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The constraint satisfaction problem (CSP) is a framework for modelling search prob-

lems. An instance of the CSP consists of a set of variables and a set of constraints on the

variables; the question is to decide whether or not there is an assignment to the variables

satisfying all of the constraints. The quantified constraint satisfaction problem (QCSP)

is a generalization of the CSP in which variables may be both universally and existen-

tially quantified. The general intractability of the CSP and QCSP motivates the search

for restricted cases of these problems that are polynomial-time tractable.

In this dissertation, we investigate the computational complexity of cases of the

QCSP where the types of constraints that may appear are restricted. One of our primary

tools is the algebraic approach to studying CSP complexity, which can also be used to

study QCSP complexity. We first present a pair of new QCSP tractability results; one of

these tractability results is arrived at by developing a sound and complete proof system

for QCSPs having a certain form. We then introduce a new concept for proving QCSP

tractability results called collapsibility. The key idea behind collapsibility is that for

certain cases of the QCSP, deciding an instance can be reduced to deciding an ensemble

of instances, all of which have a bounded number of universally quantified variables

and are derived from the original instance by “collapsing” together universally quan-

tified variables. Collapsibility provides a uniform proof technique for deriving QCSP



tractability results which we use both to give alternative proofs of the initial pair of

tractability results, as well as to give further tractability results.
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Chapter 1

Introduction

The more constraints one imposes, the more one frees one’s self of the

chains that shackle the spirit.

– Igor Stravinsky, Poetics of Music

1.1 The Constraint Satisfaction Problem

The constraint satisfaction problem (CSP) is widely acknowledged as a convenient

framework for modelling search problems. An instance of the CSP consists of a set of

variables, a domain, and a set of constraints; each constraint consists of a tuple of vari-

ables paired with a relation (over the domain) which contains permitted values for the

variable tuple. The question is to decide whether or not there is an assignment mapping

each variable to a domain element that satisfies all of the constraints. Problems from

many different areas of computer science can be formulated naturally as CSPs includ-

ing vision [44], boolean satisfiability [51], database theory [40], graph coloring [32, 9],

algebra [8], temporal reasoning [53], and truth maintenance [25].

Let us begin by looking at two examples of CSPs.

1
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Example 1 The CNF-SATISFIABILITY problem from propositional logic is to decide,

given a propositional formula in conjunctive normal form (CNF), whether or not there

is an assignment to the variables satisfying all of the clauses. A propositional formula

is said to be in CNF if it is the conjunction of clauses over propositional variables; a

clause is the disjunction of literals, where a literal is either a propositional variable or

its negation.

The following is an example instance of the CNF-SATISFIABILITY problem:

(x ∨ y ∨ ¬z) ∧ (¬w ∨ y ∨ ¬z) ∧ (z ∨ ¬y ∨ ¬w)

We can easily reformulate each instance of the CNF-SATISFIABILITY problem as an

instance of the CSP. For example, the given instance of can be formulated as the CSP

instance with variables {w, x, y, z}, domain {0, 1}, and constraints

{R1(z, x, y), R2(w, z, y), R2(y, w, z)}

where the relations R1 and R2 are defined as follows:

R1 = {0, 1}3 \ {(1, 0, 0)}

R2 = {0, 1}3 \ {(1, 1, 0)}

An assignment f : {w, x, y, z} → {0, 1} satisfies the original instance if and only if it

satisfies the CSP instance. The particular assignment g : {w, x, y, z} → {0, 1} defined

by g(w) = 0 and g(x) = g(y) = g(z) = 1 is a satisfying assignment for both instances.

For example, it satisfies the first constraint R1(z, x, y) in the given set of constraints,

because mapping the variable tuple under g yields a tuple in the accompanying relation:

(g(z), g(x), g(y)) ∈ R1.

Example 2 A 3-coloring of an undirected graph is a labelling of each of its vertices

from a 3-element color set, say, {red, blue, yellow}. The 3-COLORABILITY problem
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from graph theory is to decide, given an undirected graph, whether it has a 3-coloring

that is proper in that no two vertices joined by an edge have the same color. Each

instance of the 3-COLORABILITY problem can also be easily formulated as an instance

of the CSP. The vertices of the graph are represented as variables in the CSP, the domain

in the CSP is the set of colors {red, blue, yellow}, and each edge forms a constraint that

declares that the two vertices joined must have different colors.

For instance, consider the instance graph G = (V, E) of 3-COLORABILITY with

vertex set

V = {a1, a2, b1, b2}

and edge set

E = {{a1, b1}, {a1, b2}, {b1, b2}, {a2, b1}, {a2, b2}}.

This instance can be formulated as the CSP instance with variables V = {a1, a2, b1, b2},

domain {red, blue, yellow}, and constraints

{N(a1, b1), N(a1, b2), N(b1, b2), N(a2, b1), N(a2, b2)}

where N is the “not equals” relation on the set of colors, that is,

N = {red, blue, yellow}2 \ {(red, red), (blue, blue), (yellow, yellow)}.

An assignment f : V → {red, blue, yellow} is a proper 3-coloring of the graph G =

(V, E) if and only if it satisfies all of the given constraints. The particular assignment

g : V → {red, blue, yellow} defined by g(a1) = g(a2) = red, g(b1) = blue, and

g(b2) = yellow is a proper 3-coloring, and satisfies all of the given constraints.

The CSP is in the complexity class NP, since an assignment can be represented in

polynomial space, and whether or not it satisfies all given constraints can be checked in

polynomial time. The previous example indicates that the 3-COLORABILITY problem,
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which is well-known to be NP-complete, can be reduced to the CSP; hence, the CSP is

NP-complete.

1.2 The Quantified Constraint Satisfaction Problem

All of the variables in a CSP can be thought of as being implicitly existentially quanti-

fied: the problem involves deciding whether or not there exists an assignment to each of

the variables such that all given constraints are satisfied. A useful generalization of the

CSP is the quantified constraint satisfaction problem (QCSP), where variables may be

both existentially and universally quantified. More specifically, an instance of the QCSP

consists of a quantified formula, which consists of a quantifier prefix–an ordered list of

variables with associated quantifiers–along with a set of constraints.

Example 3 Let the relation N be defined as in the previous example. The following is

an example instance of the QCSP:

∀a1∀a2∃b1∃b2{N(a1, b1), N(a1, b2), N(b1, b2), N(a2, b1), N(a2, b2)}

We can view the CSP instance from the previous example as an instance of the QCSP

by existentially quantifying all variables:

∃a1∃a2∃b1∃b2{N(a1, b1), N(a1, b2), N(b1, b2), N(a2, b1), N(a2, b2)}

An instance of the QCSP may be viewed as a game between two players, the univer-

sal player and the existential player. The universal player sets the universally quantified

variables and the existential player sets the existentially quantified variables. Variables

are set in the order prescribed by the quantifier prefix. The existential player wins if,

after all variables have been set, all constraints are satisfied. The formula is true if the
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existential player can win, no matter how the universal player sets her variables. For

instance, let us look at the quantified formula

∀a1∀a2∃b1∃b2{N(a1, b1), N(a1, b2), N(b1, b2), N(a2, b1), N(a2, b2)}.

Viewing this quantified formula as a game, the universal player first sets a1 and a2,

and then the existential player then sets b1 and b2. Let us suppose that the universal

player sets both a1 and a2 to yellow. Then, the existential player may set one of b1, b2

to red, and the other to blue in order to satisfy all of the constraints, and win. However,

suppose that the universal player sets a1 and a2 to different values, say yellow and blue.

In order to satisfy the two constraints {N(a1, b1), N(a1, b2)}, the existential player must

set b2 to red; similarly, in order to satisfy the two constraints {N(a2, b1), N(a2, b2)},

the existential player must set b1 to red. But, when both b1 and b2 are set to red, the

constraint {N(b1, b2)} is falsified. We conclude that there is no way for the existential

player to win if the universal player sets a1 and a2 to yellow and blue (or more generally,

to two different colors), and hence that the quantified formula is false.

The generality of the QCSP framework permits the modelling of a variety of compu-

tational problems that cannot be expressed using the CSP, for instance, problems from

the areas of planning [49], game playing [29], and verification [43]. Of course, the rel-

atively higher expressiveness of the QCSP comes at the price of higher complexity: the

QCSP is in general complete for the complexity class PSPACE, which is believed to be

much larger than NP.

Because the CSP and the QCSP are in their general formulation intractable, research

effort has been devoted to identifying solution techniques that are effective in practice, as

well as studying restricted versions of the problems in hopes of identifying polynomial-

time tractable cases. This dissertation is concerned with the latter line of research. In

particular, we are interested in studying the complexity of restricted versions of the
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QCSP where the relations that appear must come from a prescribed set called the con-

straint language.

1.3 Complexity Classification

What is complexity classification?

The results presented in this dissertation belong to a line of work that we refer to as com-

plexity classification. In complexity classification, one takes a computational problem

that is intractable in its general formulation, and defines a parameterized version of the

problem. One then attempts to classify the complexity of the problem relative to each

possible instantiation of the parameter.

For instance, let Γ be a constraint language, by which we simply mean a set of

relations, all of which are over the same domain. We can parameterize the CSP problem

according to constraint language: define CSP(Γ) to be the restricted version of the CSP

where all relations that occur must come from Γ. After performing this parameterization,

we are naturally faced with a classification program: classify the complexity of CSP(Γ)

for all constraint languages Γ.

Probably the first and certainly the most famous complexity classification theorem

was given by Schaefer in 1978. He classified the complexity of CSP(Γ) for all constraint

languages Γ over a two-element domain.

Theorem 4 (Schaefer’s theorem [51]) Let Γ be a finite constraint language containing

relations that are over the two-element domain {0, 1}. The problem CSP(Γ) is in P if Γ

satisfies one of the six conditions below; otherwise, CSP(Γ) is NP-complete.

1. Every relation in Γ contains the all-0 tuple (0, . . . , 0).

2. Every relation in Γ contains the all-1 tuple (1, . . . , 1).
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3. Every relation in Γ is equivalent to the conjunction of Horn clauses.

4. Every relation in Γ is equivalent to the conjunction of dual Horn clauses.

5. Every relation in Γ is equivalent to a 2-CNF formula, that is, a conjunction of

clauses having size less than or equal to 2.

6. Every relation in Γ is equivalent to the conjunction of linear equations of the form

v1 ⊕ · · · ⊕ vn = c where the vi are variables, c ∈ {0, 1} is a constant, and ⊕

denotes the exclusive OR operation.

Note that we restrict attention to non-empty relations, since any CSP containing an

empty relation is trivially unsatisfiable. Also, recall that a (dual) Horn clause is a clause

with at most one positive (negative) literal.

Let us look at the six tractable classes of CSP(Γ) problems given by Schaefer’s

theorem. The first two have a trivial algorithm, which is to just report “satisfiable”. This

algorithm is correct because the assignment mapping every variable to 0 (respectively, 1)

satisfies all constraints. The third class is essentially equivalent and reducible to HORN

SATISFIABILITY, which is well-known to be tractable [26], and the fourth is dual to

the third: the roles of 0 and 1 are interchanged. The fifth is essentially equivalent and

reducible to 2-SATISFIABILITY, which is also well-known to be tractable [1].1 Finally,

the sixth can be viewed as the problem of solving a system of linear equations over the

two-element field; this problem is tractable via the Gaussian elimination algorithm.

We thus see that all of the tractable classes given are either trivial, or well-known.

Impressively, Schaefer’s theorem implies that any problem of the form CSP(Γ) where

1HORN SATISFIABILITY is the problem of deciding the satisfiability of a conjunction
of Horn clauses, and 2-SATISFIABILITY is the problem of deciding the satisfiability of a
2-CNF formula. Both of these problems are subproblems of the CNF-SATISFIABILITY

problem.
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Γ does not satisfy one of the six stated criteria is NP-complete.

Example 5 Let T be the relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The problem CSP({T})

is known as ONE-IN-THREE SATISFIABILITY: each constraint T (v1, v2, v3) mandates

that exactly one of the three variables {v1, v2, v3} be set to true. It can be verified

that {T} does not satisfy any of the six criteria given by Schaefer’s theorem, and so

CSP({T}) is NP-complete.

Why complexity classification?

We would now like to articulate why we believe that pursuing complexity classification

theorems like Schaefer’s is an interesting and useful endeavor. Similar justifications

have been offered by other authors [51, 20], and we certainly do not claim any of our

discussion to be original.

First, a well-chosen parameterization of a problem can offer a unified framework,

in which one can systematically study particular cases of the problem that have been

independently investigated. As we have seen, the framework of problems having the

form CSP(Γ) includes the algebraic problem of deciding if a system of equations over

the field of two elements has a solution, as well as the 2-SATISFIABILITY and HORN

SATISFIABILITY problems, two of the best known and oldest tractable versions of the

CNF-SATISFIABILITY problem. The CSP(Γ) framework also includes other problems

that have been independently investigated in other contexts. For example, it includes the

H-colorability problem (for each fixed graph H) from graph theory; the H-colorability

problem is to decide if there is a graph homomorphism from an input graph G to the

graph H [32].

Although there are always many different ways to parameterize a general computa-

tional problem, a complete classification of a problem with respect to a useful parameter
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provides a very convenient tool for performing complexity analysis. Suppose that we

are confronted with a restricted version of the CSP over a two-element domain, and

wish to know whether or not the version is tractable. With Schaefer’s theorem in hand,

we can immediately determine whether or not tractability of the restricted version can

be derived from the constraint language; if not, we know that any proof of tractability

must crucially use other features of the restricted version. There are examples where

problems arising in different areas of computer science have been directly shown to be

tractable via formulation as a known tractable CSP(Γ) problem [48, 17]. Moreover, the

crisp tractability and intractability results provided by Schaefer’s and other classifica-

tion theorems can be a very convenient starting point for deriving further tractability

and intractability results.

Complexity classification results also yield a justification for the scheme of complex-

ity classes that has been developed. One of the great successes of complexity theory thus

far has been its ability to characterize practically all “naturally occurring” problems as

being either tractable or complete for a complexity class. For instance, almost all stud-

ied problems in the class NP have been demonstrated to be either in P or NP-complete.2

That is, the class NP seems to exhibit a form of dichotomy behavior: natural problems

inside of it tend to be either easy (in P) or maximally hard for it (NP-complete). That

NP exhibits this sort of dichotomy can certainly not be taken for granted, in light of

Ladner’s theorem, which implies (assuming that P does not equal NP) the existence of

problems in NP of intermediate complexity: problems that are outside of P, but not NP-

complete. Proving classification results like Schaefer’s that demonstrate all problems of

a large family to be either tractable or complete for a known complexity class, provides

2Probably the most prominent counterexample to this trend is the GRAPH ISOMOR-
PHISM problem, which indeed is known to be in NP, but not known to be in P nor
NP-complete. There is evidence that it is not NP-complete [52].
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validation for the existing scheme of complexity classes: these classification results sug-

gest that there are no “natural” complexity classes intermediate between existing ones,

that still need to be defined and studied. Indeed, if one agrees that (for instance) all

problems of the form CSP(Γ) are “natural”, then a proof that all problems of the form

CSP(Γ) are either in P or NP-complete can be viewed as evidence for the claim that

all “natural” NP problems are either in P or NP-complete–a claim that is probably not

readily formalizable, if at all.

