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složitosti. Pohled skrze teorii modelu naznačuje, že malý iniciálńı segment libo-
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Preface

In this thesis we will investigate very weak fragments of arithmetic and their
connection to provability in various propositional proof systems. Bounded Arith-
metic has been introduced by Parikh in [71] and was widely studied as a feasible
subtheory of Peano Arithmetic ever since. Parikh introduced the system I∆0,
which originally consisted of Robinson’s Arithmetic Q, together with induction
over ∆0 formulas. Subsequently, extensions of I∆0 were considered that pos-
tulated the existence of a function needed for the coding of sequences. In [20],
Sam Buss developed a hierarchy of theories Si

2 that subdivides that extension of
I∆0 and pinpointed the strength of these theories by proving a strong relation
between definability with respect to them and computability of the appropriate
properties in levels of the Polynomial Hierarchy. On the other hand provabili-
ty of certain properties also corresponds to efficient provability in propositional
proof systems. The latter correspondence is the one we will be most interested
in. The first chapter summarizes known background results and can be skipped
by a reader who is familiar with the subject. A broader background is included
for completeness and for a quick reference as Appendix C. The original research
is presented in Chapter 2 through 5. The thesis can be summarized as follows.

In Chapter 1 we introduce the background necessary for our results. That
is, we start with a brief overview of Proof Complexity and Bounded Arithmetic,
for which the textbooks by Kraj́ıček [57] and Cook and Nguyen [29] are excellent
sources. Then, in Section 1.3 we give an overview of the theory V0 and some of
its extensions, namely VTC0 and VNCk. We will recapture some properties of
VTC0, especially its connections to the propositional proof system TC0-Frege and
some functions available in that theory. We will then continue to introduce VNCk

and show that each such theory extends VTC0, thus making these functions also
available there.

In Chapter 2 we give an overview of the proof of the main result of M. and
Tzameret [67], which is given in full in Appendix A. That is, we will show that in
TC0-Frege we can exploit a result by Feige, Kim and Ofek [37] to efficiently prove
the unsatisfiability of certain random 3CNF, which is known to be impossible
in Resolution. We therefore obtain a separation result on randomly generated
formulas, showing a fundamental difference in the strength of these two proof
systems.

In Chapter 3 we return to the theory V0, but this time perceive it from a model
theoretic perspective. We will define the notion of an initial cut and then restate
the main result of [66] that a certain kind of Turing computability of a property
leads to its definability in a small initial cut. We will sketch the argument, which
is fully given as Appendix B. This implies that any such an initial cut is a model
of a stronger theory and we will finally strengthen this observation by exploiting
a different algorithm than the one that was initially used.

In Chapter 4 we will further explore the computational strength of VTC0.
This chapter contains also the original motivation for the results of Chapter 3,
which is an idea of how to prove the non-automatizability of Resolution, together
with an explanation, why this approach might be bound to fail to obtain the
desired result. The whole chapter is rather a report on work in progress. Yet
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we have some partial results that may be of some interest, so I opted to present
them.

In Chapter 5 we will discuss the presented results and state some directions
for further investigation.

Appendix A contains the article [67] in the form it was accepted at LICS
2012. In it, Iddo Tzameret and I show that reasoning in VTC0 allows for the
use of some results from linear algebra by approximating the real numbers by
close enough rationals with standardized denominators. This lets us exploit the
result from [37] to conclude that certain random 3CNF are efficiently refutable
in TC0-Frege, while their Resolution refutations are exponentially long.

Appendix B is the submitted article [66], showing that a version of Nepomn-
jascij’s Theorem holds in small initial cuts of models of V0. That is, if we can show
that a given property can be computed by a Turing machine in TimeSpace(nc, nǫ)
for some c ∈ N and ǫ < 1, we immediately get the ∆B

0 -definability of every set
with that property in the initial cut. This implies a subexponential simulation
result of Frege systems by bounded depth Frege systems, which was first proved
by Filmus, Pitassi and Santhanam in [39].

In Appendix C we give a brief overview of propositional and first-order logic
and their elementary proof theory, as well as to complexity theory, specifically also
circuit complexity and bounded arithmetic and proof complexity. The exposition
is supposed to be self-contained, but due to its brevity, the topics are more
accessible from textbooks, such as Barwise [8], Buss [22], Ebbinghaus, Flum and
Thomas [35], and Pudlák [80] for Sections C.1.1 and C.1.2. For Section C.2
we refer the reader to Arora and Barak [5]. That book also contains most of
the information for Section C.2.1, a more thorough treatment is in Vollmer [90],
though.
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1. Preliminaries

We assume familiarity with the basic notions of logic and complexity theory and
will only recapture a few facts which are of importance to us. A longer, though
still brief, survey of logics and complexity theory is available for the convenience
of a reader not familiar with logics as Appendix C.

1.1 Proof Complexity

In their seminal paper ”The Relative Efficiency of Propositional Proof Systems”
[30] Cook and Reckhow examined various propositional calculi, such as Resolu-
tion, truth table, Frege or Gentzen’s PK, in a general form. They concentrated
on the property that there is an efficient way of validating a proof with respect
to any such system and embodied this in the following definition.

Definition 1.1. A propositional proof system is any polynomial time computable
function P that maps strings onto TAUT. For any tautology ϕ a P -proof of ϕ is
any string π ∈ Σ∗ that gets mapped via P to ϕ.

As we will see soon the length of proofs in various propositional proof systems
is a very interesting subject of investigation. For brevity we will often write proof
system instead of propositional proof system if what we are talking about is clear
from the context. A propositional proof system P is polynomially bounded iff
for every ϕ ∈ TAUT there exists a P -proof π ∈ Σ∗ with |π| ≤ p(|ϕ|) for some
fixed polynomial p. A proof system P simulates a proof system Q (in symbols
P ≥ Q) iff there exists a polynomial p such that for every πQ ∈ Σ∗ there exists a
πP ∈ Σ∗ with |πP | ≤ p(|πQ|) and P (πP ) = Q(πQ). A proof system is optimal iff
it simulates every other proof system. Two proof systems P and Q are equivalent
(P ≡ Q) iff they mutually simulate each other.

Propositional proof systems are an interesting concept, also from the perspec-
tive of Complexity Theory. This is evident from the following observation from
[30].

Theorem 1.2 ([30]). NP = coNP iff there exists a polynomially bounded propo-
sitional proof system.

Proof. For the ”if” direction observe that TAUT is coNP-complete. It therefore
suffices to give an NP procedure for TAUT. Let P be a polynomially bounded
proof system with bounding polynomial p, then we can construct a nondetermin-
istic Turing machine A deciding TAUT as follows. On input ϕ, A nondeterminis-
tically guesses a P -proof π of length at most p(|ϕ|) and then simulates the Turing
machine computing P to verify that P (π) = ϕ. This is clearly polynomial in the
input length.

For the ”only if” direction, assume that A is a nondeterministic polynomial
time Turing machine deciding TAUT. For every input ϕ we let wϕ be the nonde-
terministic witness that A guesses and then verifies. We can require that wϕ also
contains ϕ at an explicit position. We define a propositional proof system P by
the following Turing machine M . On input wϕ, M simulates A deterministically
on input ϕ and outputs ϕ if A would accept. Otherwise it outputs a predefined
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tautology, such as p ∨ ¬p. The resulting function obviously has TAUT as its
range and is onto.

