawal� Beigel� and Thier�

auf �ABT���� They prove �using di�erent notation��

PBHj �BHk� �

�
BHj��k�� if j � k �mod 	��
BHj��k otherwise�

Note that this result is incomparable with the results of Theorem ��	��� as their result deals
with a di�erent and seemingly more restrictive acceptance mechanism� Some insight into
the degree of restrictiveness of their acceptance mechanism� and its relationship to ours� is
given by the following Corollary ��	���� which follows immediately from Theorem ��� and
Lemma ��� of �ABT��� and Theorem ��	���

Corollary ������ For every j� k � ��

Rp
�
tt�P

BHj �BHk�� �

�
PBHj���BHk if j is odd and k is even�
PBHj �BHk otherwise�

�� Query Order in the Polynomial Hierarchy

In this section we will study results regarding query order in the polynomial hierarchy� While
stating and discussing previously obtained results that essentially establish that query order
does not matter in the polynomial hierarchy we observe that the results regarding general
query order classes with more than one query in each round miss one interesting case� We
ask whether for j � k� one round of j parallel queries to a �pi oracle followed by one round
of k parallel queries to a �pi oracle is stronger than one round of k parallel queries to a �

p
i

oracle followed by one round of j parallel queries to a �pi oracle� So we study classes of

the form P
	p
i �	

p
i

j�k
tt � On one hand� j % 	
jk di�erent �pi queries can potentially be generated

by a P
	p
i �	

p
i

j�k
tt machine� On the other hand� only j % k queries are asked in any run of a

P
	p
i �	

p
i

j�k
tt machine� We show that for all i� j� k � �� P
	p
i �	

p
i

j�k
tt is as powerful as j% jk% k parallel

queries to a �pi oracle� P
	p
i �	

p
i

j�k
tt � R
p
j�jk�k
tt��

p
i �� It follows that also in the case that all

queries are made to oracles from the same level of the polynomial hierarchy the order of
query rounds does not matter� However� in contrast to the case that the query rounds are
made to oracles from di�erent levels of the polynomial hierarchy� the query rounds can not
be made in parallel unless the polynomial hierarchy collapses�
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���� Previous Results�An Overview

Query order in the polynomial hierarchy was rst studied by Hemaspaandra� Hemaspaan�
dra� and Hempel �HHH��b�� They studied classes of the form PC�D where C and D are
classes from the polynomial hierarchy� It was shown that query order never matters in the
polynomial hierarchy�

Theorem ����� �HHH��b�

�� For all i� � � ��

P	
p
i �	

p
� � P	

p
�
�	p

i �

	� For all i� � � � such that i � ��

P	
p
i �	

p
� � P	

p
�
�	p

i � P�	
p
i �	

p
�
�

Observe that we truly need the i � � restriction in the second statement of the above the�

orem� Otherwise we would have included the claim P	
p
i ��� � P

	p
i

�
tt which due to the closely re�
lated structure of the bounded�query� bounded�truth�table and di�erence hierarchies over �pi
would imply a collapse of the polynomial hierarchy to �at least� DIFF���

p
i �	DIFF���

p
i���

�see Corollary ����� and Theorem ������� Results similar to those of Theorem ����� do also
hold for the classes  p

i and �
p
i �$

p
i from the polynomial hierarchy�

The result of Theorem ����� has been generalized to the case that more than one query
is asked to each oracle by Beigel and Chang �BC��

Theorem ����� �BC� For all � � i � � and all j� k � ��

P
	p
i �	

p
�

j�k
tt � P
	p
�
�	p

i

k�j
tt � P
�	p

i �	
p
�


j�k
tt �

Note that no statement is made for i � � in the above theorem� We will study and solve
the i � � case in the next section� Beigel and Chang also studied the e�ect of query order
on the computational power of computing functions� They obtained that in the function
setting the order of oracle access for oracles from the polynomial hierarchy is important�

Theorem ����� �BC�� For all � � i � � and all j� k � ��

�� FP
	p
i �	

p
�

j�k
tt � FP
�	p

i �	
p
� 

j�k
tt � FP
	p
� �	

p
i

k�j
tt �

	� FP
	p
i �	

p
�

j�k
tt � FP
	p
�
�	p

i

k�j
tt �� PH � �pi���

Wagner �Wag��� also studied multiple rounds of multiple queries to di�erent oracles from
the polynomial hierarchy� He characterized those query order classes in terms of Selivanov"s
plus hierarchy �Sel��a� Sel���� the generalized boolean hierarchy over fNP��p� ��

p
� � � � � g�
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���� The Missing Case