An Algebraic Approach

This dissertation is concerned with classifying problems of the form QCSP(Γ), defined

analogously to CSP(Γ): for a constraint language Γ, the QCSP(Γ) problem is the re-

stricted version of the QCSP where all relations that occur must come from Γ.

In recent years, a powerful algebraic approach to classifying CSP(Γ) problems has

been developed; this approach can be used to study many problem families that are

parameterized by constraint language, including QCSP(Γ) problems. We will use this

algebraic approach in a central manner to study the problems QCSP(Γ), and now pro-

vide a brief overview of it.

A key feature of this approach is that it allows us to associate to every constraint

language Γ a set of operations called the polymorphisms of Γ having the property that

the complexity of CSP(Γ) (and likewise, QCSP(Γ)) depends only on the polymorphisms

of Γ. This makes it possible to attack our complexity classification program by studying

sets of polymorphisms, which are dual to constraint languages (sets of relations), instead

of constraint languages themselves. This dual viewpoint permits the use of many ideas

from algebra to be used towards our quest of complexity classification.

Let us be more precise. Suppose that R ⊆ Dm is a relation, that is, a set of m-tuples
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over a domain D. We say that an operation f : Dk → D on D is a polymorphism of R if

for any choice of (not necessarily distinct) tuples t1, . . . , tk from R, the length m tuple

obtained by applying f in a pointwise manner to the tuples t1, . . . , tk is also contained

in R.

Example 6 Let R be the relation {(1, 0), (0, 1), (1, 1)} over the two-element domain

D = {0, 1}. Let µ : D3 → D be the majority function on {0, 1}, that is, the function

that is equal to 0 if either two or three of its arguments is equal to 0, and equal to 1 if

either two or three of its arguments is equal to 1. We claim that µ is a polymorphism

of R. To show this, we need to show that for any choice of tuples t1, t2, t3 ∈ R, the

tuple µ(t1, t2, t3) is also in R; here, µ(t1, t2, t3) denotes the tuple obtained by applying

µ pointwise to the given tuples.

Let us first consider t1 = (1, 0), t2 = (0, 1), and t3 = (1, 1). We have

µ(t1, t2, t3) = µ((1, 0), (0, 1), (1, 1))

= (µ(1, 0, 1), µ(0, 1, 1))

= (1, 1)

Hence, for this particular choice of t1, t2, t3, we have µ(t1, t2, t3) ∈ R. Since µ is

a symmetric function, we have µ(t1, t2, t3) = (1, 1) whenever the tuples t1, t2, t3 are

different tuples from R.

It can be seen from the definition of µ that when two (or three) of the tuples t1, t2, t3

are equal, applying µ to them results in the “equal” tuple, and hence a tuple that is in R

presuming that the ti were in R. For example, let us take t1 = (0, 1) and t2 = t3 = (1, 0).
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We have

µ(t1, t2, t3) = µ((0, 1), (1, 0), (1, 0))

= (µ(0, 1, 1), µ(1, 0, 0))

= (1, 0)

We conclude that µ is a polymorphism of R, as desired. In fact, it can be verified that

µ is a polymorphism of any arity 2 relation R ⊆ D2 over the two-element domain

D = {0, 1}.

As we mentioned, a key fact concerning polymorphisms that we will make use of is

that any two constraint languages Γ1, Γ2 having exactly the same polymorphisms have

exactly the same complexity in that CSP(Γ1) and CSP(Γ2) are reducible to each other

(and likewise for QCSP(Γ1) and QCSP(Γ2)). Put succinctly, complexity is an invariant

of polymorphisms.

It is consequently possible to give an algebraic formulation of Schaefer’s theorem.

In particular, each of the tractability criteria has an equivalent formulation in terms of

the presence of a polymorphism.

Theorem 7 [33] A relation R over domain {0, 1} is equivalent to the conjunction of

(dual) Horn clauses if and only if the boolean AND ∧ (respectively, boolean OR ∨)

function is a polymorphism of R.

Theorem 8 [51] A relation R over domain {0, 1} is equivalent to a 2-CNF formula if

and only if the majority function µ is a polymorphism of R.

Theorem 9 [51] A relation R over domain {0, 1} is equivalent to the conjunction of

linear equations of the form v1 ⊕ · · · ⊕ vn = c if and only if the function x ⊕ y ⊕ z is a

polymorphism of R.
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For each of these theorems, the “if” direction is straightforward to check; the reader

may find it instructive to work out verifications. Full proofs of the theorems can be

found in the monograph [20].

With these theorems along with the easy observation that a relation contains the all-0

(all-1) tuple if and only if it has the constant function 0 (1) as polymorphism, we can

reformulate Schaefer’s theorem (Theorem 4) as follows. Let us say that a function f

is a polymorphism of a constraint language Γ if it is a polymorphism of every relation

R ∈ Γ.

Theorem 10 (Schaefer’s theorem - algebraic formulation) Let Γ be a finite constraint

language containing relations that are over the two-element domain {0, 1}. The problem

CSP(Γ) is in P if Γ satisfies one of the six conditions below; otherwise, CSP(Γ) is NP-

complete.

1. The constant function 0 is a polymorphism of Γ.

2. The constant function 1 is a polymorphism of Γ.

3. The boolean AND ∧ function is a polymorphism of Γ.

4. The boolean OR ∨ function is a polymorphism of Γ.

5. The majority function µ is a polymorphism of Γ.

6. The function x ⊕ y ⊕ z is a polymorphism of Γ.

Algebraic proofs of Schaefer’s theorem have been given; see for instance the paper

by Jeavons [34] or the survey [4].

As an example of the utility of the algebraic approach to CSP complexity, we point

out that the algebraic formulation of Schaefer’s theorem allows one to transparently see
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that there is a polynomial-time algorithm for the meta-question of deciding, given a

constraint language Γ over {0, 1}, whether or not CSP(Γ) is in P.3 One polynomial-time

algorithm for the meta-question is to simply check, for each of the six polymorphisms

f in the statement of Theorem 10, whether or not all relations in Γ have f as polymor-

phism. The question of how hard it is to determine, for each of the six conditions of

Schaefer’s theorem, whether an input relation satisfies the condition, was in fact raised

as an open question in Schaefer’s original paper [51].

1.4 Previous Work

We now survey previous work relevant to our endeavor, with a focus on the work that is

most directly comparable to our results.

We first mention that although this dissertation is solely concerned with complex-

ity classification via constraint language parameterization, there have been complexity

classification results that use other forms of parameterization. As examples, we name

a classification theorem on the directed subgraph homeomorphism problem due to For-

tune, Hopcroft, and Wyllie [28], classification results on problems concerning circuits

built from a fixed set of boolean functions [3], and the study of constraint satisfaction

problems based on restricting the interaction among variables [30, 23, 31, 41].

The past decade has seen many complexity classification results of problem families

parameterized by constraint language; as we have indicated, study of this parameteri-

zation has its origins in Schaefer’s 1978 paper [51]. For instance, there has been re-

search on the counting constraint satisfaction problem by Creignou and Hermann [19]

and Bulatov and Dalmau [10], approximability in boolean constraint satisfaction by

Khanna, Sudan, Trevisan, and Williamson [38], inverse satisfiability by Kavvadias and

3This is observed, for instance, in the monograph [20].
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Sideri [37], and minimal model checking by Kirousis and Kolaitis [39]. We point the

reader to the surveys [4, 42] and the monograph [20] for further examples.

In the realm of CSP complexity classification based on constraint language, recent

years have seen impressive progress on the research program of extending Schaefer’s

theorem on constraint languages over a two-element domain to a classification theorem

for all constraint languages over a finite domain. Feder and Vardi [27] made use of ex-

pressibility in Datalog and group theory to describe and explain a number of tractability

results. Jeavons [34] established that polymorphisms could be used to approach the CSP

classification program; Jeavons, Cohen, and Gyssens [46] gave sufficient conditions for

CSP tractability as well as sufficient conditions for CSP intractability described using

polymorphisms. For instance, they showed that any constraint language having a semi-

lattice polymorphism is tractable. Bulatov, Krokhin and Jeavons [14] demonstrated that

ideas from universal algebra can be used to study CSP complexity. Jeavons, Cohen, and

Cooper [35] demonstrated that any constraint language having a near-unanimity poly-

morphism is tractable. Many further CSP tractability results have been achieved, for

example, those by Dalmau and Pearson [24], Dalmau [22], Bulatov, Krokhin, and Jeav-

ons [15], Bulatov [8], Bulatov [6], Bulatov and Jeavons [13], and Chen and Dalmau [18].

Particularly important for our purposes are the papers of Bulatov [8, 6] showing the

tractability of Maltsev polymorphisms and 2-semilattice polymorphisms, respectively.

Bulatov has also given a complete CSP complexity classification of constraint languages

over a three-element domain [7], as well as a classification of conservative constraint

languages [9].

While there has been a lot of work on CSP complexity classification, there has been

much less work on QCSP complexity classification. In domain size two, a classifi-

cation theorem for quantified formulas with constants was claimed without proof by
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Schaefer in his 1978 paper [51]. The polynomial-time tractability of QUANTIFIED 2-

SATISFIABILITY was proved by Aspvall, Plass, and Tarjan [1]. A cubic time algorithm

for and hence the polynomial-time tractability of QUANTIFIED HORN SATISFIABILITY

was demonstrated by Karpinski, Kleine Büning, and Schmitt [36]; a different algorithm

with an improved time bound was given by Kleine Büning, Karpinski, and Flögel [16].

Dalmau [21] proved the following dichotomy theorem for quantified formulas analogous

to Schaefer’s theorem.

Theorem 11 Let Γ be a finite constraint language containing relations over the two-

element domain {0, 1}. The problem QCSP(Γ) is in P if Γ satisfies one of the conditions

3, 4, 5, 6 of Schaefer’s Theorem; otherwise, QCSP(Γ) is PSPACE-complete.

A proof of Theorem 11 is also given in the monograph [20]. Note that Theorem 11

subsumes the theorem on QCSP claimed by Schaefer, since quantified formulas with

constants over a constraint language Γ (with domain {0, 1}) may be simulated by quan-

tified formulas over the constraint language Γ ∪ {{(0)}, {(1)}}.4

Börner, Bulatov, Krokhin, and Jeavons have studied QCSP complexity in domains

of arbitrary finite size [5]; their results include the identification of a new Galois connec-

tion relevant to QCSP complexity; the tractability of Maltsev polymorphisms and dual

discriminator polymorphisms; and, a classification result for constraint languages con-

taining all graphs of permutations. (A dual discriminator polymorphism is a particular

type of near-unanimity polymorphism.)

4Interestingly, Theorem 11 implies that QCSP(Γ) and QCSP(Γ ∪ {{(0)}, {(1)}})
are of the same complexity, since for any of the conditions 3, 4, 5, 6 of Schaefer’s
theorem, a constraint language Γ with domain {0, 1} satisfies the condition if and only
if Γ ∪ {{(0)}, {(1)}} does.
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1.5 Overview and Contributions

This dissertation is motivated by the research program of understanding and classifying

the complexity of QCSP(Γ) for all constraint languages Γ over a finite size domain. The

particular contributions of this dissertation are as follows.

In Chapter 3, we prove a pair of QCSP tractability results, namely, the tractability

of constraint languages having a near-unanimity polymorphism, and the tractability of

constraint languages having a certain type of semilattice polymorphism. These results

generalize and unify two different groups of previously established results. Our re-

sults broaden the tractability of QUANTIFIED 2-SATISFIABILITY [1] and QUANTIFIED

HORN SATISFIABILITY [36, 16] by showing that the constraint languages of these prob-

lems are merely instances of families of tractable constraint languages containing con-

straint languages over domains of all sizes. In addition, near-unanimity and semilattice

polymorphisms have been shown to guarantee tractability in the CSP setting [35, 46],

and hence our results are QCSP generalizations of known CSP tractability results.

Our proof that near-unanimity polymorphisms are QCSP tractable makes use of al-

gebraic machinery developed by Jeavons, Cohen, and Cooper [35]. Our study of semi-

lattice polymorphisms is centered around a proof system for QCSP instances having

semilattice polymorphisms, which we demonstrate to be sound and complete. Our pri-

mary use for this proof system is in the development of an algorithm for semilattice

polymorphisms, although we believe that it is of independent interest. This proof sys-

tem and the algorithm for semilattice polymorphisms are inspired by the proof system

and algorithm for QUANTIFIED HORN SATISFIABILITY given by Büning, Karpinski,

and Flögel [16].

In Chapter 4, we introduce a new concept for proving QCSP tractability results,

collapsibility. The key insight behind this concept is that for certain problems of the
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form QCSP(Γ), deciding truth of an instance can be reduced to deciding the truth of an

ensemble of instances, all of which have a bounded number of universally quantified

variables and are derived from the original instance by “collapsing” together universally

quantified variables. This concept provides a uniform proof technique for deriving the

tractability of many constraint languages. In particular, this technique reconciles and

reveals common structure among the initial two tractable classes of the QCSP that we

show to be tractable in Chapter 3, and, as we show, can also be used to derive the QCSP

tractability of Maltsev polymorphisms.

In Chapter 5, we study constraint languages having a 2-semilattice polymorphism; 2-

semilattice operations generalize semilattice operations. We fully classify 2-semilattice

polymorphisms in the QCSP, showing that some such polymorphisms guarantee QCSP

tractability, while others do not. This result contrasts with Bulatov’s result that all 2-

semilattice polymorphisms guarantee CSP tractability [6], and is especially intriguing

because it reveals constraint languages whose CSP complexity and QCSP complexity

differ. Our positive tractability results make use of and validate the collapsibility ma-

chinery developed in Chapter 4.

We have attempted to make the presentation as self-contained as possible, although

familiarity with the notion of polynomial-time computation is assumed. Aquaintance

with the complexity classes NP, coNP, and PSPACE and the associated completeness

notions is useful for appreciating the results, but is almost everywhere not strictly nec-

essary. We name the books [2, 45, 54] as standard texts for these topics.