Another interesting point of research is the question: ”How hard is it to find
a proof in a given proof system P?” We call a proof system automatizable iff
there is an algorithm that, given a tautology ϕ returns a P -proof of ϕ using at
most a polynomially, in the length of the shortest P -proof for ϕ, many steps.
The question of the automatizability of proof systems is obviously an interesting
subject, unfortunately it turns out that most stronger ones are not (under mild
assumptions). It is still interesting, though, how the picture would look like
when we weaken the time constraint (e.g. by allowing quasipolynomial time
computations).

1.1.1 Some Important Proof Systems and Their Interre-
lation

We will focus on a few important propositional proof systems. The choice of
these systems is due to the focus of this thesis and is by no means exhaustive.
The systems we will have a closer look at are Resolution, bounded depth Frege,
TC0-Frege and Frege. We will elaborate on their computational aspects here,
most of the definitions can be found in Appendix C.

Resolution

Resolution (see Section C.1.1 in Appendix C) is a very simple proof system, as
it only has one rule to apply. All that remains for choice is to pick the clauses
and variables to resolve on. This property makes Resolution very interesting for
proof search algorithms, because the number of possibilities seems to be much
more feasible than in other proof systems. Thus, various algorithms have been
devised. The oldest certainly is DPLL, named after its inventors Davis, Put-
nam, Logemann and Loveland (see [31] and [32]), which is an algorithm that
corresponds to a treelike Resolution refutation and is still a vital part of most of
today’s satisfiability solvers.

Albeit its striking success in application, Resolution suffers from several seri-
ous drawbacks concerning its efficiency, i.e. its proof complexity, which we will
explore in this section. Time will tell, whether these drawbacks are outweighed
by its simplicity or not. Up to now, research into proof search algorithms using
stronger proof systems has been limited, though it is becoming stronger and we
will be able to make a clearer justification for or against the use of Resolution
based proof search algorithms in the future.

What we do know today is that Resolution is not only rather inefficient con-
cerning proofs of combinatorial principles, but even concerning random state-
ments. An example for a combinatorial principle is the Weak Pigeonhole Prin-
ciple, for random statements it suffices to consider random kCNF with a certain
clause to variable ratio.

For m > n, the weak Pigeonhole Principle PHPm
n is the statement that there

is no injective mapping from a set with m elements (the ”pigeons”) to one with n
(the ”holes”). The Pigeonhole Principle is the hardest case of the weak Pigeonhole
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Principle and is given as PHPn+1
n . The negations of these principles are clearly

unsatisfiable and can be given as CNFs in the following way.
For the set {pij : i ∈ m, j ∈ n} we let for all i, i1, i2, j

Qi :=
∨

j∈n

pij, and

Qi1,i2,j := (p̄i1j ∨ p̄i2j).

The negation ¬PHPm
n of the Pigeonhole Principle is

∧

i∈m

Qi ∧
∧

i1 6=i2∈m,j∈n

Qi1,i2,j.

The intended meaning is that pij holds iff pigeon i gets mapped to hole j and
therefore Qi states that pigeon i gets a hole, while Qi1,i2,j states that pigeon i1 and
pigeon i2 will not both be on hole j. This principle is a standard example showing
the different strengths of various proof systems and we encounter it several times
in this chapter.

Theorem 1.3 ([50, 24, 81, 82]). Resolution does not have subexponential proofs
of the Weak Pigeonhole Principle PHPm

n .

The result for the Pigeonhole Principle was established by Haken in [50]. For
the weak version lower bounds were first proved by Buss and Turan [24], whose
results were subsequently improved by Raz [81] and by Razborov [82].

On random kCNF, Resolution does not perform much better. We call a
kCNF ϕ random with m clauses and n variables, iff ϕ is produced by randomly
(uniformly distributed) choosing m clauses (with repetitions) from the 2k·

(
n

k

)

available ones. Chvátal and Szemerédi [25] showed that such random kCNF are
mostly unsatisfiable, when the number of clauses exceeds the number of variables
by some constant factor:

Theorem 1.4 ([25]). Let ϕ be a random kCNF with m clauses and n variables.
If m

n
> 2k · ln(2), then, with high probability, ϕ is unsatisfiable.

We know, however, that Resolution cannot witness this unsatisfiability effi-
ciently unless the clause-to-variable ratio gets much worse. The following is a
slight improvement of Ben-Sasson and Wigderson [15] over a result by Chvátal
and Szemerédi [25]. It is stated for 3CNF here, but can easily be extended to
kCNF for arbitrary k > 2.

Theorem 1.5 ([25, 15]). Let ϕ be a random propositional 3CNF with m clauses
and n variables. Then, with probability approaching 1, Resolution has no subex-
ponential refutation of ϕ if the clause to variable ration m

n
< n1,5−ǫ.

The question of the automatizability has been settled negatively for Resolution
by Alekhnovich and Razborov [3] under a complexity theoretic assumption.

Theorem 1.6 ([3]). If W[P] 6⊂ co − FPR, then neither Resolution nor tree-like
Resolution is automatizable.

It is still possible, though, that Resolution allows for quasipolynomial autom-
atizability.
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Bounded Depth Frege

Bounded depth Frege or AC0-Frege is a proof system that is defined similar to
the Frege system, with the exception that the cut rule can only be applied to
formulas with a constant depth. These systems are still rather weak, but can
simulate Resolution (see [57]).

Theorem 1.7. B.d. Frege simulates Resolution.

On the other hand, there are versions of the weak Pigeonhole Principle that
are efficiently provable in b.d. Frege. The following was proved by Paris, Wilkie
and Woods [76].

Theorem 1.8 ([76]). B.d. Frege has subexponential proofs of PHPm
n for m = 2n.

As we shall see later in Chapter 3, bounded depth Frege systems also outper-
form Resolution on random 3CNF with a certain clause-to-variable ratio. Though,
as far as we know, only with subexponential speedup. Unfortunately, these sys-
tems are still to weak to prove the full Pigeonhole Principle.

Theorem 1.9 ([1, 62, 78, 9]). B.d. Frege systems do not admit subexponential
proofs of PHPn+1

n .

The first result of this kind was established by Ajtai [1], who used a rela-
tion between propositional proof systems and bounded arithmetic in conjunction
with a model-theoretic analysis of the problem. He was able to show that no
polynomial size proofs can exist. We will explore the relation between bound-
ed Arithmetic and proof systems in the Section 1.2. Subsequently, Ajtai’s lower
bound was strengthened to the above theorem in [62, 78, 9].

B.d. Frege systems already outperform Resolution drastically on the weak
Pigeonhole Principle, since Paris, Wilkie and Woods [76] showed that there are
quasipolynomial proofs of PHPm

n if m > n + n
(log n)k for some k. In contrast to

this, Buresh-Oppenheim, Beame, Pitassi, Raz and Sabharwal [19] showed that
this bound cannot be strengthened to polynomial proofs if m is at the lower end
of the interval, i.e. if m = n+ n

(log n)k .
Bounded depth Frege systems constitute a strict hierarchy, depending on the

depth of formulas they allow the cut-rule for. A system having the cut-rule
for formulas of depth at most d cannot simulate, but is simulated by, a system
allowing the cut-rule for formulas of depth d+ 1. See e.g. [57] for a proof.

Under moderate cryptographic assumptions, there is also no automatization
algorithm for bounded depth Frege. That result is an adaption of an argument
from Kraj́ıček and Pudlák [61] to an NP pair for the Diffie-Hellman key exchange
protocol by Bonet, Domingo, Gavaldà, Maciel and Pitassi [17].