Though generalized query order classes of the form P
	p
i �	

p
�

j�k
tt have been studied in �BC� all
results being obtained assume i � �� It is not at all clear whether the result of Theorem ����	

also holds when i � �� As P
	p
i

j
tt � P
DIFFj�	

p
i ��� �KSW��� �see also Lemma ��	��� it might

well be that similarly P
	p
i �	

p
i

j�k
tt � P
DIFFj�	

p
i �DIFFk�	

p
i � in which case� due to the results of

Section ��	� the order of query rounds would be crucial� However� we will show in this section

that P
	p
i �	

p
i

j�k
tt � P
DIFFj�	

p
i �DIFFk�	

p
i  does not hold unless the polynomial hierarchy collapses�

This follows from a characterization of P
	p
i �	

p
i

j�k
tt that also establishes that P
	p
i �	

p
i

j�k
tt � P
	p
i �	

p
i

k�j
tt
for all i� j� k � ��

For clarity of presentation we will from now on restrict ourself to �pi � NP� However�
it will be clear from the proofs that similar results hold for �pi � i � ��

The main theorem of this section gives a characterization of query order classes PNP�NPj�k
tt

in terms of bounded�truth�table closures of NP� Our approach closely follows the approach
of Section ��	� In particular� we will make use of all concepts and notations dened in
Section ��	� We will use the mind change technique while arguing about paths in hypercubes
much in the same way as it was done while proving Theorem ��	��� In particular� we will
make use of all concepts and notations dened in Section ��	�

Lemma ����� For all j� k � �� PNP�NPj�k
tt can handle exactly j % jk % k mind changes�

Proof� Similar to the proof of Lemma ��	�� we will rst argue that every PNP�NPj�k
tt machine

can have at most j % jk % k mind changes� Second we will give a PNP�NPj�k
tt machine that on
some input has exactly j % jk % k mind changes�

Without loss of generality assume that all queries are made to the same oracle� for
instance� a language being many�one complete for NP� and that exactly j queries are made
in the rst round and exactly k queries are made in the second round� So let ML�L

j�k
tt be a

PNP�NPj�k
tt machine� L � NP� Observe that on every input x� �potentially� j % 	jk di�erent

NP queries can generated� Let x � ��� Denote the queries asked by ML�L
j�k
tt�x� in the rst

query round by q��x�� q��x�� � � � � qj�x�� For every answer string to this rst set of queries� k
di�erent second queries are asked in parallel�

In order to enumerate all potential second queries the following concepts will be useful�
Let bin�i� denote the binary representation of the integer i� For a string z � �j let num�z�
denote the integer such that z � 
 � � � 
bin�num�z��� Informally� num�z� is the unique
integer such that the binary representation of that integer padded with leading zeros equals
z� For z � �j� we say that q��x�� q��x�� � � � � qj�x� are answered according to z if and only
if for all �� � 
 � 
 j� query q��x�� is answered yes if the �th bit �counting bits from most
signicant to least signicant� of z is � and answered no if the �th bit of z is 
�

Now we are prepared to enumerated all �potential� second queries� Let for every 
 

i 
 	j � �� qj�ik���x�� qj�ik��� � � � � qj�ik�k denote the queries asked by M�x� if the queries
of the rst round have been answered according to z and num�z� � i�
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Consider the j % 	jk�dimensional hypercube H� Let for every i� � 
 i 
 j % 	jk�
dimension i of the j%	jk�dimensional hypercube H correspond to query qi�x�� Hence every
vertex v � H corresponds to an answer string to all potential queries� when interpreting a �
�
� in the ith dimension of v as a yes �no� answer to query qi�x�� This allows to label each
vertex v � H with Reject�Accept according to what ML�L

j�k
tt�x� would do when all queries
are answered as given by v� Similar to the proof of Lemma ��	�� we obtain the labeled
hypercube HM�x��

Claim� Every ascending path in HM�x� has at most j % jk % k mind changes�

To see this let p be an ascending path in HM�x�� Observe that exactly j times
we change a 
 to a � in the rst j dimensions when moving along p� Hence� every
vertex on p has one of j % � di�erent sequences of rst j components� Observe
that for every vertex v � �a�� a�� � � � � aj � � � � � aj��jk� on p we loose a mind change if
the vertex v� following v on p di�ers from v in a dimension i� i � f�� 	� � � � � jg and
i � fj%num�a�a� � � � aj�k%�� j%num�a�a� � � � aj�k%	� � � � � j%num�a�a� � � � aj�k%kg�
This follows from the fact that in that case �observe that both vertices correspond to
the same set of second k queries as they do not di�er in the rst j components� the
query qi�x� has no e�ect on the labeling of the two vertices�

This implies that for every prex a�� a�� � � � � aj for a vertex on p at most k changes in
the remaining 	jk components can be made without losing a mind change� It follows
that p has at most j % �j % ��k � j % jk % k mind changes�

This shows that every PNP�NPj�k
tt machine can have at most j% jk%k mind changes which

implies that the class PNP�NPj�k
tt can handle at most j % jk % k mind changes�

It remains to show that there is a PNP�NPj�k
tt machine that� for some input x� has exactly

j % jk % k mind changes� Let M be a PNP�NPj�k
tt machine such that for every pair of di�erent
answer strings for the rst j queries� the corresponding sets of second k parallel queries are
disjoint� In other words� we require M to not ask the same query in the second round for
di�erent outcomes of the rst j parallel queries�
We distinguish two cases� If k is even� let M�x� accept if and only if the sum of the

number of yes answers received in the rst and second rounds of queries is odd� If k is
odd� let M�x� accept if and only if the sum of yes answers received in the second round of
queries is odd� Recall that ui denotes the ith unit vector� For both cases� observe that the
ascending path p starting with

�uj�� % � � � % uj�k� % uj % �uj�k�� % � � � % uj��k� % uj�� % �uj��k�� % � � �% uj��k�
%uj�� % �uj��k�� % � � �% uj��k� % uj�� % � � � % u� % �uj���j��k�� % � � �% uj��jk�

already has j % jk % k mind changes on this initial part� Clearly� by the above fact� the
remaining part of the ascending path will not add a single mind change�
This shows that PNP�NPj�k
tt can handle exactly j % jk % k mind changes�
Similar to the proof of Theorem ��	�� we will exploit the preceding mind change Lemma

to prove the main result of this section�
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Theorem ����� For all j� k � ��

PNP�NPj�k
tt � Rp
j�jk�k
tt�NP��

Proof� It follows immediately from Lemma ����� that PNP�NPj�k
tt � Rp
j�jk�k
tt�NP� since

Rp
j�jk�k
tt�NP� is capable of determining the exact number of mind changes of any P

NP�NP
j�k
tt

machine on any input�
To show Rp

j�jk�k
tt�NP� � PNP�NPj�k
tt � let L � Rp
j�jk�k
tt�NP�� Let MSAT

j�jk�k
tt be a

Rp
j�jk�k
tt�NP� � P

NP
j�jk�k
tt machine such that L � L�MSAT

j�jk�k
tt�� Observe that Q �

fhx� ii jMSAT
j�jk�k
tt�x� has at least i mind changesg is clearly an NP set� We now describe a

PNP�NPj�k
tt machine cMQ�Q
j�k
tt that accepts L�

�� On input x compute what MSAT
j�jk�k
tt�x� would do if all queries to SAT are answered

no� Set a � � if MSAT
j�jk�k
tt�x� accepts in that case and set a � 
 otherwise�

	� Generate the queries hx� k % �i� hx� 	�k % ��i� � � � � hx� j�k % ��i and ask them in par�
allel to Q� Let a�a� � � � aj � �

j be the string corresponding to the received answers�
where for all � 
 i 
 j� ai � � if and only if query hx� i�k % ��i has been answered
yes�

�� Observe that we have a� � a� � � � � � aj� Let i be the smallest integer such that
ai � 
� Note that this means that M

SAT
j�jk�k
tt�x� has at least �i � ���k % �� mind

changes and at most i�k % ��� � � �i� ���k % �� % k mind changes�

�� In order to determine the exact number of mind changes of MSAT
j�jk�k
tt�x� generate

the queries hx� �i� ���k % �� % �i� hx� �i � ���k % �� % 	i� � � � � hx� �i� ���k % �� % ki
and submit them in parallel to Q� Let b�b� � � � bk � �k be the string correspond�
ing to the received answers� where for all � 
 � 
 k� b� � � if and only if query
hx� �i � ���k % �� % �i has been answered yes�

�� Observe that we have b� � b� � � � � � bk� Let � be the largest integer such that b� � ��
Note that this means that MSAT

j�jk�k
tt�x� has exactly �i� ���k %�� % � mind changes�
Accept if and only if a% �i� ���k % �� % � is odd�

It follows from the construction that indeed L�MSAT
j�jk�k
tt� � L�cMQ�Q

j�k
tt�� This shows that

Rp
j�jk�k
tt�NP� � P

NP�NP
j�k
tt and completes our proof�

It follows immediately from Theorem ����� that the order of query rounds of di�erent
size when all queries are made to the same oracle does not matter� However� in contrast to
the case of Theorem ����	 these query rounds can not be made simultaneously unless the
polynomial hierarchy collapses�

Corollary ����� �� For all j� k � �� PNP�NPj�k
tt � PNP�NPj�k
tt �

	� For all j� k � �� PNP�NPj�k
tt � P
�NP�NP
j�k
tt unless the polynomial hierarchy collapses�
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Proof� Part one follows directly from Theorem ������ Regarding part two� note that

P
�NP�NP
j�k
tt � Rp

j�k
tt�NP�� In light of Theorem ������ we have that P
NP�NP
j�k
tt � P

�NP�NP
j�k
tt if and

only if Rp
j�jk�k
tt�NP� � R

p
j�k
tt�NP�� For j� k � � this implies a collapse of the bounded�

truth�table hierarchy at level j % k� It is known that a collapse of the bounded�truth�table
hierarchy at level j % k implies a collapse of the boolean hierarchy at level j % k % � which
in turn implies a collapse of the polynomial hierarchy� This follows from the intertwined
structure of the bounded�truth�table hierarchy and the boolean hierarchy and a result by
Kadin �Kad��� �see Theorem ��	���� In order to specify the collapse of the polynomial
hierarchy� we mention that in light of Theorem ������ we can conclude a collapse of the
polynomial hierarchy to BHj�k��	DIFFj�k��

p
���

Theorem ����� has an interesting corollary with respect to results obtained in Section ��	�
In Section ��	 �see Lemma ��	��� we have established that for all m � �� Rp

m
tt�NP� �
Rp
�
tt�BHm�� or equivalently� P

NP
m
tt � P

BHm
�
tt � Inside the proof of Theorem ����� we mentioned

that P
�	p

i �	
p
�


j�k
tt � P�DIFFj�	
p
i �DIFFk�	

p
�
� One might be tempted to claim that similarly for

j� k � �� PNP�NPj�k
tt � PBHj �BHk � However� this is in general not the case unless the polynomial
hierarchy collapses�

Corollary ����� For all j� k � �� if PNP�NPj�k
tt � PBHj �BHk then either j � � or the polynomial
hierarchy collapses�

Proof� Suppose PNP�NPj�k
tt � PBHj �BHk � In light of Theorem ������ we have PNP�NPj�k
tt �

Rp
j�jk�k
tt�NP�� In Section ��	 �see Theorem ��	��� we have established that P

BHj �BHk �

Rp
j��k��
tt�NP� if j is even and k is odd and P

BHj �BHk � Rp
j��k
tt�NP� otherwise� Suppose

j is even and k is odd� Then our assumption implies Rp
j�jk�k
tt�NP� � R

p
j��k��
tt�NP��

Since j % jk % k � j % 	k � � for all j� k � �� we obtain that the bounded�truth�table
hierarchy collapses at level j % 	k � �� As in the proof of Corollary ����� we conclude a
collapse of the polynomial hierarchy to BHj��k	DIFFj��k����

p
��� If j is odd or k is even

we have that Rp
j�jk�k
tt�NP� � R

p
j��k
tt�NP�� Hence either j � � or the bounded�truth�

table hierarchy collapses at level j % 	k implying a collapse of the polynomial hierarchy to
BHj��k��	DIFFj��k��

p
���

As already mentioned� all results of the current section immediately carry over to �pi �
i � �� But note that for �pi � i � �� we can� in light of the downward collapse between the
levels of the bounded�truth�table hierarchy over �pi and the levels of the boolean hierarchy
over �pi �see Theorem ��	���� claim a slightly deeper collapse of the polynomial hierarchy
than stated in the proofs of Corollary ����� and Corollary ������

Theorem ����� �� For all i� j� k � �� P
	p
i �	

p
i

j�k
tt � R
p
j�jk�k
tt��

p
i ��

	� For all i� j� k � �� P
	p
i �	

p
i

j�k
tt � P
	p
i �	

p
i

k�j
tt �

�� For all i� j� k � �� P
	p
i �	

p
i

j�k
tt � P
�	p

i �	
p
i 

j�k
tt unless the polynomial hierarchy collapses�



�

 Query Order

Part � of Theorem ����� can be generalized to more than two rounds of queries� With the
same method as in the proof of Theorem ����� one is able to show that the class of languages
being accepted by some DPTM making consecutive rounds of n�� n�� � � � � nk parallel queries
to some �pi oracle� respectively� is exactly the �n� % ���n� % �� � � � �nk % �� � ��truth�table
closure of �pi � This shows that the order of query rounds for more than two rounds does
not matter�

�� Applications of Query Order and Related Results

Since query order has been studied for the rst time in �HHW��� a number of results have
been obtained that either directly grew out of the study of query order classes or are related
to query order� In this section we will give a short overview over some of these results�

�
�� Base Classes Other than P

It has been observed by Hemaspaandra� Hemaspaandra� and Hempel �HHH��b� that most
query order results being valid for the base class P do also hold for a large variety of other
base classes�

Theorem ����� �HHH��b� Let C� and C� be complexity classes and let
D � fR� coR�UP� coUP�NP� coNP�BPP�PP��Pg�

PC��C� � PC��C� �� DC��C� � DC��C� �

The above theorem shows� in light of Corollary ��	��� Theorem ������ and Corollary ������
that for instance�

�� UPDP�BH� � UPBH��DP � UPNP�BH� �

	� PPNP�	
p
� � PP	

p
� �NP�

�� �P
	p
� �	

p
�

���
tt � �P
	p
� �	

p
�

���
tt �

Though Theorem ����� says that all order exchanges of P apply to essentially all standard
complexity classes� it of course remains possible that certain path�based classes may possess
additional order exchanges� Relatedly� classes may also trivially exhibit certain equalities
based on class�specic features� For example� it follows trivially from NP � PP and the
�nontrivial� result of Fortnow and Reingold �FR��� regarding the 
p

tt closure of PP that
PP � PPNP�PP � PPPP�NP�

�
�� Results Related to Query Order

The notion of query order� established and studied for the rst time in �HHW��� HHW����
has in!uenced research in complexity theory� Not only that researchers started to study
query order in other settings than the boolean hierarchy� the very concept of query order



��� Applications of Query Order and Related Results �
�

and the resulting new insights into the structure of complexity classes has led to a number of
results regarding topics that at rst blush might seem totally unrelated� such as bottleneck
computation and downward translation of equality� We will in the following list some of
the research areas that have been in!uenced by the research on query order�

Downward Translation of Equality In �HHH��b� Hemaspaandra� Hemaspaandra� and
Hempel studied query order in the polynomial hierarchy� It turned out that though query
order never matters in the polynomial hierarchy� query order classes seemingly form a
renement of the levels of the polynomial hierarchy� While trying to give evidence that
this renement is strict unless the polynomial hierarchy itself collapses� Hemaspaandra�
Hemaspaandra� and Hempel established the rst downward collapse result in the polynomial
hierarchy �see Theorem ��	���� The search for other downward collapses that has been
ignited by this result has been studied in detail in Chapter ��

Bottleneck Computations In a quite di�erent direction� bottleneck machines are a
model used to study whether a computational problem can be decomposed into a large
number of simple� sequential� tasks� each of which passes on only a very limited amount
of information to the next task� and all of which di�er only in that input and in a �task
number� input �CF���� A recent paper of Hertrampf �Her��� uses ordered access involving
multiple queries� combined with quantier�based and modulo�based computation� to com�
pletely characterize the languages accepted by certain bottleneck machine classes(classes
that had long eluded crisp characterization�

Self�Specifying Machines Hemaspaandra� Hempel� and Wechsung �HHW��� have stud�
ied self�specifying machines(nondeterministic machines that dynamically specify the path
sets on which they will accept� They completely characterize the two most natural such
classes in terms of query�order classes with a �positive nal query� restriction� They show
that the classes have equivalent characterizations as the &P�closures of P and NP� re�
spectively� and they establish a query order result mixing function and language classes�
P�P��� � P�P�NP �� P�P��� � P�P�NP

��O��
tt They also show that the classes have characteri�

zations in terms of the �input�specic advice� notation of K�obler and Thierauf �KT����

Robust Completeness A long line of research has studied the question of whether 
p
m �

completeness and 
p
T �completeness stand or fall together for classes that potentially lack

complete sets� Gurevich �Gur��� and Ambos�Spies �Amb��� have shown that� for all classes
C closed downwards under Turing reductions� it holds robustly that� C has 
p

m �complete
sets if and only if C has 
p

T �complete sets� Nonetheless� by studying a strong nondeter�
ministic closure of NP that� it turns out� exactly equals the query�order class PNP�coNP�NP�
Hemaspaandra� Hemaspaandra� and Hempel have recently shown that on some reducibil�
ity closures of NP� 
p

m �completeness and 
p
T �completeness do not robustly stand or fall

together �HHH��c��
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