Chapter 2

Preliminaries

We will occasionally use this arrow notation unless there is danger of

no confusion.

– Ronald Graham, Rudiments of Ramsey Theory

We use [n] to denote the set containing the first n positive integers, that is, {1, . . . , n}.

For a function f : A → B, we denote by f [a → b] the extension of f mapping a to

b, and we denote by f |A′ the restriction of f to a subset A′ ⊆ A. For a set F of functions

f : A → B and a subset A′ ⊆ A, we denote by F |A′ the set of functions {f |A′ : f ∈ F}.

A tuple over a set S is an element of Sk (for some k ≥ 1), and is said to have arity

k. The ith coordinate of a tuple t is denoted by ti. A relation over a set S is a subset of

Sk (for some k ≥ 1), and is said to have arity k.

2.1 Constraint Satisfaction

Intuitively, the constraint satisfaction problem involves deciding if there is a mapping

from a set of variables to a domain satisfying given constraints. We will only be con-

cerned with finite-domain constraint satisfaction, and hence adopt the convention that a

19
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domain is a nonempty set of finite size. Throughout, we will use D to denote the domain

of constraints and constraint networks.

Constraints. A constraint consists of two parts: a scope, which consists of variables,

and a collection of values that the scope may take on. For ease of notation, we will

use two different notions of constraint. Throughout this dissertation, we will freely

interchange between these two different notions.

The first notion of constraint uses a relation to specify the allowable values for the

scope. A relation-based constraint is an expression of the form R(v), where R is a

relation (over a domain D) and v is a tuple of variables such that R and v have the same

arity. The tuple of variables v is called the scope of the constraint R(v). A constraint

R(v) of arity k ≥ 1 is satisfied by a mapping f : V → D defined on the variables in

v = (v1, . . . , vk) if (f(v1), . . . , f(vk)) ∈ R.

The second notion of constraint uses a set of functions to specify the allowable values

for the scope. A function-based constraint is a pair 〈S, R〉, where S is a set of variables,

and R is a set of functions, all of which map from S to the same domain D. The set of

variables S is called the scope of the constraint 〈S, R〉. A constraint 〈S, R〉 is satisfied

by a mapping f : V → D defined on the variables in S if f |S ∈ R.

Every relation-based constraint naturally induces a function-based constraint, and

vice-versa. The relation-based constraint R(v1, . . . , vk) induces the function-based con-

straint 〈{v1, . . . , vk}, R
′〉 where R′ contains all functions f : {v1, . . . , vk} → D such

that f satisfies R(v1, . . . , vk). The function-based constraint 〈S, R〉 induces the relation-

based constraint R′(v1, . . . , vk) where v1, . . . , vk are distinct variables having the prop-

erty that {v1, . . . , vk} = S, and R′ = {(f(v1), . . . , f(vk)) | f ∈ R}. It is straightforward

to verify that a mapping f : V → D satisfies a relation-based constraint R(v) if and
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only if it satisfies the function-based constraint induced by R(v); similarly, a mapping

f : V → D satisfies a function-based constraint 〈S, R〉 if and only if it satisfies the

relation-based constraint induced by 〈S, R〉.

Constraint networks. A constraint network is a finite set of constraints, all of which

have relation over the same domain, and is said to be over the variable set V if all of its

constraints have variables from V . A mapping f : V → D is a solution or satisfying

assignment of a constraint network C (over V ) if it satisfies all constraints in C.

We formally define the constraint satisfaction problem as follows.

Definition 12 The constraint satisfaction problem, denoted by CSP, is the problem of

deciding, given a constraint network C over variable set V and domain D, whether or

not there exists a satisfying assignment f : V → D of C.

It will be useful to consider the restriction of a constraint network to a subset of the

variable set. Let C be a constraint network over variable set V and let U be a subset

of V . Define C|U to be the constraint network {C|U | C ∈ C} where for a constraint

C = 〈S, R〉, we use C|U to denote the constraint 〈S ∩ U, R|S∩U〉.

2.2 Quantified Constraint Satisfaction

In the constraint satisfaction problem, one can think of the variables as being implic-

itly existentially quantified: the problem involves deciding whether or not there ex-

ists an assignment to each of the variables such that all given constraints are satisfied.

The quantified constraint satisfaction problem (QCSP) is more general, in that universal

quantification–in addition to existential quantification–of variables is permitted.

In the terminology of logic, an instance of the QCSP will be a closed, first-order

quantified formula consisting of a quantifier prefix followed by a constraint network.
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This dissertation will be concerned almost exclusively with formulas of this type; hence,

we will for simplicity call such a formula a quantified formula, and point out explicitly

when free variables are present, as indicated in the following definitions.

Definition 13 A quantified formula with free variables W is an expression of the form

Q1v1 . . . QnvnC, where each Qi is a quantifier from the set {∀, ∃}, the variables vi are

distinct and not included in W , and C is a constraint network over the variable set

{v1, . . . , vn} ∪ W .

Definition 14 A quantified formula having no free variables is referred to as a quanti-

fied formula.

We define truth of quantified formulas (with free variables) inductively on the num-

ber of bound variables, just as in first-order logic.

Definition 15 Let φ = Q1v1 . . . QnvnC be a quantified formula with free variables W .

The formula φ is true relative to an assignment f : W → D if and only if:

• there are no bound variables (that is, n = 0) and f satisfies C,

• Q1 = ∃ and there exists an element d ∈ D such that the formula Q2v2 . . . QnvnC

is true relative to the assignment f [v1 → d], or

• Q1 = ∀ and for all elements d ∈ D, the formula Q2v2 . . . QnvnC is true relative

to the assignment f [v1 → d].

A quantified formula (without free variables) is considered to be true if it is true

relative to the empty assignment.

Definition 16 The quantified constraint satisfaction problem, denoted by QCSP, is the

problem of deciding, given a quantified formula φ, whether or not φ is true.
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It can be seen that the restricted version of the QCSP problem where all quantifiers

must be existential, is equivalent to the CSP problem.

Quantifier prefixes. When φ = Q1v1 . . . QnvnC is a quantified formula, we call

Q1v1 . . . Qnvn the quantifier prefix of φ. When the quantifier Qi associated with a vari-

able vi is existential (that is, Qi = ∃), we say that vi is an existentially quantified variable

or existential variable; similarly, when Qi is universal (that is, Qi = ∀), we say that vi

is an universally quantified variable or universal variable. We let Vφ, Yφ, and Xφ de-

note the variables, universally quantified variables, and existentially quantified variables

of a quantified formula φ, respectively; we drop the φ subscript when it is understood

from the context. Notice that Vφ is the disjoint union of Yφ and Xφ, as we assumed the

variables vi in the quantifier prefix to be distinct.

In a quantifier prefix Q1v1 . . . Qnvn, we say that the variable vi comes before the

variable vj if i < j, and that the variable vi comes after the variable vj if i > j. We

often assume that the universally quantified variables of a quantified formula are denoted

y1, . . . , y|Y |, where yi comes before yj for i < j; similarly, we often assume that the

existentially quantified variables of a quantified formula are denoted x1, . . . , x|X|, where

xi comes before xj for i < j.

When W is a non-empty subset of the variable set Vφ of a quantified formula φ, we

use firstφ(W ) to denote the unique variable in W coming before all of the other variables

in W , and we use lastφ(W ) to denote the unique variable in W coming after all of the

other variables in W .

Strategies and truth. We now give a characterization of true quantified formulas that

will be particularly wieldy in our investigation. This characterization is based on the no-

tion of Skolem functions from logic. To describe the characterization, we use the terms
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strategy and adversary: a strategy gives a way of setting the existential variables of a

quantified formula in reaction to an adversary which sets the universal variables. As

we discussed in Chapter 1, one way to view a quantified formula is as a game between

two players: the universal player, who sets the universal variables, and the existential

player, who sets the existential variables. Variables are set in the order prescribed by the

quantifier prefix, and the formula is true if the existential player can always ensure that

the constraint network is satisfied by the final variable setting. The following character-

ization of true quantified formulas is a formalization of this view.

Definition 17 A strategy for a quantified formula φ is a sequence of mappings

σ = {σi : Du(i) → D}i∈[n]

where u(i) denotes the number of universal variables coming before the ith existential

variable xi.

Note that when u(i) = 0, we consider the mapping σi to be a constant, that is, an

element of D.

Definition 18 An adversary for a quantified formula φ is a mapping τ : Yφ → D.

When σ is a strategy and τ is an adversary for a quantified formula φ, we use (σ, τ)

to denote the assignment that results when the universal variables are set according to τ

and the existential variables are set according to σ; formally, (σ, τ) is the mapping from

Vφ to D defined by

(σ, τ)(yi) = τ(yi)

for yi ∈ Yφ, and

(σ, τ)(xi) = σi(τ(y1), . . . , τ(yu(i)))
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for xi ∈ Xφ.

A strategy σ for the quantified formula φ is said to be winning or a winning strategy

if for all adversaries τ for φ, the assignment (σ, τ) : Vφ → D satisfies the constraint

network C of φ.

Proposition 19 A quantified formula φ is true if and only if it has a winning strategy.

2.3 Problem Formulation

This dissertation focuses on a parameterized version of the QCSP that is defined relative

to a constraint language. A constraint language is defined to be a set of relations (not

necessarily of the same arity), all of which are over the same domain.

Definition 20 Let Γ be a constraint language. The QCSP(Γ) problem is to decide, given

as input a quantified formula φ with constraints having relations from Γ, whether or not

φ is true.

We define the CSP(Γ) problem to be the restriction of the QCSP(Γ) problem to

instances where all quantifiers are existential.

The following research problem has been studied intensely, particularly over the past

decade.

Research Problem 1 Classify the complexity of the problem CSP(Γ) for all constraint

languages Γ over a finite domain.

This dissertation is concerned with the following research problem.

Research Problem 2 Classify the complexity of the problem QCSP(Γ) for all con-

straint languages Γ over a finite domain.
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In this section, we will show that one only needs to consider constraint languages of

a particular form to resolve Research Problems 1 and 2.

We say that a decision problem is tractable if it is decidable in polynomial time.

We will say that a constraint language Γ is tractable (or, for emphasis, QCSP tractable)

if QCSP(Γ) is tractable. We will say that a constraint language Γ is CSP tractable

if CSP(Γ) is tractable. We will say that a constraint language Γ reduces to another

constraint language Γ′ if QCSP(Γ) reduces to QCSP(Γ′) via a polynomial-time many-

one reduction–the only form of reduction we will use in this dissertation [2]. All results

in this section are either explicit or implicit in the papers [34, 12, 5]; we state them in

terms of the QCSP, although they were first observed (and all hold) for the CSP.

We begin with a simple observation: adding relations to a constraint language can

only make it harder.

Proposition 21 Let Γ, Γ′ be constraint languages such that Γ ⊆ Γ′. Then Γ reduces to

Γ′.

Proof: The problem QCSP(Γ) reduces to QCSP(Γ′) by the identity reduction. •

Definition 22 Let Γ be a constraint language. A relation R of arity k is expressible by

Γ if there exists a quantified formula φ with free variables {w1, . . . , wk}, having only

existential quantifiers, and having only relations from Γ ∪ {=D} such that

R = {(f(w1), . . . , f(wk)) | φ is true relative to f : {w1, . . . , wk} → D}.

Here, =D denotes the equality relation on the domain D.

We use 〈Γ〉 to denote the set of all relations expressible by Γ.1

1Note that our definition of expressibility only permits the use of existential quan-
tification. In [5], the set of all relations expressible by Γ using both existential and
universal quantification, denoted by [Γ], is defined and studied. The discussion in this
section mostly holds for [Γ] in place of 〈Γ〉, but none our results require the use of [Γ].
We refer the interested reader to [5].
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We will show in this section that the complexity of a constraint language Γ, in a

certain precise sense, depends only on the constraint language 〈Γ〉. Roughly speaking,

this is because for a constraint language Γ, we can add to Γ relations that are expressible

by Γ without changing the complexity of Γ. In particular, suppose we start with a finite

constraint language Γ and add to it relations expressible by Γ to obtain a second finite

constraint language Γ′. Even though Γ′ is larger than Γ, it is no harder than Γ: it can be

seen that Γ′ reduces to Γ by the following proposition.

Proposition 23 Let Γ be any constraint language, and let Γ′ be a finite constraint lan-

guage such that Γ′ ⊆ 〈Γ〉. Then Γ′ reduces to Γ.

Proof idea: The constraint language Γ′ reduces to Γ ∪ {=D} via the reduction that,

given an instance φ of QCSP(Γ′), creates an instance of QCSP(Γ∪ {=D}) by replacing

each constraint R(w1, . . . , wk) of φ with a quantified formula expressing R that is over

Γ∪ {=D} and has free variables {w1, . . . , wk}, as in Definition 22. It is straightforward

to prove that the problem QCSP(Γ ∪ {=D}) reduces to QCSP(Γ) [5]. •

Observe that the constraint language 〈Γ〉 is always infinite. We can define a notion of

tractability on infinite constraint languages so that a constraint language Γ is “tractable”

if and only if 〈Γ〉 is.

Definition 24 A constraint language Γ is locally tractable if for every finite subset Γ′

of 〈Γ〉, the constraint language Γ′ is tractable. A constraint language Γ is locally in-

tractable if it is not locally tractable.

Note that Definition 24 is interesting only for infinite constraint languages: a finite

constraint language is tractable if and only if it is locally tractable.

The next proposition shows that, from the standpoint of local tractability, the con-

straint languages Γ and 〈Γ〉 have the same complexity.
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Proposition 25 A constraint language Γ is locally tractable if and only if 〈Γ〉 is locally

tractable.

Proof: Every finite subset Γ′ of 〈Γ〉 reduces to a finite subset of Γ by the reduction of

Proposition 23, and so every such finite subset Γ′ is locally tractable when Γ is locally

tractable. That the local tractability of 〈Γ〉 implies the local tractability of Γ is immediate

from the fact that Γ ⊆ 〈Γ〉. •

From Proposition 25, we can see that the program of classifying which constraint

languages Γ are locally tractable can be “reduced” to the program of classifying which

constraint languages of the form 〈Γ〉 are locally tractable.

As was mentioned, a finite constraint language is locally tractable if and only if it is

tractable. This fact, however, does not hold (at least a priori) in the case of infinite con-

straint languages. To emphasize the distinction between local tractability and tractability

of infinite constraint languages, the term global tractability is sometimes employed.

Definition 26 A constraint language Γ is globally tractable if it is tractable, and is

globally intractable if it is not tractable.2

We remark that, for all studied cases of the CSP and QCSP, infinite constraint lan-

guages that are locally tractable are also globally tractable; it has been conjectured that

in the CSP setting, local tractability always implies global tractability [12].