Theorem 1.10 ([17]). If the Diffie-Hellman key exchange protocol is secure then
bounded depth Frege is not automatizable.

TC0-Frege

We will first define the notion of TC0 formulas, a generalization of formulas by
a threshold primitive, and then define the propositional proof system TC0-Frege
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as a sequent calculus operating on such formulas. We will follow the exposition
from [29]. The system we give is only one of many possibilities to define such
proof systems (see e.g. [18] for a polynomially-equivalent definition).

The class of TC0 formulas consists basically of unbounded fan-in constant
depth formulas with ∧,∨,¬ and threshold gates. Formally, we define:

Definition 1.11 (TC0 formula). A TC0 formula is built from

(i) propositional constants ⊥ and ⊤,

(ii) propositional variables pi for i ∈ N,

(iii) connectives ¬ and Thi, for i ∈ N.

Items (i) and (ii) constitute the atomic formulas. TC0 formulas are defined
inductively from atomic formulas via the connectives:

(a) if A is a formula, then so is ¬A and

(b) for n > 1 and i ∈ N, if A1, . . . , An are formulas, then so is ThiA1 . . . An.

The depth of a formula is the maximal nesting of connectives in it and the size
of the formula is the total number of connectives in it.

For the sake of readability we will also use parentheses in our formulas, though
they are not necessary. The semantics of the Threshold Connectives Thi are as
follows. Thi(A1, . . . , An) is true if and only if at least i of the Ak are true.
Therefore we will abbreviate Thi(A1, . . . , Ai) as

∧
k≤i

Ak and Th1(A1, . . . , Ai) as
∨
k≤i

Ak. Moreover we let Th0(A1, . . . , An) = ⊤ and Thi(A1, . . . , An) = ⊥, for

i > n.
The following is the sequent calculus TC0-Frege.

Definition 1.12 (TC0-Frege). A TC0-Frege proof system is a sequent calculus
with the axioms

A −→ A, ⊥ −→, −→ ⊤,
where A is any TC0 formula, and the following derivation rules:
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Γ −→ ∆ (Weaken Left)
Γ, A −→ ∆

Γ −→ ∆ (Weaken Right)
Γ −→ A,∆

Γ1, A1, A2,Γ2 −→ ∆
(Exchange Left)

Γ1, A2, A1,Γ2 −→ ∆

Γ −→ ∆1, A1, A2,∆2 (Exchange Right)
Γ −→ ∆1, A2, A1,∆2

Γ, A,A −→ ∆
(Contract Left)

Γ, A −→ ∆

Γ −→ A,A,∆
(Contract Right)

Γ −→ A,∆

Γ −→ A,∆
(¬ Left)

Γ,¬A −→ ∆

Γ, A −→ ∆
(¬ Right)

Γ −→ ¬A,∆

A1, . . . , An,Γ −→ ∆
(All Left)

ThnA1 . . . An,Γ −→ ∆

Γ −→ A1,∆, . . . , Γ −→ An,∆ (All Right)
Γ −→ ThnA1 . . . An,∆

A1,Γ −→ ∆, . . . , A1,Γ −→ ∆
(One Left)

Th1A1 . . . An,Γ −→ ∆

Γ −→ A1, . . . , An,∆ (One Right)
Γ −→ Th1A1 . . . An,∆

ThiA2 . . . An,Γ −→ ∆ Thi−1A2 . . . An, A1,Γ −→ ∆
(Thi Left)

ThiA1 . . . An,Γ −→ ∆

Γ −→ ThiA2 . . . An, A1,∆ Γ −→ Thi−1A2 . . . An,∆
(Thi Right)

Γ −→ ThiA1 . . . An,∆

Γ −→ A,∆ Γ, A −→ ∆
(Cut)

Γ −→ ∆

for arbitrary TC0 formulas Ai and sets Γ,∆ of TC0 formulas. The intended
meaning of Γ −→ ∆ is that the conjunction of the formulas in Γ implies the
disjunction of the formulas in ∆. A TC0-Frege proof of a formula ϕ is a sequence
of sequents π = (S1, . . . , Sk) such that Sk =−→ ϕ and every sequent in it is either
an axiom or was derived from previous lines by a derivation rule. The size of the
proof π is the total size of all formulas in its sequents. The depth of the proof π
is the maximal depth of a formula in its sequents. A TC0-Frege proof of a family
of formulas {ϕi : i ∈ N} is a family of sequences {(Si

1, . . . , S
i
ki) : i ∈ N}, where

each Si
j is a TC0 formula that can be derived from some Si

k for k < j using the
above rules, such that Si

ki = −→ ϕi, and there is a common constant c bounding
the depth of every formula in all the sequences.

Proposition 1.13. The proof system TC0-Frege is sound and complete for for-
mulas of any fixed depth d. That is, every formula A proven in the above way is
a tautology and every tautology of depth d can be derived by proofs in the above
sense.

We will now explore the proof theoretic strength of TC0-Frege. As we will
see in Chapter A, it outperforms Resolution drastically on random 3CNF of a
certain clause-to-variable ratio. Also, it is the weakest proof system we consider
that proves the Pigeonhole Principle PHPn+1

n . See [29] for a proof that exploits
the relation between arithmetic and proof systems.
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Theorem 1.14. TC0-Frege has polynomial size proofs of the Pigeonhole Princi-
ple.

Obviously it simulates bounded depth Frege systems.
TC0-Frege systems are not automatizable, if factoring for Blum integers is

hard. This result is due to Bonet, Pitassi and Raz [18] and builds on the inter-
polation argument first presented by Kraj́ıček and Pudlák [61].

Theorem 1.15 ([18]). If factoring of Blum integers is hard, then TC0-Frege is
not automatizable.

Frege

We will now elaborate on the proof theoretic strength of Frege systems (if neces-
sary, see Section C.1.1 for a defintion). The first thing that is worth mentioning
is that, from the perspective of Proof Complexity, there is no need to distinguish
between various Frege systems because all Frege systems as we have defined them,
mutually simulate each other, as was shown by Reckhow [83].

Theorem 1.16 ([83]). Let F1 and F2 be Frege systems, then F1 ≡ F2.

Additonally, as can be seen by observing the provability of the Reflection
Principles for TC0-Frege, i.e. the statement that the proofs are correct, in Frege
systems, we obtain that Frege systems simulate TC0-Frege.

Theorem 1.17. Frege simulates TC0-Frege.

As far as we know, Frege systems constitute an extremely strong family of
proof systems. No superpolynomial lower bounds are known to date. The pre-
sumed strength of Frege systems is backed by the fact that they efficiently prove
the Pigeonhole Principle, as was shown by Buss [22] and also follows from the
above simulation of TC0-Frege.

Theorem 1.18 ([22]). There are polynomial size Frege proofs of the Pigeonhole
Principle PHPn+1

n .

Not surprisingly, this strong family of proof systems is not automatizable
under the same mild cryptographic assumptions, as for TC0-Frege. That is, Bonet,
Pitassi and Raz [18] showed the following.

Theorem 1.19 ([18]). Unless factoring of Blum integers is feasible, Frege systems
are not automatizable.

Gentzen’s PK

From a proof complexity perspective there is not much sense in considering PK
separately from Frege, as both systems can be shown to be equivalent (see e.g.
[57]). We will therefore often use PK for its nice properties when we want to
argue about arbitrary Frege systems.

Theorem 1.20. Gentzen’s PK is polynomially equivalent to Frege.