As stated in Research Problem 2, we are interested in identifying all constraint lan-

guages (both finite and infinite) that are globally tractable. All of the results in this

dissertation will take on one of two forms:
2When Γ is a finite constraint language, the complexity of QCSP(Γ) is not sensitive

to how relations in Γ are represented, so long as each relation has a constant size repre-
sentation. However, when Γ is an infinite constraint language, one needs to be precise in
describing how relations are represented. In global tractability, we assume that relations
are represented by an explicit listing of all tuples.



29

• demonstration that a constraint language of the form 〈Γ〉 is globally tractable, or

• demonstration that a constraint language of the form 〈Γ〉 is locally intractable.

Global tractability implies local tractability; likewise, local intractability implies global

intractability, so both our positive and negative results are of the strongest possible type.

Indeed, global tractability of 〈Γ〉 implies global tractability of Γ (since Γ ⊆ 〈Γ〉),

and local intractability of 〈Γ〉 implies the local (and hence global) intractability of Γ

by Proposition 25. Demonstrating that all constraint languages 〈Γ〉 are either globally

tractable or locally intractable would therefore resolve Research Problem 2, and so we

are justified in focusing attention on constraint languages 〈Γ〉.

2.4 Algebra

It has been shown that powerful algebraic theory can be used to study the complexity

of CSP(Γ) problems [46, 34]. The ideas of [46, 34] can be adopted in a straightforward

way to also study the complexity of QCSP(Γ) problems from an algebraic viewpoint.

This algebraic theory associates to every constraint language Γ a set of operations, called

the polymorphisms of Γ, which characterizes the constraint language 〈Γ〉 and hence the

complexity of QCSP(Γ).

We begin by defining what it means for an operation to be a polymorphism of a

relation.

Definition 27 An operation µ : Dk → D is a polymorphism of a relation R ⊆ Dm if

for all tuples t1, . . . , tk ∈ R, the tuple (µ(t11, . . . , tk1), . . . , µ(t1m, . . . , tkm)) is in R.

In other words, an operation µ on D of rank k is a polymorphism of a relation R if,

for any choice of k tuples t1, . . . , tk from R, the tuple obtained by acting on the tuples

ti in a coordinate-wise manner by µ, is also contained in R.
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We extend this definition to constraint languages as follows.

Definition 28 An operation µ is a polymorphism of a constraint language Γ if µ is a

polymorphism of all relations R ∈ Γ.

We will also use the following terminology.

Definition 29 When µ is a polymorphism of a relation R (or a constraint language Γ),

we say that R (or Γ) is invariant under µ.

The set of all polymorphisms of a constraint language Γ, as well as the set of all

relations invariant under all operations in a given set, play an important role in our

investigation and are thus worthy of their own notation.

Definition 30 Let OD denote the set of all finite rank operations over D, and let RD

denote the set of all finite arity relations over D.

When Γ ⊆ RD is a set of relations (that is, a constraint language), we define

Pol(Γ) = {µ ∈ OD | µ is a polymorphism of Γ}.

When F ⊆ OD is a set of operations, we define

Inv(F ) = {R ∈ RD | R is invariant under all operations µ ∈ F}.

It is straightforward to verify that any relation expressible by a constraint language

Γ possesses the polymorphisms of Γ, that is, 〈Γ〉 ⊆ Inv(Pol(Γ)). In fact, the converse

holds as well: any relation invariant under all polymorphisms of Γ is expressible by Γ,

that is, Inv(Pol(Γ)) ⊆ 〈Γ〉.

Theorem 31 For any constraint language Γ, it holds that 〈Γ〉 = Inv(Pol(Γ)).
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There is a proof of Theorem 31 in the paper [34].

Theorem 31 demonstrates that the set of relations expressible by a constraint lan-

guage Γ depends only on the polymorphisms of Γ: given the polymorphisms of Γ, the

set 〈Γ〉 can be computed by an application of the Inv(·) operator. We showed in the

previous section that the complexity of a constraint language Γ can be studied by study-

ing the constraint language 〈Γ〉. Thus, we can approach our complexity classification

program by studying sets of operations.

Definition 32 When F ⊆ OD is a set of operations, we use QCSP(F ) to denote the

problem QCSP(Inv(F )). When F consists of only one element, that is, F = {µ}, we use

the notation QCSP(µ) instead of QCSP({µ}).

We define CSP(F ) and CSP(µ) analogously.

With this notation in hand, our research problem can be reduced to the problem

of classifying the complexity of QCSP(F ) for all possible sets of polymorphisms F .

This is because, by Theorem 31, the problem QCSP(〈Γ〉) is equivalent to the problem

QCSP(Pol(Γ)).

We have observed that larger constraint languages are higher in complexity than

smaller ones (Proposition 21). The situation for sets of operations is dual to that for

constraint languages: larger sets of operations have lower complexity than smaller ones.

Proposition 33 Let F, F ′ ⊆ OD be sets of operations such that F ⊆ F ′. Then the

problem QCSP(F ′) reduces to the problem QCSP(F ).

Proof: Immediate from Proposition 21 and the fact that F ⊆ F ′ implies Inv(F ′) ⊆

Inv(F ). •

Correspondingly, the literature contains a number of results that show that the pres-

ence of a particular type of operation in Pol(Γ) implies the CSP tractability of Γ. That
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is, there are many results having the form:

“If µ is an operation of type X, and µ ∈ Pol(Γ), then CSP(Γ) is tractable.”

Such results can be succinctly stated as CSP(µ) tractability results, since (1) such a result

implies the tractability of CSP(Inv(µ)) = CSP(µ), and (2) for any constraint language

Γ for which µ ∈ Pol(Γ), it holds that Γ ⊆ Inv(µ) and hence CSP(Γ) is a subproblem of

CSP(µ).

Some examples of such results are given in the following theorems.

A semilattice operation is a binary operation that is associative, commutative, and

idempotent.

Theorem 34 [46] Let ⊕ be a semilattice operation on a finite set D. If Γ is a constraint

language such that ⊕ ∈ Pol(Γ), then CSP(Γ) is decidable in polynomial time.

An operation µ : Dk → D is near-unanimity if it is of arity k ≥ 3 and it returns the

value d ∈ D whenever at least k − 1 of its arguments are equal to d.

Theorem 35 [35] Let µ be a near-unanimity operation on a finite set D. If Γ is a

constraint language such that µ ∈ Pol(Γ), then CSP(Γ) is decidable in polynomial

time.

A Maltsev operation is a ternary operation m satisfying the identities m(x, x, y) =

m(y, x, x) = y.

Theorem 36 [8] Let µ be a Maltsev operation on a finite set D. If Γ is a constraint

language such that µ ∈ Pol(Γ), then CSP(Γ) is decidable in polynomial time.

The tractability results of Theorems 34, 35, and 36 in fact generalize the non-trivial

tractable cases of Schaefer’s theorem (see Theorem 10): it can be verified that the
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boolean AND ∧ and boolean OR ∨ functions are semilattice operations, the major-

ity function µ discussed in Chapter 1 is a near-unanimity operation, and the function

x ⊕ y ⊕ z is a Maltsev operation.

We have just seen that the presence of certain types of polymorphisms can im-

ply CSP tractability of a constraint language. On the flip side, it has been shown

that constraint languages that are “polymorphism improverished”–lacking non-trivial

polymorphisms–are CSP intractable.

Let us say that an operation f : Dk → D is a non-constant essentially unary

operation if there exists i ∈ [k] and a non-constant function g : D → D such that

f(d1, . . . , dk) = g(di) for all d1, . . . , dk ∈ D.

Theorem 37 [46] Let Γ be a constraint language. If Pol(Γ) contains only non-constant

essentially unary operations, then CSP(Γ) is NP-complete.

As we have mentioned, our complexity classification program amounts to studying

all problems having the form QCSP(F ), where F = Pol(Γ) for a constraint language Γ.

Operation sets of the form Pol(Γ) have a particular structure: they are clones.

Definition 38 A set of operations F ⊆ OD is a clone if:

• for all m, n such that 1 ≤ m ≤ n, the set F contains the projection operation

πm,n : Dn → D defined by πm,n(x1, . . . , xn) = xm, and

• the set F is closed under composition, where the composition of an operation

f : Dn → D and operations g1, . . . , gn : Dm → D is the operation h : Dm → D

defined by h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

Proposition 39 For any constraint language Γ, the set Pol(Γ) is a clone.
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Analogously, relation sets of the form Inv(F ) and 〈Γ〉 have a particular structure:

they are relational clones, also known as co-clones.

Definition 40 A set of relations Γ ⊆ RD is a relational clone if:

• the equality relation =D is contained in the set Γ,

• the set Γ is closed under intersection, that is, if R, S ∈ Γ are of the same arity,

then R ∩ S ∈ Γ,

• for any R ∈ Γ of arity k, the relation

R × D = {(d1, . . . , dk+1) | (d1, . . . , dk) ∈ R, dk+1 ∈ D}

is also in Γ, and

• for any R ∈ Γ of arity k and any sequence of (not necessarily distinct) indices

i1, . . . , im ∈ [k], the relation {(di1, . . . , dim) | (d1, . . . , dk) ∈ R} is also in Γ.

Proposition 41 For any set of operations F ⊆ OD, the set Inv(F ) is a relational clone.

Proposition 42 For any constraint language Γ, the set 〈Γ〉 is a relational clone; more-

over, every relational clone is equal to 〈Γ〉 for some constraint language Γ.

Proof: The first part follows immediately from Theorem 31 and Proposition 41. The

second part follows from the fact that for any relational clone Γ, it holds that Γ = 〈Γ〉. •

We remark that 〈Γ〉 is the smallest relational clone containing Γ.

The operators Pol(·) and Inv(·) give a Galois connection between the power set of

RD and the power set of OD. We also mention that there is a one-to-one correspondence

between clones and relational clones, given by the operators Pol(·) and Inv(·). We refer

the interested reader to the book [47] for more information on these operators.
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In the last section, we stated that our results will concern problems of the form

QCSP(〈Γ〉). In fact, they are phrased in terms of problems having the form QCSP(µ)

(for an operation µ), which, by the previous two propositions, are also problems of the

form QCSP(〈Γ〉).

We conclude this chapter by giving two auxiliary results that will be useful through-

out our study of quantified constraint satisfaction.

Proposition 43 For every instance φ of the QCSP problem, there is an equivalent in-

stance of the CSP problem having no more than |Xφ| · |D||Yφ| variables and no more

than c · |D||Yφ| constraints, where c is the number of constraints in φ.

Proof: The idea is to create an instance of the CSP where the variables are the possible

output values of the mappings of a strategy. The CSP instance created will be satisfiable

if and only if there is a winning strategy for the original QCSP instance φ.

For each existential variable x ∈ Xφ of φ, let Y [x] denote the universal variables

(in φ) coming before x. The variables of the CSP instance are all pairs of the form

(x, α), where x is an existential variable and α is a mapping from Y [x] to D. For every

constraint R(v) of φ and for every adversary τ : Yφ → D, we create a constraint in the

CSP instance as follows. Let us assume, for the sake of notation, that v has the form

(x1, . . . , xm, y1, . . . , yn), where the xi are existential variables and the yi are universal

variables; we create a constraint equivalent to

R((x1, τ |Y [x1]), . . . , (xm, τ |Y [xm]), τ(y1), . . . , τ(yn))

and having scope ((x1, τ |Y [x1]), . . . , (xm, τ |Y [xm])). Note that for a single constraint

R(v), different adversaries may cause the same constraint to be created.

Suppose that f is an assignment to the variables of the CSP instance. It is straightfor-

ward to verify that f satisfies the constraints of the CSP instance if and only if the strat-
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egy which sets variable x ∈ Xφ to f((x, τ |Y [x])) in reaction to adversary τ : Yφ → D is

a winning strategy. •

An operation µ : Dk → D is idempotent if µ(d, . . . , d) = d for all d ∈ D.

Proposition 44 Suppose that µ is an idempotent operation, and fix a constant j ≥ 1.

The problem QCSP(µ), when restricted to instances with j or fewer universal quanti-

fiers, reduces (via many-one polynomial-time reduction) to CSP(µ).

Proof: The reduction is the translation given in the proof of Proposition 43; this trans-

lation can be carried out in time polynomial in the size of the original QCSP instance

when the number of universal quantifiers is constant. This translation involves cre-

ating relations that are obtained from relations of the QCSP instance by instantiating

some coordinate positions with constants. The resulting CSP instance is an instance of

QCSP(µ) since idempotent polymorphisms are preserved when constant instantiation is

performed; this is straightforward to verify. •



Chapter 3

A Pair of Tractability Results

A foolish consistency is the hobgoblin of little minds, adored by little

statesmen and philosophers and divines.

– Ralph Waldo Emerson, Self-Reliance

In this chapter, we give a pair of QCSP tractability results: we show that two classes

of constraint languages–those having near-unanimity polymorphisms, and those hav-

ing certain semilattice polymorphisms–are QCSP tractable. In the CSP setting, near-

unanimity polymorphisms and semilattice polymorphisms have been shown to guaran-

tee tractability [46, 35]; our QCSP tractability results are thus generalizations of known

CSP tractability results. These two classes of polymorphisms are fundamental in the

CSP setting. In particular, they arise very naturally in the consideration of consistency

algorithms for the CSP, algorithms which, roughly speaking, infer new constraints from

a given CSP instance by the examination of bounded-size subsets of the variable set.

Near-unanimity polymorphisms characterize exactly those constraint languages in

which establishing a sufficiently high level of local consistency implies the global con-

sistency and hence satisfiability of a CSP instance, as will be discussed in Section 3.1.

37
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Semilattice polymorphisms were one of the first CSP tractable classes identified [46],

and are closely tied to the algorithm of establishing arc consistency, a very basic algo-

rithm which ensures that every instance of a variable in a CSP instance is “supported”

by the same values. Establishing arc consistency is a solution procedure for semilattice

polymorphisms; moreover, every constraint language for which establishing arc consis-

tency is a solution procedure can, in a certain precise sense, be explained to be tractable

via the presence of a semilattice polymorphism.1

Our proof that near-unanimity polymorphisms are QCSP tractable makes use of ma-

chinery developed by Jeavons, Cohen, and Cooper [35], who studied near-unanimity

polymorphisms in the CSP setting. Our study of semilattice polymorphisms includes

the presentation of a proof system for QCSP instances having semilattice polymor-

phisms, which we demonstrate to be sound and complete, and which we use to develop

an algorithm for such instances. Our proof system and algorithm are inspired by the

proof system and algorithm for QUANTIFIED HORN SATISFIABILITY given by Büning,

Karpinski, and Flögel [16]; our proof system can be viewed as a generalization of theirs.