We will conclude this section by recapturing the relations of the proof theoretic
strengths of the proof systems of interest for us:

Res � b.d.Frege � TC0 − Frege ≤ Frege ≡ PK.

12



1.2 Bounded Arithmetic

In Arithmetic one wants to capture the ”real” world of natural numbers by logical
means, given by a calculus, such as LK or FC, and a set of axioms. The first such
characterizations are due to Grassmann [48], Frege [40], Dedekind [33] and Peano
[77]. Peano’s way of characterizing numbers prevailed until today and we will
make his characterization our starting point. He considered the constant 0 and
the successor function S as logical primitives and first stated the axiom of full
induction

(FI) For every predicate P : P (0) ∧ ∀x(P (x)→ P (S(x)))→ ∀xP (x).

This axiomatization is strong enough to define the natural numbers up to iso-
morphism.

Theorem 1.21. Every model of arithmetic with full induction is isomorphic to
the natural numbers.

Proof. Assume that it would not be the case and let M be a non-isomorphic
model. Then, since M is a model of induction there must be a subset of M
isomorphic to N. Taking this subset as the predicate P in the definition of
induction leads to a contradiction.

As we have seen, arithmetic with set induction is an adequate way of rep-
resenting the natural numbers. However, from a logical perspective it is rather
strong, as we claim statements about arbitrary subsets. A logically more ac-
cessible approach is to limit the induction to definable sets, which leads us to
first-order induction

(IND) For every formula ϕ : ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(S(x)))→ ∀xϕ(x).

This is a more feasible way of representing the natural numbers, but it comes at
a cost.

Theorem 1.22. There are models of arithmetic with first-order induction that
are not isomorphic to the natural numbers.

Proof. We let
n = S(. . . S(0) . . . )︸ ︷︷ ︸

n times

be the nth numeral. Let c be any constant symbol. Now, consider arithmetic
together with {c > n) : n ∈ N}. By the Compactness Theorem there exists a
model M of that theory, but it obviously cannot be N.

First-order Arithmetic is a theory with strong proof theoretic implications
and thus well deserves to be explored on its own merit. We, however, will con-
cern ourselves with weaker versions of arithmetic, since we can relate them to
computations, as we shall soon see. This leads us to the definition of Bounded
Arithmetic, where we restrict the induction axiom to bounded formulas. We call
a quantifier bounded iff it is of the form ∃x(x < t ∧ ϕ) or ∀x(x < t → ϕ) for
some term t not containing x. We call a formula bounded iff all its quantifiers
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are and we call a theory bounded, iff all the formulas it contains are. As a lot
of elementary things that were definable before, are not definable with respect
to bounded induction on the base of Robinson Arithmetic, we will now extend
the language to contain symbols for addition, multiplication, ordering and the
constant 1. The first such theory that springs to mind is presumably I∆0, which
allows full induction for bounded formulas and is axiomatized as follows.

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1→ x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x)→ x = y Basic 8. x ≤ x+ y

∆0-Ind. ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))→ ∀xϕ(x)

for any bounded formula ϕ.

The models of I∆0 have various interesting properties (see for example [29]).

Proposition 1.23. Every model of I∆0 is the non-negtive part of a commutative,
discretely-ordered semi-ring.

Parikh [71] proved the following interesting result.

Theorem 1.24 (Parikh). Let ϕ be a ∆b
0-formula. If

I∆0 ⊢ ∀x∃yϕ(x, y),

then there exists a term t not containing y such that

I∆0 ⊢ ∀x∃y < tϕ(x, y).

On the other hand, in models of I∆0 we are not able to tell the proper sizes
of sets, as Ajtai showed in [1]. More precisely, let I∆0(f) denote I∆0 with an
additional function symbol f and induction extended to also allow use of f . Then
I∆0(f) does not disprove that f maps a set with n+ 1 elements injectively into
a set with n elements.

Proposition 1.25. I∆0(f) 6⊢ PHP n+1
n .

Another problem with I∆0 is that it does not allow for coding of arbitrary
sequences, as for example the code of the sequence of all numbers smaller than x
is exponential in x. Another problem arises with substitution in strings. This is a
consequence of Parikh’s Theorem as the bounds given by the terms are polynomial
and therefore are too small to allow for the aforementioned encodings. A non-
trivial result by Bennett [11] shows that, although exponentiation is not definable
in I∆0, its graph is. Moreover, by a result by Paris and Dimitracopoulos [72], I∆0

can prove several of its properties, especially concerning its recursive definition:

x0 = 1 and xy+1 = x · xy.
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Pudlák [79] gave a new proof of this.
This at least ensures that I∆0 can talk about functions like |·| and codes of

finite sequences. To allow for a more natural way of coding sequences we have
to strengthen the theory, though. What is needed are numbers of size 2|x|

k

for
arbitrary standard k. To do so, one can add an axiom, ensuring the existence
of such numbers. Let the axiom Ω1 be defined by ∀x∃y. y = x|x| (this has to
be perceived as talking about the graph of exponentiation). Then I∆0 + Ω1 is
sufficient to speak about sequences and do some standard operations on strings.

A natural subdivision of I∆0 + Ω1 in a richer language are Buss’s theories
Sj

i and T j
i , which nicely correspond to computability in certain complexity class-

es. We will, however, not go into detail, as the classes we are interested in are
very weak and in this case, a two-sorted approach is more convenient. We will
note, though, that the two-sorted approach below and the classical by Buss are
equivalent as there is a canonical isomorphism between models of one theory and
models of the other; the so-called RSUV -isomorphism (see [29] Chapter VIII or
[57] Chapter 5).

To be able to make up a sensible weaker theory it is necessary to strengthen
the language, as not everything can be proven from properties of 0, 1 and +, ·,≤
in the absence of strong induction. The primitives we will enhance our language
with will be 0, 1,+, ·, |·| ,=1,=2,≤, ǫ and the ”real world” we will interpret these
primitives in will be N2, the two sorted model consisting of the natural numbers as
the first sort and all finite subsets of natural numbers as its second sort universe.
The constants 0, 1 will have the natural interpretations in the first-sort universe,
as do the functions + and ·. The function |·| ranges from finite sets to numbers
and, given a finite set, returns its largest element plus 1. This roughly represents
the length of a sequence representing the characteristic function of the set. The
relations =1 and =2 represent equality between numbers and sets, respectively
and the relation ≤ is the usual ordering of the numbers. Finally, the relation ǫ is
the elementhood relation between numbers and finite sets of numbers. We will call
the above language of two-sorted arithmetic L2

A := {0, 1,+, ·, |·| ,=1,=2,≤, ǫ}.
The weakest axiomatization for two-sorted arithmetic we will consider is V0,

which we will define in the following chapter.

1.3 The Theory V0 and its Extensions

In this Chapter we will define the theory V0 and some of its extensions. We
will also prove some basic properties and connections to Complexity Theory and
Proof Complexity. We will follow the outline in [29].

As we have briefly sketched in Section 1.2, we are working in

L2
A = {0, 1,+, ·, |·| ,=1,=2,≤, ǫ}.

We denote the first-sort (number) variables by lower-case letters x, y, z, ..., and
the second-sort (string) variables by capital letters X,Y, Z, .... We build formulas
in the usual way, using two sorts of quantifiers: number quantifiers and string
quantifiers. A number quantifier is said to be bounded if it is of the form ∃x(x ≤
t ∧ . . . ) or ∀x(x ≤ t → . . . ), respectively, for some number term t that does not
contain x. We abbreviate ∃x(x ≤ t ∧ . . . ) and ∀x(x ≤ t → . . . ) by ∃x ≤ t and
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∀x ≤ t, respectively. A string quantifier is said to be bounded if it is of the form
∃X(|X| ≤ t ∧ . . . ) or ∀X(|X| ≤ t→ . . . ) for some number term t that does not
contain X. We abbreviate ∃X(|X| ≤ t∧ . . . ) and ∀X(|X| ≤ t→ . . . ) by ∃X ≤ t
and ∀X ≤ t, respectively. A formula is in ΣB

0 or ΠB
0 if it uses no string quantifiers

and all number quantifiers are bounded. A formula is in ΣB
i+1 or ΠB

i+1 if it is of
the form ∃X1 ≤ t1 . . . ∃Xm ≤ tmψ or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ, where ψ ∈ ΠB

i

and ψ ∈ ΣB
i , respectively, and ti does not contain Xi, for all i = 1, . . . ,m. We

write ∀ΣB
0 to denote the universal closure of ΣB

0 . (i.e., the class of ΣB
0 -formulas

that possibly have (not necessarily bounded) universal quantifiers in their front).
We usually abbreviate t ∈ T , for a number term t and a string term T , as T (t).
For a language L ⊇ L2

A we write ΣB
0 (L) to denote ΣB

0 formulas in the language
L.

Our axiomatization is intended to mimic the behaviour of these functions
and relations in the two-sorted standard model N2. To this end we will use the
following axioms, which define the theory V0.

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1→ x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x)→ x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0→ ∃y ≤ x(y + 1 = x)

L1. X(y)→ y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i < |X| (X(i)↔ Y (i)))→ X = Y

ΣB
0 -COMP. ∃X < y∀z < y(X(z)↔ ϕ(z)) , for all ϕ ∈ ΣB

0

where X does not occur free in ϕ .

Here, Basic 1 through Basic 12 define the basic properties of addition, multi-
plication and ordering and their interplay with the constants zero and one. L 1
and L 2 settle properties of the ”size” of a set. As mentioned before we want to
perceive a set as the graph of its characteristic function and therefore its ”size”
is actually referring to the length of this representation. The axiom SE is the
axiom of Extensionality and states that two sets are equal if and only if they have
the same length and contain the same elements. The Comprehension Axiom ΣB

0 -
Comp claims the existence of all ΣB

0 -definable sets. These axioms at hand we
can prove some basic properties of V0. See [29] for their proofs.

For a family Φ ⊂ L2
A, we let the Φ-induction scheme be for all ϕ ∈ Φ,

(∀x(ϕ(0) ∧ ϕ(x)→ ϕ(x+ 1)))→ ∀xϕ(x).

We let the Φ-minimization scheme be for all ϕ ∈ Φ,

ϕ(y)→ ∃x ≤ y(ϕ(x) ∧ ¬∃z < xϕ(z)).

In a similar fashion we let the Φ-maximization scheme be for all ϕ ∈ Φ,

ϕ(0)→ ∃x ≤ y(ϕ(x) ∧ ¬∃z ≤ y(x < z ∧ ϕ(z))).
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Proposition 1.26. V0 proves the ΣB
0 -induction scheme, the ΣB

0 -minimization
scheme and the ΣB

0 -maximization scheme.

Also, V0, if restricted to its number part does not prove more than I∆0. The
following theorem holds.

Proposition 1.27. V0 is a conservative extension of I∆0.

We can extend Parikh’s Theorem to the two-sorted case. To this end we first

Theorem 1.28 (Parikh, two-sorted). Let T be a two-sorted, polynomially bound-
ed theory extending V0 and ϕ(x̄, ȳ, X̄, Ȳ ) be a bounded formula with all variables
shown. Then, if

T ⊢ ∀x̄∀X̄∃ȳ∃Ȳ ϕ(x̄, ȳ, X̄, Ȳ ),

it also holds that
T ⊢ ∀x̄∀X̄∃ȳ ≤ t∃Ȳ ≤ tϕ(x̄, ȳ, X̄, Ȳ ),

where t is a bounded term containing only the variables x̄, X̄.

Definable Relations and Functions

We will now give some V0-definable functions and relations that we need for our
arguments. For their proper definitions as well as for a thorough treatment of the
notion of definability with respect to V0, we refer the reader to Section A.2.1 in
Appendix A.

If a relation R is ΣB
0 -definable in V0, then so is its characteristic function χR.

We can define sequences of constant length of numbers by a standard encoding
as numbers. We will denote such sequences by 〈x1, . . . , xk〉, where the xi are
the elements and k is a fixed standard number. We can also code sequences of
numbers, which are not of constant length. Informally, the ΣB

0 -formula seq(i, Z),
defined by Formula (A.9) in Appendix A, returns the ith element of the sequence
coded by Z. For brevity we will use Z[i] to refer to the ith element in the sequence
coded by Z. This encoding is not unique, but we can make it unique, by ensuring
that we talk about the lexicographically smallest Z encoding the sequence. We
will refer to this encoding by Formula (A.10) and call the formula SEQ(i, Z).
Thus, we can also refer to the length of a sequence by using a ΣB

0 -formula, which
we call length(Z). This also allows us to define higher dimensional sequences of
numbers, i.e. matrices, etc. We will refer to these elements as Z[i1, . . . , ik] and to
lower dimensional subsequences in the same way, using · to represent the places,
where the variable is still free. For example we refer to the first row in the matrix
Z[i, j] by Z[1, ·]. This also gives us a means of encoding a sequence of strings, as
it is essentially the same. There is a general way of extending the language L2

A

with new relation and function symbols, such that the theory extending V0 by
defining axioms of the symbols in the extended language, still has comprehension
and induction for the new statements and is conservative over V0. See Section
V.4 in [29] or, for a brief review, Section A.2.1 in Appendix A.

In the following two sections we will briefly review two extensions of V0 that
are subject to the later research. We focus only on the properties that are nec-
essary for our results. See Appendix A or [29] for a more thorough treatment of
VTC0 and [29] for one on VNCk.
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1.3.1 The Theory VTC0

The theory VTC0 is an extension of V0 by an axiom that ensures that we are
able to count the size of strings. As we are not able to prove the Pigeonhole
Principle in V0, the theory resulting from the addition of the axiom is properly
stronger. Formally we let VTC0 consist of the theory V0 together with the axiom
NUMONES defined as follows:

Definition 1.29 (NUMONES). Let δNUM(y,X, Z) be the following ΣB
0 formula:

δNUM(y,X, Z) := SEQ(y, Z) ∧ Z[0] = 0 ∧ ∀u < y((X(u)→ Z[u+ 1] = Z[u] + 1)

∧ (¬X(u)→ Z[u+ 1] = Z[u])).

(1.1)

Define NUMONES to be the following ΣB
1 formula:

NUMONES := ∃Z ≤ 1 + 〈y, y〉.δNUM(y,X, Z). (1.2)

Thus, NUMONES basically guarantees the existence of a sequence which
counts the number of 1’s in a given string, that is, it measures the size of the
bounded set related to that string.

Using NUMONES we can define the function numones(y,X) that, given y and
X, returns the yth entry of Z(X) via the following ΣB

1 -defining axiom

numones(y,X) = z ↔ ∃Z ≤ 1+〈|X| , |X|〉 (δNUM(|X| , X, Z) ∧ Z[y] = z) . (1.3)

We shall use the following abbreviation:

numones(X) := numones(|X| − 1, X).