3.1 Near-Unanimity Polymorphisms

An operation µ : Dk → D is said to be near-unanimity if it is of arity k ≥ 3 and it

returns the value d ∈ D whenever at least k − 1 of its arguments are equal to d; that is,

if t ∈ Dk is a k-tuple such that there exists i ∈ [k] with tj = d for all j ∈ [k] \ {i}, then

µ(t) = d.

1In particular, Dalmau and Pearson [24] have shown that, in the CSP setting, a con-
straint language is solvable via arc consistency if and only if it has a set function poly-
morphism; such constraint languages, when viewed as relational structures, are homo-
morphically equivalent to, and hence can be solved by the same algorithms as, constraint
languages having a semilattice polymorphism.
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We first turn to review the notion of consistency; our presentation is based on that of

Jeavons, Cohen, and Cooper [35].

Definition 45 Let C be a constraint network over the variable set V .

• The constraint network C is j-consistent (where j ≥ 1) if for every subset V ′ of V

of size j − 1 and for every variable v ∈ V \ V ′, any solution f : V ′ → D of C|V ′

can be extended to a solution f ′ : V ′ ∪ {v} → D of C|V ′∪{v}.

• The constraint network C is strongly k-consistent if it is j-consistent for all j ∈

{1, . . . , k}.

• The set C is globally consistent if it is strongly |V |-consistent.

Global consistency is an extremely desirable property, as a constraint network that

is globally consistent has a solution: this is because 1-consistency implies that for any

variable v1, the constraint network C|{v1} has a solution; 2-consistency implies that for

any variable v2 not equal to v1, the constraint network C|{v1,v2} has a solution; continuing

in this fashion, we can infer that C|V = C has a solution.

Proposition 46 If a constraint network C is globally consistent, then it has a solution.

The general intractability of the CSP implies that it is not possible to efficiently

decide if a given constraint network can be made globally consistent. However, it is

possible to efficiently convert a given constraint network into one that is either locally

consistent, or has an empty constraint (and is hence trivially unsatisfiable).2 By locally

consistent, we mean strongly k-consistent for a constant k. Consider the following

algorithm:

2By an empty constraint, we mean a constraint having an empty relation and a non-
empty scope.
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• Introduce for each subset U of the variable set with size k, a constraint 〈U, R〉

where R contains all assignments to the U .

• For all introduced constraints 〈U, R〉, do the following: eliminate from R any

mappings f ∈ R such that f does not satisfy C|U , where C denotes the entire

constraint network (including the newly introduced constraints).

• Repeat the previous step until no changes are made.

It is straightforward to verify that this procedure takes polynomial time, and that when

the procedure terminates, the resulting constraint network either contains an empty con-

straint, or is k-consistent. Moreover, the resulting constraint network has exactly the

same solutions as the original.

For some classes of constraint networks, performing the above procedure and then

checking for an empty constraint is a correct decision procedure for the class. Indeed,

the following theorem shows that when a constraint language is invariant under a near-

unanimity operation, ensuring a sufficiently high, but constant, degree of local consis-

tency implies global consistency.

Theorem 47 [35] Suppose that Γ is a constraint language invariant under a near-

unanimity operation of arity k. If a constraint network C over Γ is strongly k-consistent,

then C is globally consistent.

Theorem 47 implies that for any near-unanimity operation µ : Dk → D, the problem

CSP(µ) is polynomial-time tractable, since (as was discussed) it is possible in polyno-

mial time to transform a constraint network into one that is either strongly k-consistent,

or trivially unsatisfiable.

Theorem 48 [35] Let µ be a near-unanimity operation on a finite set D. The problem

CSP(µ) is polynomial-time decidable.
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We demonstrate that the CSP tractability result of Theorem 48 can be generalized to

the QCSP.

Theorem 49 Let µ be a near-unanimity operation on a finite set D. The problem

QCSP(µ) is polynomial-time decidable.

Proof: Let µ : Dk → D be a near-unanimity operation of rank k, and let φ =

Q1v1 . . . QnvnC be an instance of the QCSP(µ) problem. We show that, when n ≥ k,

it is possible to compute from φ a new instance φ′ of the QCSP(µ) problem that has

one fewer quantifier than φ, has no more constraints than φ, and is true if and only if φ

is. It will be possible to compute φ′ from φ in polynomial time, and hence any instance

of QCSP(µ) can be solved in polynomial time by iteratively eliminating quantifiers to

obtain a formula with at most k quantifiers, which can be solved by brute force.

The new formula φ′ is obtained from φ by elimination of the innermost quantifier

and associated quantified variable, Qnvn. We split into two cases depending on the type

of Qn.

• Case Qn = ∃: Obtain the constraint network C0 from C by attempting to establish

k-consistency on C. Note that attempting to establishing k-consistency can be

performed by a sequence of projections and intersections, two operations which

preserve polymorphisms, and so we may assume that C0 is invariant under µ.

If C0 has an empty constraint, then φ is false. Otherwise, define the constraint

network C ′ to be C0|V \{vn}, and define φ′ to be Q1v1 . . . Qn−1vn−1C
′. Clearly, if φ

has a winning strategy Σ, then φ′ also has a winning strategy, namely, the strategy

where all existential variables of φ′ are set as in the strategy Σ. On the other

hand, if φ′ has a winning strategy Σ, then φ has a winning strategy that sets the

existential variables in V \{vn} according to Σ. Since the constraint network C0 is
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strongly k-consistent and hence globally consistent, any solution to C ′ = C0|V \{vn}

can be extended to a solution to C0 (which has the same solutions as C), and hence

Theorem 47 guarantees that vn can be set.

• Case Qn = ∀: Compute the constraint network C ′ = {C ′ | C ∈ C}, where for a

constraint C = 〈S, R〉, the constraint C ′ = 〈S ′, R′〉 is defined by S ′ = S \ {vn}

and letting R′ contain all mappings f : S ′ → D having the property that all

extensions g : S → D of f are contained in R. (We say that g : S → D is an

extension of f : S ′ → D if g|S′ = f .) It is straightforward to verify that C ′ is

invariant under µ, and that the formulas φ and φ′ = Q1v1 . . . Qn−1vn−1C
′ have

exactly the same winning strategies.

•

3.2 Semilattice Polymorphisms

A semilattice operation is a binary operation that is associative, commutative, and idem-

potent. It is well-known (and easy to verify) that every semilattice operation ⊕ : D2 →

D induces a partial order ≤⊕, where a ≤⊕ b if and only if a ⊕ b = b (for all a, b ∈ D).

Semilattice polymorphisms have been shown to guarantee CSP tractability [46].

Theorem 50 [46] Let ⊕ : D2 → D be a semilattice operation on a finite set D. The

problem CSP(⊕) is polynomial-time decidable.

A polynomial-time algorithm for deciding CSP(⊕) is to establish arc consistency

and then to check for an empty constraint. We say that a constraint network C is arc

consistent if for any two constraints 〈S, R〉, 〈S ′, R′〉 ∈ C and a variable v ∈ S ∩ S ′, it

holds that {f(v) | f ∈ R} = {f ′(v) | f ′ ∈ R′}. It is straightforward to verify that in
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polynomial time, one can convert a constraint network into one that is arc consistent.

Moreover, this conversion can be done in a way that preserves polymorphisms, as with

the local consistency procedure discussed in the previous section. We show that per-

forming this conversion and then checking for an empty constraint is a correct decision

procedure for the problems at hand.

Proof idea: Let C be an arc consistent instance of CSP(⊕) that does not contain any

empty constraint. We show that C has a solution f : V → D. For each variable

v of C, pick a constraint 〈S, R〉 such that v ∈ S and define f(v) to be the maximal

element of {g(v) | g ∈ R} with respect to ≤⊕. A maximal element exists because

⊕ is a polymorphism of R. Moreover, the definition of f(v) is independent of the

constraint 〈S, R〉 chosen, since C is assumed to be arc consistent. Using the fact that ⊕

is a polymorphism of all constraints in C, it can be shown that f satisfies all constraints

in C. •

We say that a semilattice operation ⊕ : D2 → D has a unit element if there exists an

element u ∈ D such that u ⊕ d = d ⊕ u = d for all d ∈ D. In this section, we demon-

strate that for any semilattice operation ⊕ having a unit element, the problem QCSP(⊕)

is polynomial-time tractable. This tractability result is optimal in that all other remaining

semilattice operations–those lacking a unit element–are intractable, as we will demon-

strate in Chapter 5. We prove this tractability result in three steps. First, we demonstrate

that any constraint invariant under a semilattice operation can be decomposed into the

conjunction of Horn clauses of a certain form, which we call semilattice Horn clauses.

Second, we give a sound and complete proof system for quantified formulas consisting

of semilattice Horn clauses. Third, we develop an algorithm for semilattice operations

having unit based on the proof system. We remark that the theory developed in the first

two steps apply to all semilattice operations, and not just semilattice operations having
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a unit element.

Our first step is to demonstrate that any constraint invariant under a semilattice op-

eration is equivalent to the conjunction of Horn clauses of a certain form. We introduce

the following definitions and notation. Let ⊕ : D2 → D be a semilattice operation. A

positive literal is an expression of the form v ≤⊕ d, where v is a variable and d ∈ D;

and, an negative literal is an expression of the form v 6≤⊕ d, where v is a variable and

d ∈ D. A semilattice Horn clause is a disjunction of positive and negative literals that

contains at most one positive literal. Throughout this section, we will use the term Horn

clause as a shorthand for semilattice Horn clause.

Theorem 51 If C a constraint that is invariant under a semilattice operation ⊕, then C

is logically equivalent to (that is, has the same satisfying assignments as) a conjunction

of Horn clauses.

Proof: Let C = 〈S, R〉 be a constraint invariant under a semilattice operation ⊕ :

D2 → D. It suffices to show that for each function g : S → D not contained in R,

there exists a Horn clause Hg such that any mapping f : S → D in R satisfies Hg, but

the mapping g does not satisfy Hg. Fix g /∈ R, and define Sg = {f ∈ R | f ≤⊕ g}

where we extend the partial order ≤⊕ to mappings in the usual coordinate-wise fashion:

f ≤⊕ g if for all v ∈ S, it holds that f(v) ≤⊕ g(v).

If Sg is empty, then the Horn clause Hg =
∨

v∈S(v 6≤⊕ g(v)) has the desired prop-

erties. If Sg is not empty, define the mapping h : S → D by h(v) = ⊕f∈Sg
f(v). Since

〈S, R〉 is invariant under ⊕, it holds that h ∈ R and indeed that h ∈ Sg. Because g /∈ R,

there exists a variable v0 ∈ S such that g(v0) 6≤⊕ h(v0). The Horn clause

Hg = (v0 ≤⊕ h(v0)) ∨
∨

v∈S\{v0}

(v 6≤⊕ g(v))

has the desired properties. •
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Theorem 51 generalizes Theorem 7, which states that the relation of a constraint

over domain {0, 1} is invariant under boolean AND (∧) if and only if the constraint is

logically equivalent to the conjunction of Horn clauses. To see this, we let ⊕ = ∧; then

the only non-trivial positive literal is one of the form v ≤⊕ 1, which is equivalent to

the positive literal v; and the only non-trivial negative literal is one of the form v 6≤⊕ 1,

which is equivalent to the negative literal v. Hence, for ⊕ = ∧, semilattice Horn clauses

are exactly propositional Horn clauses–disjunctions of literals over boolean variables

containing no more than one positive literal.

We now give a proof system, which we call Q-semilattice-resolution, that is sound

and complete for quantified formulas consisting of semilattice Horn clauses. Our de-

scription of the proof system will make use of the following terminology. A literal

occurring in a QCSP is an ∃-literal (∀-literal) if its variable is a ∃-variable (∀-variable).

When H is a Horn clause appearing within a quantified formula, we let H∀ denote the

set containing all ∀-literals in H; and, we let H∃ denote the set containing all ∃-literals

in H . A Horn clause H appearing in a QCSP φ is an existential unit clause if it contains

only one ∃-literal, the single ∃-literal is positive, and for every ∀-variable y appearing in

H , the variable y comes before the variable of the ∃-literal in the quantification order of

the formula φ.

For notational convenience, we will view a semilattice Horn clause as a set (instead

of a disjunction) of literals.

Definition 52 (Q-semilattice-resolution) Let φ be a quantified formula with constraint

network C consisting of semilattice Horn clauses. A semilattice Horn clause H can be

derived from φ by Q-semilattice-resolution (denoted φ ` H) if it can be obtained by one

or more applications of the following rules.

0. For all H ∈ C, it holds that φ ` H .



46

1. If φ ` H1, φ ` H2, and there exist an ∃-variable x and elements a, b ∈ D such

that (x ≤⊕ a) ∈ H1 and (x ≤⊕ b) ∈ H2, then

φ ` (H1 \ {x ≤⊕ a}) ∪ (H2 \ {x ≤⊕ b}) ∪ L

where L = {x ≤⊕ (⊕{d ∈ A | d ≤⊕ a, d ≤⊕ b})} if {d ∈ A | d ≤⊕ a, d ≤⊕ b}

is non-empty, and L = ∅ otherwise.

2. If φ ` H and there exist a domain element a ∈ D and an ∃-variable x such that

(x ≤⊕ a) ∈ H , then

φ ` (H \ {x ≤⊕ a}) ∪ {x ≤⊕ b}

for all b ∈ D such that a ≤⊕ b.

3. If φ ` U where U is an existential unit clause with positive literal (x ≤⊕ a), and

φ ` H where (x 6≤⊕ a) ∈ H , then

φ ` (U \ {x ≤⊕ a}) ∪ (H \ {x 6≤⊕ a}).

4. If φ ` H , the last variable in the quantification order of φ occurring in H is a

∀-variable y, and there exists a value a ∈ D such that the assignment y = d does

not satisfy Hy (the clause containing all y-literals in H), then

φ ` H \ Hy.

We demonstrate this proof system to be sound and complete, as follows.

Theorem 53 Let φ be a quantified formula with constraint network consisting of semi-

lattice Horn clauses. The formula φ is unsatisfiable if and only if φ ` ∅ using Q-

semilattice-resolution.
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Proof: It is straightforward to prove that the proof system is sound in the sense that if Σ

is a winning strategy for φ and φ ` H , then Σ is a winning strategy for φ with H added

to its constraint network. We thus prove that if it is not the case that φ ` ∅, then φ is

true.

We assume for the sake of notation that φ has the form

∀y1∃x1 . . .∀yn∃xnC

where C consists only of Horn clauses with respect to a semilattice operation ⊕ : D2 →

D. When a = (a1, . . . , ak) is a k-tuple over D, let fa denote the mapping taking yi to ai

for all i ∈ [k]. For each k ∈ [n], define the mapping σk : Dk → D by

σk(a1, . . . , ak) = ⊕{d | fa[xk = d] satisfies all clauses in Uφ,xk
}

where Uφ,xk
denotes all existential unit clauses U containing xk such that φ ` U .

We will show that the mappings {σk}k∈[n] are a winning strategy for φ. We first

show that each mapping σk is well-defined, that is, for each k and tuple a ∈ Dk, the set

{d | fa[xk = d] satisfies all clauses in Uφ,xk
}

is non-empty. We prove this by contradiction; suppose that for some k and tuple a ∈

Dk, the set is empty. Then, for every d ∈ D there exists an existential unit clause Ud

containing xk such that φ ` Ud and fa does not satisfy Ud. We have (for all d ∈ D)

that fa does not satisfy U∀
d , and that xk = d does not satisfy the single positive literal

in U∃
d . Applying rule 1 to all of the Ud, we obtain φ ` ∪d∈DU∀

d . Since fa does not

satisfy ∪d∈DU∀
d , by repeated application of rule 4, we obtain that φ ` ∅, contradicting

our assumption that it is not the case that φ ` ∅.

We now show that {σk}k∈[n] is a winning strategy for φ. Let τ : {y1, . . . , yn} → D

be an assignment to the ∀-variables of φ; we wish to show that (σ, τ) satisfies all clauses
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of φ. It suffices to show that (σ, τ) satisfies all clauses H such that φ ` H . We prove

this by induction on the number t of negative ∃-literals that H contains.

We split into three cases.

Case 1: t = 0 and H does not contain any ∃-literals. If (σ, τ) does not satisfy H ,

then the empty set can be derived from H using rule 4.

Case 2: t = 0 and H contains a positive ∃-literal. Obtain H ′ by applying rule 4 to

eliminate ∀-literals in H until rule 4 is no longer applicable. If the last variable in H ′

(relative to the quantification order of φ) is a ∀-variable y, then for all a ∈ D, every

extension of the assignment y = a satisfies H ′, and so in particular H ′ is satisfied by

(σ, τ). If the last variable in H ′ is an ∃-variable x, then H ′ is an existential unit clause

and is satisfied by (σ, τ) by the definition of the σk.

Case 3: H contains an negative ∃-literal xk 6≤⊕ d. Suppose (for a contradiction)

that (σ, τ) does not satisfy H; then (σ, τ)(xk) ≤ d. By reasoning similar that used

in to the above argument that the mappings σi are well-defined, there is a derivable

existential unit clause U with literal xk ≤⊕ (σ, τ)(xk) such that (σ, τ) does not satisfy

U \ {xk ≤⊕ (σ, τ)(xk)}. Set U ′ = (U \ {x ≤⊕ (σ, τ)(xk)}) ∪ {xk ≤ d}. By applying

rule 2 to U , we obtain φ ` U ′. Set H ′ = (U ′ \ {xk ≤⊕ d}) ∪ (H \ {xk 6≤⊕ d}). By

rule 3, φ ` H ′. Notice that H ′ is not satisfied by (σ, τ); this contradicts our inductive

hypothesis, since H ′ contains one less negative ∃-literal than H . •

We can now show that any semilattice operation with unit is QCSP tractable: this is

done by using the Q-semilattice-resolution proof system to show that any QCSP instance

invariant under such a semilattice operation can be reduced to an ensemble of QCSP

instances, each of which has a single universal variable.

Theorem 54 Let ⊕ : D2 → D be a semilattice operation with unit element on a finite

set D. The problem QCSP(⊕) is polynomial-time decidable.
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Proof: Let φ = ∀y1∃x1 . . .∀yn∃xnC be an instance of the QCSP(⊕) problem, and let

⊕ be a semilattice operation with unit element u. Notice that for all elements d ∈ D, it

holds that u ≤⊕ d. By appeal to Theorem 51, there is a constraint network H containing

only Horn clauses that is logically equivalent to C.

Let D∃ denote the subset of H containing all clauses with a positive ∃-literal; Let D∀

denote the subset of H containing all clauses with a positive ∀-literal; and let U denote

the subset of H containing all clauses having only negative literals.

It can be verified that every clause derivable from φ by Q-semilattice-resolution is

derivable from

φH
def
= ∀y1∃x1 . . .∀yn∃xn(D∃ ∪ {H})

for some H ∈ D∀ ∪ U . This is because when H is a clause in D∀ ∪ U , H cannot be

combined with any other clause in D∀ ∪ U to derive a further clause, in Q-semilattice-

resolution.

It follows that φ ` ∅ if and only if there exists H ∈ D∀ ∪ U such that φH ` ∅.

Hence, deciding whether or not φ is true thus amounts to deciding whether or not φH

is true, for all H ∈ D∀ ∪ U . When H ∈ U , the formula φH is true if and only if

φH [y1 = · · · = yn = u] (that is, the formula φ where all ∀-variables have been replaced

with the unit element u) is true: this is because the only universal literals in φH are

negative, and so any strategy that wins against the adversary setting all yi to u is a

winning strategy. When H ∈ D∀, let y denote the variable in the positive ∀-literal of

H (which is the only positive ∀-literal in φH); similar reasoning shows that φH is true if

and only if φ′
H is true, where φ′

H is obtained from φH by setting all ∀-variables except

for y to the unit element u.

Hence, the formula φ is true if and only if each of the formulas φ1, . . . , φn is true,

where φi is obtained from φ by setting all ∀-variables except for yi to the unit element
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u. By appeal to Proposition 44, deciding the truth of an input instance φ of QCSP(⊕)

can be performed in polynomial time. •



Chapter 4

Collapsibility

In this chapter, we introduce a new concept for use with QCSPs which we call col-

lapsibility. The key insight behind this concept is that for certain problems of the form

QCSP(Γ), deciding truth of an instance can be reduced to deciding the truth of an en-

semble of instances, all of which have a bounded number of universally quantified vari-

ables and are derived from the original instance by “collapsing” together universally

quantified variables.

More specifically, we will define a j-collapsing of a quantified formula φ to be any

quantified formula obtained by choosing j of the universally quantified variables in φ,

and associating together the remaining universally quantified variables (in a particular

way to be made precise). It is always the case that when φ is a true quantified for-

mula, any j-collapsing of φ is also true. We will show that certain problems of the

form QCSP(Γ) are j-collapsible, for some constant j, in that the converse also holds:

an instance of QCSP(Γ) is true if all j-collapsings of φ are true. The j-collapsibility

of a problem is an extremely strong computational condition, since quantified formulas

with a constant number of universally quantified variables are, intuitively, very close to

being CSPs. Indeed, we will combine j-collapsibility results with known CSP tractabil-

51
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ity results to obtain QCSP tractability results. In particular, we demonstrate the QCSP

tractability of any constraint language having one of the following types of operations as

polymorphism: semilattice operations with unit, near-unanimity operations, and Malt-

sev operations.

The contents of this chapter are as follows. First, we define the notions of j-

collapsing and j-collapsibility; and, we give a characterization of when a j-collapsing of

a quantified formula is true in terms of strategies and adversaries (Section 4.1). In partic-

ular, we show that a j-collapsing of a formula is true if and only if there is a strategy for

the formula which can win against a certain restricted collection of adversaries. We then

introduce a tool called composability for collections of adversaries to be composed, that

makes it possible to show that, for certain problems QCSP(Γ), the truth of an instance

formula can be inferred from the truth of its j-collapsings (Section 4.2). We then apply

the developed theory to demonstrate that certain problems QCSP(Γ) are j-collapsible,

and consequently tractable (Section 4.3).

4.1 Collapsings of Formulas

Note that throughout this section, we assume j to be a positive integer.

Definition 55 A quantified formula φ′ is a j-collapsing of another quantified formula φ

if:

• |Yφ| ≤ j and φ′ = φ, or

• |Yφ| > j and there exists a subset Y ′ of Yφ having size j such that φ′ can be

obtained from φ by first eliminating, from the quantifier prefix of φ, all variables

in Yφ \Y ′ except for firstφ(Yφ \Y ′); and then replacing, in the constraint network

of φ, all variables in Yφ \ Y ′ with firstφ(Yφ \ Y ′).
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In the latter case, we say that φ′ is the j-collapsing of φ with respect to Y ′.

Roughly speaking, a j-collapsing of a formula φ is obtained by picking j universal

variables of φ, and then associating together the remaining universal variables.

For example, the quantified formula

∀y1∃x1∀y2∀y3∃x2{R1(y1, x1), R2(y3, x2), R3(y2, y3, x2)}

has the following three 1-collapsings:

∀y1∃x1∀y2∃x2{R1(y1, x1), R2(y2, x2), R3(y2, y2, x2)}

∀y1∃x1∀y2∃x2{R1(y1, x1), R2(y1, x2), R3(y2, y1, x2)}

∀y1∃x1∀y3∃x2{R1(y1, x1), R2(y3, x2), R3(y1, y3, x2)}.

The first formula given is the j-collapsing with respect to Y ′ = {y1}, obtained by

associating together y2 and y3; the second is the j-collapsing with respect to Y ′ = {y2};

and, the third is the j-collapsing with respect to Y ′ = {y3}.

We have the following fact concerning the j-collapsings of a true quantified formula.

Proposition 56 If a quantified formula φ is true, then for any j-collapsing φ′ of φ, the

quantified formula φ′ is true.

Interestingly, we will be able to demonstrate classes of formulas for which the con-

verse of Proposition 56 holds–that is, classes of formulas that are j-collapsible.

Definition 57 A class of quantified formulas is j-collapsible if for every quantified for-

mula φ from the class, the following property holds: if all j-collapsings of φ are true,

then φ is true.
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We first give an alternative characterization of the truth of a j-collapsing. Define an

adversary set (over a set of variables Y ) to be a set of functions τ : Y → D. When φ

is a quantified formula and F is an adversary set (over Yφ), we say that F is φ-winnable

if there exists a strategy σ for φ such that for all adversaries τ ∈ F , the assignment

(σ, τ) satisfies the constraint network of φ; when φ is understandable from the context,

we simply say that F is winnable. In this terminology, a quantified formula φ is true if

and only if the adversary set containing all adversaries τ : Yφ → D is φ-winnable.

When Y ′ is a subset of Y having size j and F is the adversary set (over Y ) containing

all functions τ : Y → D having the property that τ(y1) = τ(y2) for all y1, y2 ∈ Y \ Y ′,

we say that F is the j-adversary set (over Y ) with respect to Y ′. That is, the j-adversary

set with respect to Y ′ contains those adversaries that set variables in Y ′ freely, but set all

variables outside of Y ′ to the same value. Using the notion of j-adversary set, we can

characterize the truth of a j-collapsing (of a quantified formula).

Proposition 58 Let φ be a quantified formula and let Y ′ be a subset of Yφ of size j <

|Yφ|. The j-collapsing (of φ) with respect to Y ′ is true if and only if the j-adversary set

(over Yφ) with respect to Y ′ is φ-winnable.

From this characterization of the truth of a particular j-collapsing, we can immedi-

ately derive the following fact, which will be useful in proving that various classes of

quantified formulas are j-collapsible, for some constant j.

Proposition 59 Let φ be a quantified formula and suppose j is a positive integer with

j < |Yφ|. All j-collapsings (of φ) are true if and only if all j-adversary sets (over Yφ)

are φ-winnable.
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4.2 Composability

As mentioned, our primary objective in this chapter is to obtain QCSP tractability results

by proving that restricted classes of quantified formulas are j-collapsible. The truth of

any quantified formula that is j-collapsible can be decided by checking the truth of all j-

collapsings of the formula. To prove j-collapsibility of a quantified formula, one needs

to show that if all j-collapsings of the formula are true, then the formula itself is true.

In the previous section, we showed that if the j-collapsings of a formula are true, then

the formula is winnable against certain limited adversary sets called j-adversary sets.

Moreover, we noted that if a formula is winnable against the set of all adversaries, then

it is true. Our methodology for proving j-collapsibility is as follows. We will introduce

a notion called composability that permits us to show–under some circumstances–that

when a formula is winnable against some adversary sets, it is winnable against an ad-

versary set that is larger than and composed from the original adversary sets. Actual

j-collapsibility results are obtained by assuming the winnability of j-adversary sets, and

then continually composing adversary sets known to be winnable to eventually obtain

the entire set of all adversaries–and hence the truth of the formula.

We introduce the following notion of composability for adversary sets, with respect

to a function µ.

Definition 60 Let µ : Dk → D be a function, and let F, F1, . . . , Fk be adversary sets

over the set of variables {y1, . . . , yn}. We say that F is µ-composable from F1, . . . , Fk

if there exist sequences of partial mappings

π1 = {π1
i : Di → D}i∈[n], . . . , π

k = {πk
i : Di → D}i∈[n]

such that for all τ ∈ F , the following two properties hold:
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• for all i ∈ [k], the mapping τ i : {y1, . . . , yn} → D defined by

τ i(yj) = πi
j(τ(y1), . . . , τ(yj))

for all j ∈ [n], is total and contained in Fi, and

• it holds that τ(yj) = µ(τ 1(yj), . . . , τ
k(yj)), for all j ∈ [n].

The key feature of this definition is the following theorem.

Theorem 61 Let µ : Dk → D be an operation and let the quantified formula φ be an

instance of QCSP(µ) with universal variables y1, . . . , yn (where for i < j, the variable

yi comes before yj in the quantification order of φ). Suppose that F is µ-composable

from F1, . . . , Fk. If φ is Fi-winnable for all i ∈ [k], then φ is F -winnable.

Proof: Let φ be a quantified formula with universal variables y1, . . . , yn and existential

variables x1, . . . , xm. Let u(i) denote the number of universal variables coming before

the ith existential variable, xi. We define a strategy σ = {σi : Du(i) → D}i∈[m] where

each function σi(d1, . . . , du(i)) is defined as

µ(σ1
i (π

1
1(d1), . . . , π

1
u(i)(d1, . . . , du(i))), . . . σ

k
i (πk

1(d1), . . . , π
k
u(i)(d1, . . . , du(i)))).

We show that for all τ ∈ F , it holds that

(σ, τ) = µ((σ1, τ 1), . . . , (σk, τk))

where the τ i are defined as in Definition 60.