This axiom not only allows to count the number of elements of a set, but
also gives us the means to compute sums with a moderately large number of
summands, as well as the product of two large numbers. Much like for V0, we
can also extend VTC0 in a conservative way by defining axioms for symbols in an
extended language. The function numones can be introduced like this and we will
make use of such introduction several times to obtain a more convenient theory
for the task at hand. See Section A.2.2 in Appendix A and also Sections I.X.3.2
and I.X.3.3 in [29]. We will start out by describing how to do basic Linear Algebra
in VTC0.

Some Elementary Linear Algebra in VTC0

Observe that proper Linear Algebra is well beyond the scope of TC0 and that
is even more the case when investigating the related theory VTC0. Therefore,
what we will introduce here can only be considered as the very basics of Linear
Algebra. For a more thorough treatment of Linear Algebra, we would need to
strengthen the theory (see [89] for this). Using the pairing function available
in V0, we can code a subset of the rational numbers, more precisely we code a
number x

y
as the pair 〈x, y〉. The numbers we will be working with will all have

a common denominator n2c. This limits the number of multiplications we can do
for each number, but this will not pose a problem in our case. We can also define
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the usual operations on these numbers (see for example [69]). Given a string Z
coding a sequence, we can compute the value of the sum of its elements, that
is, we can ΣB

1 -define a formula sum(y, Z) that represents
∑y

i=0 Z[i] and prove its
main properties as well as its totality in VTC0 (see Proposition 1.30 below or
Proposition A.39 in Appendix A for the proof). We define rational vectors in a
natural way as sequences of rational numbers. Using the sum function we can
define an inner product of vectors of the same length. For vectors ~u,~v ∈ Qk we
denote the inner product by 〈~u,~v〉. For a rational matrix M and a rational vector
~v, we can ΣB

1 -define their product M~v.

Proposition 1.30 (Basic properties of sums in VTC0). In what follows we
consider the theory VTC0 over an extended language (including possibly new
ΣB

1 -definable function symbols in VTC0 and their defining axioms). The function
f(i) is a number function symbol mapping to the rationals or naturals (possibly
with additional undisplayed parameters). The theory VTC0 proves the following
statements:

Substitution: Assume that u(i), v(i) are two terms (possibly with additional
undisplayed parameters), such that u(i) = v(i) for any i ≤ n, then

n∑

i=0

f(u(i)) =
n∑

i=0

f(v(i)).

Distributivity: Assume that u is a term that does not contain the variable i,
then

u ·
n∑

i=0

f(i) =
n∑

i=0

u · f(i).

Rearranging: Assume that I = {0, . . . , n} and let I1, . . . , Ik be a definable par-
tition of I (specifically, the sets I1, . . . , Ik are all ΣB

0 -definable in VTC0 and
VTC0 proves that the Ij’s form a partition of I). Then

n∑

i=0

f(i) =
k∑

j=1

∑

i∈Ij

f(i),

where
∑

i∈Ij
f(i) denotes the term

∑|Ij |−1
i=0 f(δ(i)) where δ(i) is the function

that enumerates (in ascending order) the elements in Ij.

Inequalities: Let g(i) be a number function mapping to the rationals or naturals
(possibly with additional undisplayed parameters), such that f(i) ≤ g(i) for
all 0 ≤ i ≤ n, then

n∑

i=0

f(i) ≤
n∑

i=0

g(i).

Additionally to being able to compute the sizes of bounded sets, we can al-
so prove some elementary counting properties. We will now give a synopsis of
Section A.2.2 in Appendix A and refer to that section for the proofs.

Notation: When reasoning in the theory VTC0, we will say that a family of
ΣB

0 -definable in VTC0 sets B0, . . . , Bℓ forms a partition of a set B whenever
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VTC0 proves that (i)
⋃ℓ

i=0Bi = B, and (ii) Bi ∩ Bj = ∅, for all 0 ≤ i 6= j ≤ ℓ.

Here,
⋃ℓ

i=0Bi := {r : ∃i ≤ ℓ, Bi(r)}.

Proposition 1.31 (Some counting in VTC0). Let B1, . . . , Bℓ be family of ΣB
0 -

definable sets in VTC0 that partition the set B (ℓ may be a variable). Then,
VTC0 proves:

numones(B) =
ℓ∑

i=1

numones(Bi) .

Proposition 1.32 (More counting in VTC0). Let ϕ(x) be a ΣB
0 formula (pos-

sibly in an extended language of VTC0). The theory VTC0 can prove that if
Z = {0 ≤ i < m : ϕ(i)} and for any 0 ≤ i < m,

γi =

{
a, ϕ(i);
b, ¬ϕ(i),

then ∑

i<m

γi = a · numones(Z) + b · (m− numones(Z)).

For a number term t, we write ∀x ∈ [t] Φ to abbreviate ∀x ≤ t(x ≥ 1→ Φ).

Proposition 1.33. The theory VTC0 proves the following statement. Let F (x)
be a string function. Let d < t be a natural number and assume that any number
in any set F (1), . . . , F (t) occurs in at most d many sets in F (1), . . . , F (t). Let
g(x) be a number function such that g(1), . . . , g(t) are (not necessarily distinct)
numbers with g(i) ∈ F (i) for all i ∈ [t]. Then numones({g(i) : i ∈ [t]}) ≥ ⌈t/d⌉.

1.3.2 The Theories VNCk and VNC

As before we will axiomatize theories corresponding to the provability strength
of circuit classes by adding to V0 an axiom that postulates the existence of a
witness for a complete problem for that circuit class. In this section we will treat
NCk circuits and, following [29], we will use the layered monotone circuit value
problem, which is complete for these classes, to axiomatize the corresponding
theories VNCk. We will be more precise now.

Definition 1.34. The monotone circuit value problem for some circuit class C
is, given a monotone circuit C ∈ C and an input I to C, to decide whether
C(I) = 1 or not. The layered monotone circuit value problem is the same for
layered circuits.

These problems are hard for their respective classes.

Proposition 1.35. Let k ≥ 0. The layered and non-layered monotone circuit
value problems for ACk and NCk+1 are hard for the classes ACk and NCk+1, re-
spectively.

We will now formalize these problems. To do so, we will first consider the
case where k = 1. In this case any NCk-circuit can efficiently be turned into an
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equivalent formula. The circuit value problem thus reduces to a formula value
problem, which is the base of the following definition of VNC1.

We perceive a monotone formula ϕ as a encoded by a binary tree G, where
the leafs are labeled with the variables and each node is labeled by a connective,
i.e. by either ∧ or ∨. An assignment is a string I, that assigns to each variable a
value, i.e. 0 or 1. The following formula is a formalization of the statement that
there exists an evaluation Y for each such encoding of a formula:

MFV ≡ ∃Y ≤ 2a+ 1.δMFV (a,G, I, Y ), where

δMFV (a,G, I, Y ) ≡ ∀x < a((Y (x+ a)↔ I(x)) ∧ Y (0)∧
0 < x→ (Y (x)↔ ((G(x) ∧ Y (2x) ∧ Y (2x+ 1))∨

(¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))))).

Definition 1.36. We let VNC1 be V0 augmented by MFV .

To further generalize this notion we first need to find a convenient way of
formalizing the notion of an ACk and of an NCk circuit. This is done as follows.

We define a circuit in L2
A by defining the underlying set of nodes via a predicate

G[〈a, b〉] that is true iff the bth node in layer a is ∧ and false iff it is ∨. The nodes
are connected via an edge relation E[〈a, b, c〉] that is true iff node b on layer a is
connected with node c on layer a+ 1.