For each universal variable yi we have

(σ, τ)(yi) = µ(τ 1(yi), . . . , τ
k(yi)) = µ((σ1, τ 1)(yi), . . . , (σ

k, τk)(yi)).
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For each existential variable xi we have

(σ, τ)(xi) = σi(τ(y1), . . . , τ(yu(i)))

= µ(σ1
i (π

1
1(τ(y1)), . . . , π

1
u(i)(τ(y1), . . . , τ(yu(i)))),

. . . ,

σk
i (π

k
1 (τ(y1)), . . . , π

k
u(i)(τ(y1), . . . , τ(yu(i)))))

= µ(σ1
i (τ

1(y1), . . . , τ
1(yu(i))), . . . , σ

k
i (τ k(y1), . . . , τ

k(yu(i)))))

= µ((σ1, τ 1)(xi), . . . , (σ
k, τk)(xi))

•

For convenience, we will write adversaries using tuple notation; an adversary τ :

{y1, . . . , yn} → D will be written as the tuple (τ(y1), . . . , τ(yn)). We will be concerned

primarily with adversary sets that are independent in the sense that picking a value for

one variable does not constrain the choices that can be made for another variable. Let us

define an adversary set F (over the set of variables {y1, . . . , yn}) to be an independent

adversary set if there exist sets D1, . . . , Dn ⊆ D such that

F = D1 × · · · × Dn.

That is, F is an independent adversary set if there exist subsets D1, . . . , Dn ⊆ D such

that F contains any and all mappings τ : {y1, . . . , yn} → D with τ(yi) ∈ Di.

We will use the following specialized form of composability to manipulate indepen-

dent adversary sets.

Definition 62 Let µ : Dk → D be a function, and let F, F1, . . . , Fk be independent

adversary sets, denoted by

F = A1 × · · · × An
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and

Fi = Di1 × · · · × Din

for sets Dij ⊆ D (with i ∈ [k], j ∈ [n]) and Aj ⊆ D (with i ∈ [n]).

When Aj ⊆ µ(D1j, . . . , Dkj) for all j ∈ [n], we say that F is independently µ-

composable from F1, . . . , Fk; this is denoted by F / µ(F1, . . . , Fk).

Theorem 63 Let µ : Dk → D be a function, and let F, F1, . . . , Fk be independent

adversary sets such that F is independently µ-composable from F1, . . . , Fk. Then F is

µ-composable from F1, . . . , Fk.

Proof: Let us denote the independent adversary sets F, F1, . . . , Fk as in Definition 62.

For each i ∈ [k] and j ∈ [n], let ρij : Aj → Dij be a function such that for all j ∈ [n]

and a ∈ Aj, it holds that

a = µ(ρ1j(a), . . . , ρkj(a)).

Define partial mappings

π1 = {π1
i : Di → D}i∈[n], . . . , π

k = {πk
i : Di → D}i∈[n]

by

πi
j(d1, . . . , dj) = ρij(dj)

when dj ∈ Aj, for all i ∈ [k] and j ∈ [n]. It is straightforward to verify that F is

µ-composable from F1, . . . , Fk via the mappings πi
j . •

Let I ⊆ [n] be a set of indices and let d ∈ D be a domain element. We define the

adversary set A(I, d) as D1 × · · · × Dn where Di = D if i ∈ I , and Di = {d} if i /∈ I .

Proposition 64 If all j-collapsings of a quantified formula φ with n universal variables

are true, then for every subset I ⊆ [n] of size |I| ≤ j, and for every domain element

d ∈ D, the adversary set A(I, d) is φ-winnable.
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Proof: Immediate from Proposition 59 and the fact that any subset of a winnable ad-

versary set is also winnable. •

4.3 Applications

Using the developed machinery, we can now derive the collapsibility of a variety of

constraint languages. In particular, we now give a number of results which demonstrate

that certain problems of the form QCSP(µ) are j-collapsible, for some j.

All of the proofs in this section have a similar structure. To show that a problem

QCSP(µ) is j-collapsible, we begin by assuming that all j-adversary sets are winnable,

and hence that all adversary sets A(I, d) with |I| ≤ j are winnable. We then use in-

dependent µ-composability to show that more complex adversary sets are winnable,

eventually showing that the adversary set containing all adversaries is winnable.

Theorem 65 Let ⊕ : D2 → D be a semilattice operation with unit. The problem

QCSP(⊕) is 1-collapsible.

Proof: Let u be the unit element of the semilattice operation ⊕. We assume that all

adversary sets A(I, u) with |I| = 1 are φ-winnable, where φ is a quantified formula

with n universal variables. We prove by induction that for each l ∈ [n], all adversary

sets A(I, u) with |I| = l are φ-winnable; the base case l = 1 holds by assumption. Let

I ⊆ [n] be a set of indices of size l + 1, and let i, j be two distinct elements of I . We

have

A(I, u) / ⊕(A(I \ {i}, u),A(I \ {j}, u))

as D = ⊕({u}, D) = ⊕(D, {u}). •

In the tractability proof for problems QCSP(⊕) given in the previous chapter (The-

orem 54), it was shown that an instance φ of QCSP(⊕) is true if and only if all formulas
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obtainable from φ by setting all ∀-variables but one to the unit element u are true. The

proof of Theorem 65 just given yields an alternative algebraic proof of this fact.

Theorem 66 Let µ : Dk → D be a near-unanimity operation of rank k ≥ 3. The

problem QCSP(µ) is (k − 1)-collapsible.

Proof: Fix d ∈ D to be any domain element. We assume that all adversary sets A(I, d)

with |I| = k − 1 are φ-winnable, where φ is a quantified formula with n universal

variables. We prove by induction that for each l with (k− 1) ≤ l ≤ n, all adversary sets

A(I, d) with |I| = l are φ-winnable; the base case l = k − 1 holds by assumption. Let

I ⊆ [n] be a set of indices of size l + 1, and let i1, . . . , ik be distinct elements of I . We

have

A(I, d) / µ(A(I \ {i1}, d), . . . ,A(I \ {ik}, d))

as D = µ({d}, D, . . . , D) = · · · = µ(D, . . . , D, {d}). •

The dual discriminator operation is defined to be the near-unanimity operation δ :

D3 → D of rank 3 such that δ(x, y, z) = z when no two of x, y, z are equal. By

the previous theorem, every problem of the form QCSP(δ) is 2-collapsible. We can

show that when δ is the dual discriminator operation, the problem QCSP(δ) is in fact

1-collapsible.

Theorem 67 Let δ : Dk → D be the dual discriminator operation on D. The problem

QCSP(δ) is 1-collapsible.

Proof: Fix a, b ∈ D to be distinct domain elements. We assume that all adversary sets

A(I, d) with |I| = 1 and d ∈ {a, b} are φ-winnable, where φ is a quantified formula

with n universal variables. We prove by induction that for each l ∈ [n], all adversary

sets A(I, d) with |I| = l and d ∈ {a, b} are φ-winnable; the base case l = 1 holds by
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assumption. Let I ⊆ [n] be a set of indices of size l + 1, and let i, j be distinct elements

of I . We have

A(I, a) / δ(A(I \ {i}, a),A(I \ {i}, b),A(I \ {j}, a))

as D = δ({a}, {b}, D) = δ(D, D, {a}) and a = δ(a, b, a). Similarly, we have

A(I, b) / δ(A(I \ {i}, b),A(I \ {i}, a),A(I \ {j}, b)).

•

A Maltsev operation m : D3 → D is a ternary operation satisfying the identities

m(x, x, y) = m(y, x, x) = y.

Theorem 68 Let m : D3 → D be a Maltsev operation. The problem QCSP(d) is

1-collapsible.

Proof: Fix d ∈ D to be any domain element. We assume that all adversary sets A(I, d)

with |I| = 1 are φ-winnable, where φ is a quantified formula with n universal variables.

We prove by induction that for each l ∈ [n], all adversary sets A(I, d) with |I| = l are

φ-winnable; the base case l = 1 holds by assumption. Let I ⊆ [n] be a set of indices of

size l + 1, and let i, j be distinct elements of I . We have

A(I, d) / m(A(I \ {i}, d),A(I \ {i}, d),A(I \ {j}, d))

as D = m({d}, {d}, D) = m(D, D, {d}). •

We have just shown that certain problems QCSP(µ) are j-collapsible. From these

results, we can infer the tractability of the problems QCSP(µ).

Theorem 69 Suppose that µ is a semilattice operation with unit, a near-unanimity op-

eration, or a Maltsev operation. Then, the problem QCSP(µ) is tractable.



62

Proof: Let µ be an operation of one of the described types. By previous results (see

Theorems 34, 35, and 36), the problem CSP(µ) is tractable. By Theorems 65, 66,

and 68, the problem QCSP(µ) is j-collapsible for some constant j. An algorithm for

QCSP(µ) is the following: for all j-collapsings φ′ of QCSP(µ), check the truth of φ′ by

converting φ′ to an instance of CSP(µ) (as in Theorem 69) and using a polynomial-time

algorithm for CSP(µ). Output true if and only if all j-collapsings φ′ are true. Note that,

when j is a constant, there are polynomially many j-collapsings of a quantified formula,

and all of them can be computed in polynomial time. •



Chapter 5

Complexity of 2-Semilattice

Polymorphisms

In this chapter, we investigate constraint languages that have a 2-semilattice operation

as polymorphism. A 2-semilattice operation is a binary operation ? that satisfies the

semilattice identities restricted to two variables, namely, the identities x ? x = x (idem-

potence), x?y = y?x (commutativity), and (x?x)?y = x?(x?y) (restricted associativ-

ity). 2-semilattices constitute a natural generalization of semilattices; semilattices were

one of the initial classes of polymorphisms shown to guarantee CSP tractability [46],

and since then 2-semilattices have been shown to imply CSP tractability by Bulatov [6].

We prove a full classification of 2-semilattice polymorphisms for QCSPs, showing that

some such polymorphisms guarantee QCSP tractability, while others do not.

We would like to highlight three reasons as to why we believe our study of 2-

semilattice polymorphisms in the QCSP setting is interesting.

First, as pointed out previously [6], 2-semilattice polymorphisms play an impor-

tant role in the investigation of maximal constraint languages, which are constraint lan-

guages that can express any relation when augmented with any relation not expressible

63
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by the language. Because a constraint language that can express all relations is in-

tractable, maximal constraint languages are the largest constraint languages that could

possibly be tractable (in either the CSP or QCSP setting); hence, studying maximal con-

straint languages allows one to obtain the most general tractability results possible. (It

is worth noting here that all of the tractability results identified by Schaefer’s theorem

apply to maximal constraint languages.) It follows from a theorem of Rosenberg [50]

that maximal constraint languages can be classified into five types; one of the types

consists of constraint languages having a non-projection binary idempotent operation

as polymorphism. Because 2-semilattice operations are indeed operations of this type,

the present work constitutes a step towards understanding this type. We mention that in

the CSP setting, the tractability of 2-semilattices has been leveraged to give complete

complexity classifications of maximal constraint languages for domains of size three

and four [15, 6].

Second, our tractability proofs make use of and validate the collapsibility machinery

for proving QCSP tractability that we have developed the previous chapter. In Chapter 4,

it was demonstrated that for a number of types of polymorphisms µ where CSP(µ) is

tractable, the problem QCSP(µ) is j-collapsible, and hence also tractable. We give

another class of constraint languages having this property, by showing that when ? is

a 2-semilattice operation such that QCSP(?) is tractable, the problem QCSP(?) is 1-

collapsible. This provides further evidence that collapsibility is a fruitful and useful tool

for studying QCSP complexity.

Third, although all 2-semilattice polymorphisms are tractable in the CSP setting,

2-semilattice polymorphisms intriguingly yield two modes of behavior in the QCSP

setting: some 2-semilattice polymorphisms guarantee QCSP tractability, while others

(provably) do not. This is surprising in light of the fact that for all other types of
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polymorphisms of non-trivial constraint languages that have been investigated, poly-

morphisms that guarantee CSP tractability also guarantee QCSP tractability. In fact, our

results imply the first and only known examples of non-trivial constraint languages that

are CSP tractable, but QCSP intractable.1 The existence of such constraint languages

implies that the boundary between tractability and intractability in the QCSP context is

genuinely different from the corresponding boundary in the CSP context.

The contents of this chapter are as follows. We begin by stating our classification the-

orem on 2-semilattices and we derive some consequences of this theorem (Section 5.1).

We then give the tractability and intractability proofs for the classification theorem (Sec-

tions 5.2 and 5.3).

5.1 Classification of 2-semilattices

This chapter presents a complete complexity classification of 2-semilattice operations

in quantified constraint satisfaction. In this section, we formally state the classification

theorem (Theorem 70) and discuss some of its implications; then, we prove the theorem

in two parts.

Every 2-semilattice operation ? : D2 → D induces a directed graph G? = (D, E)

with edge set E = {(a, b) ∈ D×D : a ? b = b}. We use C? to denote the set of strongly

connected components (or components, for short) of G?, and let ≤ be the binary relation

on C? where for C1, C2 ∈ C?, it holds that C1 ≤ C2 if and only if there exist vertices

v1 ∈ C1, v2 ∈ C2 such that there is a path in G? from v1 to v2. It is straightforward

to verify that ≤ is a partial order. We say that C ∈ C? is a minimal component if it is

1Here, by a non-trivial constraint language, we mean a constraint language that in-
cludes each constant as a relation. When µ is an idempotent operation, Inv(µ) contains
each constant as a relation and hence the problem QCSP(µ) may be viewed as being
over a non-trivial constraint language.
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minimal with respect to ≤, that is, for all C ′ ∈ C?, C ′ ≤ C implies C ′ = C.

Our classification theorem demonstrates that 2-semilattice operations give rise to

two modes of behavior in QCSP complexity, depending on the structure of the graph

G?.

Theorem 70 Let ? : D2 → D be a 2-semilattice operation. If there is a unique minimal

component in C?, then QCSP(?) is decidable in polynomial time. Otherwise, QCSP(?)

is coNP-hard.

Proof: Proved as Theorems 73 and 75 below. •

One implication of this classification theorem is a complete classification of semilat-

tice operations in QCSP complexity. In Chapters 3 and 4, we proved the QCSP tractabil-

ity of semilattice operations with unit. Our classification of 2-semilattices allows us to

derive the intractability of all other semilattice operations.

Corollary 71 Let ? : D2 → D be a semilattice operation. If ? has a unit element, then

QCSP(?) is decidable in polynomial time. Otherwise, QCSP(?) is coNP-hard.

Proof: When ? is a semilattice operation, it is straightforward to verify that each com-

ponent in C? is of size one. Hence, C? has a unique minimal component if and only if ?

has a unit element. •

Another implication of our classification theorem is the tractability of all commuta-

tive conservative operations. A commutative conservative operation is a binary opera-

tion ? : D2 → D that is commutative and conservative; we say that a binary operation

? is conservative if for all x, y ∈ D it holds that x ? y ∈ {x, y}. Such operations were

studied in the context of the CSP by Bulatov and Jeavons [11], prior to Bulatov’s study

of 2-semilattices [6].
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Corollary 72 Let ? : D2 → D be a commutative conservative operation. The problem

QCSP(?) is decidable in polynomial time.

Proof: It is straightforward to verify that when ? is a commutative conservative opera-

tion, the relation ≤ on C? is a total ordering, and hence has a unique minimal component.

•

5.2 Tractability

We give two different proofs of the tractability of 2-semilattice operations ? identified

to be tractable by our classification theorem. We first give a relatively simple and short

proof.

Theorem 73 Let ? : D2 → D be a 2-semilattice operation. If there is a unique minimal

component in C?, then QCSP(?) is decidable in polynomial time.

Proof: Let µ : D2k

→ D be the function defined by

µ(x1, . . . , x2k) = (((x1 ? x2) ? (x3 ? x4)) ? · · · )

where the right hand side is a balanced binary tree of depth k with leaves x1, . . . , x2k .

Since any relation having ? as polymorphism also has µ as polymorphism, every in-

stance of QCSP(?) is an instance of QCSP(µ), and it suffices to show that QCSP(µ) is

polynomial-time decidable.

We show that the problem QCSP(µ) is (2k − 1)-collapsible; the result then follows

by the argument given in the proof of Theorem 69. Our proof of collapsibility uses the

notation and follows the structure of the collapsibility proofs in Section 4.3.

Fix an element b in the minimal component of C?. For every element d ∈ D, there

exists a path from b to d in G?; this is because for every component C of C? it holds that
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B ≤ C, where B denotes the minimal component of C?. Let k be a sufficiently large

integer such that for every d ∈ D, there is a path from b to d of length less than or equal

to k.

We assume that all adversary sets A(I, b) with |I| = 2k −1 are φ-winnable, where φ

is a quantified formula with n universal variables. We prove by induction that for each l

with (2k − 1) ≤ l ≤ n, all adversary sets A(I, b) with |I| = l are φ-winnable; the base

case l = 2k − 1 holds by assumption. Let I ⊆ [n] be a set of indices of size l + 1, and

let i1, . . . , i2k be distinct elements of I . We claim that

A(I, b) / µ(A(I \ {i1}, b), . . . ,A(I \ {i2k}, b)).

Looking at coordinate positions i1, . . . , i2k , it is necessary to show surjectivity of the

function µ(x1, . . . , x2k) where one of the arguments has been instantiated with b. By

symmetry, it suffices to show surjectivity of the function µ(b, x2, . . . , x2k). Identifying

the variables x2i+1, . . . , x2i+1 to be equivalent for each i = 0, . . . , k − 1, it suffices to

show that the function

(· · · ((b ? x′
0) ? x′

1) ? · · · ? x′
k−1)

is surjective. This follows immediately from our choice of k: for any element d ∈ D,

there is a path from b to d in G? of length k. Note that every vertex in G? has a self-loop,

so as long as there is a path from b to d with length less than or equal to k, there is a path

from b to d with length equal to k. •

We have just shown that for certain 2-semilattice operations ?, the problem QCSP(?)

is polynomial-time tractable. For these operations, it was proved that QCSP(?) is j-

collapsible for some constant j. However, the proof that was just given demonstrated

j-collapsibility for constants j that could be arbitrarily large, depending on the operation

?. We now refine this result by proving the strongest possible statement concerning the
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collapsibility of QCSP(?): the problem QCSP(?) is 1-collapsible whenever QCSP(?) is

tractable.

Theorem 74 Let ? : D2 → D be a 2-semilattice operation. If there is a unique minimal

component in C?, then QCSP(?) is 1-collapsible.

Proof: Fix d0 to be any element of the unique minimal component of C?. For every

element d ∈ D, there exists a path from d0 to d in G?. Hence, it is possible to select

sufficiently large integers K and L and elements {dj
i}i∈[L],j∈[K] so that:

• each of the sets

P 1 = {d1
0, d

1
1, . . . , d

1
L}

...

P K = {dK
0 , dK

1 , . . . , dK
L }

is a path in the sense that, for all j ∈ [K], all of the pairs

(dj
0, d

j
1), (d

j
1, d

j
2), . . . , (d

j
L−1, d

j
L)

are edges in G?; and,

• all elements of D lie on one of these paths, that is, D = ∪K
j=1P

j.

Here, we use d1
0, . . . , d

K
0 as alternative notation for d0, that is,

d0 = d1
0 = · · · = dK

0 .

For i = 0, . . . , L we define

Di
def
= {d1

i , . . . , d
k
i },

and we define

Ei
def
= D0 ∪ · · · ∪ Di.
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Notice that EL = D.

We proceed with the proof of 1-collapsibility by fixing a problem instance and as-

suming that every 1-adversary set is winnable. In particular, we assume that each of the

sets

D × {d0} × · · · × {d0}

...

{d0} × · · · × {d0} × D

is winnable. Our goal is to prove that D × · · · × D is winnable.

We prove by induction that for all i = 0, . . . , L the set Ei × · · · × Ei is winnable.

The base case i = 0 holds by assumption. For the induction, assume that Ei × · · · × Ei

is winnable (where i ≥ 0); we show that Ei+1 × · · · × Ei+1 is winnable.

We first show that Ei+1 × Ei × · · · × Ei is winnable. We have

(Ei+1 × E0 × · · · × E0) / (Ei × Ei × · · · × Ei) ? (D × {d0} × · · · × {d0}).

Then, we have

(Ei+1 × E1 × · · · × E1) / (Ei × Ei × · · · × Ei) ? (Ei+1 × E0 × · · · × E0)

and

(Ei+1 × E2 × · · · × E2) / (Ei × Ei × · · · × Ei) ? (Ei+1 × E1 × · · · × E1).

Continuing in this manner, we can show that Ei+1 × Ei × · · · × Ei is winnable. By

symmetric arguments, we can show the winnability of the sets

(Ei × Ei+1 × Ei × · · · × Ei)

...
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(Ei × Ei × · · · × Ei × Ei+1).

We have the winnability of Ei+1 × Ei+1 × Ei × · · ·Ei by

(Ei+1 ×Ei+1 ×Ei ×· · ·Ei)/ (Ei+1 ×Ei ×Ei ×· · ·×Ei)? (Ei ×Ei+1 ×Ei ×· · ·×Ei)

and we have the winnability of E3
i+1 × Ei × · · · × Ei by

(E3
i+1 × Ei × · · · × Ei) / (E2

i+1 × Ei × Ei × · · · × Ei) ? (E2
i × Ei+1 × Ei × · · · × Ei).

Proceeding in this fashion, we have the winnability of Ei+1 × · · · × Ei+1, as desired. •

5.3 Intractability

We complete the classification of 2-semilattices by proving a complement to Theo-

rems 73 and 74, namely, that the remaining 2-semilattices give rise to QCSPs that are

intractable.

Theorem 75 Let ? : D2 → D be a 2-semilattice operation. If there are two or more

minimal components in C?, then QCSP(?) is coNP-hard (even when restricted to ∀∃-

formulas).

We remark that Theorem 75 is a local intractability result: for 2-semilattice opera-

tions ? satisfying the hypothesis of the theorem, we will prove that there is a finite subset

Γ of Inv({?}) such that QCSP(Γ) is coNP-hard.

Proof: We show coNP-hardness by reducing from the propositional tautology problem.

Let C(y1, . . . , yn) be an instance of this problem, where C is a circuit with input gates

having labels y1, . . . , yn. We assume without loss of generality that all non-input gates

of C are either AND or NOT gates, and assign all non-input gates labels x1, . . . , xm.

The quantifier prefix of the resulting quantified formula is ∀y1 . . .∀yn∃x1 . . .∃xm. Let
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B0 and B1 be distinct minimal components in C?, and let b0 and b1 be elements of

B0 and B1, respectively. The constraint network of the resulting quantified formula is

constructed as follows.

For each AND gate xi with inputs v, v′ ∈ {y1, . . . , yn} ∪ {x1, . . . , xm}, include the

four constraints:

• (v ∈ B1) ∧ (v′ ∈ B1) ⇒ (xi = b1)

• (v ∈ B0) ∧ (v′ ∈ B1) ⇒ (xi = b0)

• (v ∈ B1) ∧ (v′ ∈ B0) ⇒ (xi = b0)

• (v ∈ B0) ∧ (v′ ∈ B0) ⇒ (xi = b0)

For each NOT gate xi with input v ∈ {y1, . . . , yn} ∪ {x1, . . . , xm}, include the two

constraints:

• (v ∈ B0) ⇒ (xi = b1)

• (v ∈ B1) ⇒ (xi = b0)

For the output gate xo, include the constraint:

• (xo ∈ B0) ⇒ FALSE

It is fairly straightforward to verify that each of the given constraints has the ? oper-

ation as polymorphism; the key fact is that (for i ∈ {0, 1}) multiplying any element of

D by an element c outside of Bi yields an element c′ outside of Bi. (If not, there is an

edge from c to c′ by restricted associativity of ?; this edge gives a contradiction to the

minimality of Bi).

We verify the reduction to be correct as follows.
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Suppose that the original circuit was a tautology. Let f : {y1, . . . , yn} → D be any

assignment to the ∀-variables of the quantified formula. Define f ′ : {y1, . . . , yn} →

(B0 ∪B1) by f ′(yi) = f(yi) if f(yi) ∈ B0 ∪B1, and as an arbitrary element of B0 ∪B1

otherwise. The AND and NOT gate constraints force each xi to have either the value b0

or b1 under f ′; it can be verified that the assignment taking xi to its forced value and yi

to f(yi) satisfies all of the constraints.

Suppose that the original circuit was not a tautology. Let g : {y1, . . . , yn} → {0, 1}

be an assignment making the circuit C false. Let g ′ : {y1, . . . , yn} → D be an as-

signment to the ∀-variables of the quantified formula such that g ′(yi) ∈ Bg(yi) for all i.

Under the assignment g′, the only assignment to the ∃-variables xi satisfying the AND

and NOT gate constraints is the mapping taking xi to b0 if the gate with label xi has

value 0 under g, and b1 if the gate with label xi has value 1 under g. Hence, if all of

these constraints are satisfied, then the output gate constraint must be falsified. We con-

clude that no assignment to the ∃-variables xi satisfies all of the constraints under the

assignment g′, and so the quantified formula is false. •



Chapter 6

Conclusions

Projection 50 years ahead is difficult, so I have eased my problem by of-

fering problems and projections for only 49 years. My projections concern

areas in which I have worked . . . However, I am surely not up-to-date in

any of these areas, so some of what I project for the future may have already

happened.

– John McCarthy, Journal of the ACM 50th Anniversary Issue

In this dissertation, we have studied restricted versions of the quantified constraint

satisfaction problem where all relations must come from a constraint language–that

is, problems of the form QCSP(Γ) for a constraint language Γ. Our contributions in-

cluded the introduction and application of a new technique, collapsibility, for proving

polynomial-time tractability results for QCSP(Γ) problems. We believe that the work

presented in this dissertation serves as significant evidence of the fruitfulness of the

polymorphism-based algebraic approach to studying the constraint satisfaction problem

and variants thereof.

74
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The broad research program that we have contributed to is that of classifying, for all

constraint languages Γ over a finite domain, the complexity of QCSP(Γ). We certainly

look forward to future contributions to this program, and conclude by indicating three

directions of research that may prove to be interesting.

Non-idempotent operations. Our investigation was solely concerned with problems

of the form QCSP(µ) for µ an idempotent operation. It appears that different techniques

may be necessary to study problems of the form QCSP(f) where f is a non-idempotent

operation, or more generally, problems of the form QCSP(F ) where F is a set of op-

erations containing non-idempotent operations. We remark that in the case of the CSP,

there is a fairly direct reduction from any problem CSP(F ) where F is an arbitrary

set of operations, to a problem of the form CSP(F ′) where F ′ is a set of idempotent

operations [14]. Such a reduction does not seem to exist in the case of the QCSP.

Relatively quantified formulas. In this dissertation, we studied quantified formulas

where universal and existential quantification was over the entire domain D of the for-

mula. It may be of interest in further investigations to consider the role of relative

quantification, where quantification over (perhaps selected) subsets of the domain D is

permitted. In particular, studying the behavior of relative universal quantification in the

QCSP(Γ) framework may result in novel theory. In a problem of the form QCSP(Γ),

relative existential quantification over a subset D′ of the domain D can be “simulated”

by adding D′ (viewed as an arity 1 relation) to the constraint language Γ.

It is fairly straightforward to show, using collapsibility proofs, that near-unanimity

polymorphisms and Maltsev polymorphisms are still tractable even if relatively quan-

tification over arbitrary subsets of the domain is permitted. The situation is differ-

ent for semilattice polymorphisms (and 2-semilattice polymorphisms). Suppose that



76

⊕ : D2 → D is a semilattice operation with unit u and the restriction of ⊕ to D \ {u}

is a semilattice operation without unit. We have shown that QCSP(⊕), in the absence

of relative quantification, is polynomial-time tractable; however, if we modify the prob-

lem QCSP(⊕) by permitting relative universal quantification over the domain D \ {u},

we obtain a class of QCSP problems that is coNP-hard; this can be proved using ideas

similar to those in the proof of Theorem 75.

The exact complexity of 2-semilattices. We have shown that 2-semilattice opera-

tions ? yield two modes of behavior in QCSP complexity: a problem of the form

QCSP(?) is either polynomial-time tractable or coNP-hard. A natural question raised

by this dichotomy result is that of determining the exact complexity of the problems

QCSP(?) shown to be coNP-hard. We conjecture that such problems QCSP(?) are con-

tained in coNP, and hence coNP-complete. We expect investigation of this question to

lead to deep and beautiful theory.
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tified boolean formulas. Information and Computation, 117(1):12–18, 1995.

[17] Hubie Chen and Stephen Chong. Owned policies for information security. In 17th
IEEE Computer Security Foundations Workshop (CSFW), 2004.

[18] Hubie Chen and Victor Dalmau. (Smart) look-ahead arc consistency and the pur-
suit of CSP tractability. In Principles and Practice of Constraint Programming -
CP 2004, Lecture Notes in Computer Science. Springer-Verlag, 2004.

[19] Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability
counting problems. Information and Computation, 125(1):1–12, 1996.

[20] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classification of
Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Math-
ematics and Applications. Society for Industrial and Applied Mathematics, 2001.

[21] Victor Dalmau. Some dichotomy theorems on constant-free quantified boolean
formulas. Technical Report LSI-97-43-R, Llenguatges i Sistemes Informàtics -
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