The algorithm that we want to formalize, starts in the lowest layer and com-
putes the values of each node in this layer from the input I it then successively
computes the values of all nodes in each layer from the layer below. Therefore it
needs space O(size of the layer) and can be formalized as follows.

δLMCV (n, d, E,G, I, Y ) ≡ ∀x < n∀z < d((Y [〈0, x〉]↔ I[x]))∧
(Y [〈z + 1, x〉]↔
(G[〈z + 1, x〉] ∧ ∀u < n(E(z, u, x)→ Y (z, u)))∨
(¬G[〈z + 1, x〉] ∧ ∃u < n(E(z, u, x)→ Y (z, u)))).

As the circuit we want to compute is an NC circuit we have to assume that
the fan-in is 2. We formalize that as

Fanin2(n, d, E) ≡ ∀z < d∀x < n∃u1 < n∃u2 < n∀v < n

(E(z, v, x)→ (v = u1 ∨ v = u2)).

We are now in the position to define the theories that correspond to the circuit
classes NCk.

Definition 1.37. Let k > 1. Then VNCk is axiomatized by V0 extended by
the following axiom

Fanin2(n, |n|k , E)→ ∃Y ≤ 〈|n|k , n〉δLMCV (n, |n|k , E,G, I, Y )

The theory VNC is defined by adding the above axiom for all k.
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Obviously the theories form a hierarchy, though we do not know, whether it
is strict.

Observe that none of the VNCk is conservative over V0, as, by the Witnessing
Theorem for V0, a ΣB

0 definition of the satisfaction relation would be sufficient
to prove that NC1 ⊆ AC0, at least for monotone functions, which is known to be
false.

The theories VNCk are at least as strong as VTC0. See [29] Section IX.5.4.

Theorem 1.38. VNC1 proves NUMONES. Therefore everything provable in
VTC0 is also provable in VNCk for any k ≥ 1.

1.3.3 Relation between Arithmetic Theories and Proof
Systems

In this section we will remind the reader of a connection between the Theory
V0 and some of its extensions and certain propositional proof systems (see also
[29][57]).

Definition 1.39. The following predicates will be subsequently used. They are
definable with respect to V0 (see [57]).

• Fla(X) is a ΣB
0 formula that says that the the string X codes a formula.

• DNF(X) is a ΣB
0 formula that says that the the string X codes a formula

in DNF.

• Z |= X is the ∆B
1 definable property that the truth assignment Z satisfies

the formula X.

• Taut(X) is the ΠB
1 formula Fla(X) ∧ ∀Z ≤ t(|X|)Z |= X, where t is a

number term.

• PrfFd
(Π, A) is a ΣB

0 definable predicate meaning Π is a depth d Frege proof
for A.

• PrfTC
0−Fd

(Π, A) is a ΣB
0 definable predicate meaning Π is a depth d TC0-

Frege proof for A.

• PrfF (Π, A) is a ΣB
0 definable predicate meaning Π is a Frege proof for A.

We denote the depth by a formula coded by a string X by dp(X). This is
clearly ΣB

0 definable in V0. Observe that in V0 we cannot prove that every
formula has an evaluation.

The following holds

Theorem 1.40 (see [29]). The Theory V0 proves that AC0-Frege is sound, i.e.
for every d

∀A∀ΠPrfFd
(Π, A) ∧ dp(A) ≤ d→ Taut(A).

Theorem 1.41 (see [29]). The Theory VTC0 proves that TC0-Frege is sound,
i.e.

∀A∀ΠPrfTC
0−Fd

(Π, A) ∧ dp(A) ≤ d→ Taut(A).
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Theorem 1.42 (see [29]). The Theory VNC1 proves that Frege is sound, i.e.

∀A∀ΠPrfF (Π, A)→ Taut(A).

On the other hand, provability of the universal closure of ΣB
0 formulas in V0

and VNC1 implies the existence of polynomial size proofs of their propositional
translations in AC0-Frege, TC0-Frege and Frege, respectively.

The Paris-Wilkie Translation

We will show now, how one can translate a ΣB
0 formula ϕ into a family of proposi-

tional formulas JϕK and use this translation to infer a relation between provability
in V0 and its extensions to efficient provability in bounded depth Frege, TC0-Frege
and Frege. This is the Paris-Wilkie Translation defined in [73].

Definition 1.43 (Propositional translation J·K of ΣB
0 formulas). Let ϕ(x̄, X̄) be

a ΣB
0 formula. The propositional translation of ϕ is a family

JϕK = {JϕKm̄;n̄ | mi, ni ∈ N}

of propositional formulas in variables pXi

j for everyXi ∈ X̄. The intended meaning
is that JϕK is a valid family of formulas if and only if the formula

∀x̄∀X̄
(
(
∧
|Xi| = ni)→ ϕ(m̄, X̄)

)

is true in the standard model N2 of two sorted arithmetic, where n denotes the
nth numeral, for any n ∈ N.

For given m̄, n̄ ∈ N we define JϕK by induction on the size of the formula
JϕKm̄;n̄. We denote the value of a term t by val(t).

Case 1: Let ϕ(x̄, X̄) be an atomic formula.

• If ϕ(x̄, X̄) is ⊤ (or ⊥), then JϕKm̄,n̄ := ⊤ (or ⊥).

• If ϕ(x̄, X̄) is Xi = Xi, then JϕKm̄,n̄ := ⊤.

• If ϕ(x̄, X̄) is Xi = Xj for i 6= j, then (using the fact that V0contains the
extensionality axiom SE) instead of translating ϕ, we translate the V0-
equivalent formula

|Xi| = |Xj| ∧ ∀k ≤ |X| (Xi(k)↔ Xj(k))).

• If ϕ(x̄, X̄) is t1(ȳ, |Ȳ |) = t2(z̄, |Z̄|) for terms t1, t2, number variables ȳ, z̄ and
string variables Ȳ , Z̄, where ȳ ∪ z̄ = x̄ and Ȳ ∪ Z̄ = X̄, and m̄y, m̄z and
n̄Y , n̄Z denote the corresponding assignments of numerals m̄, n̄ to the ȳ, z̄
and Ȳ , Z̄ variables, respectively. Then

JϕKm̄,n̄ :=

{
⊤ if val(t1(m̄

Y , n̄Y )) = val(t2(m̄
Z , n̄Z)) and

⊥ otherwise.
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• If ϕ(x̄, X̄) is t1(ȳ, |Ȳ |) ≤ t2(z̄, |Z̄|) for terms t1, t2, number variables ȳ, z̄ and
string variables Ȳ , Z̄, then

JϕKm̄,n̄ :=

{
⊤ if val(t1(m̄

Y , n̄Y )) ≤ val(t2(m̄
Z , n̄Z)) and

⊥ otherwise.

• If ϕ(x̄, X̄) is Xi(t(x̄, |X̄|)), then

JϕKm̄,n̄ := ⊥ if ni = 0

and otherwise

JϕKm̄,n̄ :=





pXi

val(t(m̄,n̄)) if val(t(m̄, n̄)) < ni − 1,

⊤ if val(t(m̄, n̄)) = ni − 1,

⊥ if val(t(m̄, n̄)) > ni − 1.

Case 2: The formula ϕ is not atomic.

• If ϕ ≡ ψ1 ∧ ψ2 we let

JϕKm̄,n̄ := Jψ1Km̄,n̄ ∧ Jψ2Km̄,n̄.

• If ϕ ≡ ψ1 ∨ ψ2 we let

JϕKm̄,n̄ := Jψ1Km̄,n̄ ∨ Jψ2Km̄,n̄.

• If ϕ ≡ ¬ψ we let
JϕKm̄,n̄ := ¬JψKm̄,n̄.

• If ϕ ≡ ∃y ≤ t(x̄, |X̄|)ψ(y, x̄, X̄) then

JϕKm̄,n̄ :=

val(t(m̄,n̄))∨

i=0

Jψ(i, x̄, X̄)Km̄,n̄.

• If ϕ ≡ ∀y ≤ t(x̄, |X̄|)ψ(y, x̄, X̄) then

JϕKm̄,n̄ :=

val(t(m̄,n̄))∧

i=0

Jψ(i, x̄, X̄)Km̄,n̄.

This concludes the translation for ΣB
0 formulas.

Proposition 1.44. There exists a polynomial p such that for all ΣB
0 formulas

ϕ(x̄, X̄) the following holds

• If V0 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist a d such that all JϕKm̄,n̄ have depth
d Frege proofs of length at most p(max(m̄, n̄)), for any m̄, n̄.

• If VTC0 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist a d such that all JϕKm̄,n̄ have
depth d TC0-Frege proofs of length at most p(max(m̄, n̄)), for any m̄, n̄.
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• If VNC1 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist Frege proofs of all JϕKm̄,n̄ of
length at most p(max(m̄, n̄)), for any m̄, n̄.

Propositions 1.40, 1.41 and 1.42 are examples of general principles, the so
called Reflection Principles, which we will state now only for formulas in DNF,
as V0 is not strong enough to evaluate general formulas.

Definition 1.45 (Reflection Principle). Let P be a pps. Then the Reflection
Principle for P , RefP , is the ∀∆B

1 -formula (w.r.t. V0)

∀Π∀X∀Z((DNF(X) ∧ PrfP (Π, X))→ (Z � X)),

where PrfP is a ∆B
1 -predicate formalizing P -proofs.

Reflection Principles condense the strength of propositional proof systems.
The following result exemplifies this. A detailed exposition can be found in [29],
chapter X, or in [57], chapter 9.3.

Theorem 1.46. 1. If V0 ⊢ RefF then bounded depth Frege simulates Frege
w.r.t. DNF formulas.

2. If V0 ⊢ RefTC
0−F then bounded depth Frege simulates TC0-Frege w.r.t. DNF

formulas.

3. If VTC0 ⊢ RefF then TC0-Frege simulates Frege w.r.t. DNF formulas.

We will only give a brief sketch of the proof of item 1. here and leave out the
technical details.

Sketch. Let ϕ be a formula and πϕ a Frege proof of ϕ. Since V0 proves RefF ,
by Propositions 1.40 and 1.44 we have polynomial size proofs of its translations
JRefF K in bounded depth Frege. Bounded depth Frege itself, however, is strong
enough to verify that a proper encoding of the computation of the Turing machine
verifying the Frege proof πϕ is correct. Thus it can verify that πϕ is a Frege-proof
and, using the translation of the Reflection Principle and the Cut rule, conclude
JTaut(ϕ)K. From this ϕ follows, cf. [57] Lemma 9.3.7.

As an application of Theorem 1.46 we can state the following observation.

Proposition 1.47. VTC0 is not a conservative extension of V0.

Proof. This statement follows from Theorem 1.9 and Theorem 1.14. If V0 could
prove the same statements as VTC0, then, by Proposition 1.41, it could especial-
ly prove the Reflection Principle for TC0-Frege. This, in conjunction with The-
orem 1.14 and Proposition 1.44 yields a polynomially bounded, bounded depth
Frege proof of the Pigeonhole Principle. That, however, is a contradiction to
Theorem 1.9.
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2. Refutations of Random 3CNF
in TC

0-Frege

In this chapter we will give a synopsis of [67], the whole article is given as Ap-
pendix A in the end of the thesis.

By Theorem 1.5 we know that Resolution fails to have efficient proofs of the
unsatisfiability of random 3CNF, if the clause-to-variable ratio is below n0,5−ǫ,
where n is the number of variables. This is contrasted by Theorem 1.4, which
states that these statements are already well beyond the unsatisfiability threshold
of 8·ln(2) clauses per variable, which suggests that proofs of unsatisfiability should
be easier to do. This suggestion is justified. In [37], Feige, Kim and Ofek showed
that there is a polynomially verifiable witness of the unsatisfiability of 3CNF, if
the clause-to-variable ratio is at least c · n0,4 for some constant c. This is our
starting point. We will show that this witness can be understood with the means
of TC0-Frege and then conclude that 3CNF with more than c · n0,4 clauses per
variable can be efficiently refuted by TC0-Frege proofs (by which we mean that
TC0-Frege proves their negation efficiently). Our main result is the following:

Theorem 2.1. With probability 1−o(1) a random 3CNF formula with n variables
and cn1.4 clauses (for a sufficiently large constant c) has polynomial-size TC0-
Frege refutations.

We will now give an outline of the structure of the proof of Theorem 2.1. In-
stead of directly constructing TC0-Frege proofs we will work in VTC0 and use the
relation between this theory and the proof system, as mentioned in Section 1.3.3.
We have seen there that, when restricted to proving ΣB

0 statements, the theory
VTC0 characterizes uniform polynomial-size TC0-Frege proofs. The construction
of polynomial-size TC0-Frege refutations for random 3CNF formulas, will consist
of the following steps:

I. Formalize the following statement as an L2
A formula:

∀ assignment A
(
C is a 3CNF and w is its FKO unsatisfiabiliy witness −→

exists a clause Ci in C such that Ci(A) = 0
)
,

(2.1)

where an FKO witness is a suitable formalization of the unsatisfiability
witness defined by Feige, Kim and Ofek [37]. We will call the corresponding
predicate the FKO predicate.

II. Prove formula (2.1) in the theory VTC0.

III. Translate the proof in Step II. into a family of propositional TC0-Frege proofs
(of the family of propositional translations of (2.1)). By Proposition 1.44,
this will be a polynomial-size propositional proof (in the size of C). The
translation of (2.1) will consist of a family of propositional formulas of the
form:

JC is a 3CNF and w is its FKO unsatisfiabiliy witnessK −→
Jexists a clause Ci in C such that Ci(A) = 0K.

(2.2)
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By the nature of the propositional translation, (second-sort) variables in
the original first-order formula translate into a collection of propositional
variables. Thus, (2.2) will consist of propositional variables derived from
the variables in (2.1).

IV. For the next step we first notice the following two facts:

(i) Assume that C is a random 3CNF with n variables and cn1.4 clauses
(for a sufficiently large constant c). By [37], with high probability
there exists an FKO unsatisfiability witness w for C. Both w and C
can be encoded as finite sets of numbers, as required by the predicate
for 3CNF and the FKO predicate in (2.1). Let us identify w and C
with their encodings. Then, assuming (2.1) was formalized correctly,
assigning w and C to (2.1) satisfies the premise of the implication in
(2.1).

(ii) Now, by the definition of the translation from first-order formulas to
propositional formulas, if an object α satisfies the predicate P (X)
(i.e., P (α) is true in the standard model), then there is a propositional
assignment of 0, 1 values that satisfies the propositional translation of
P (X). Thus, by Item (i) above, there exists an 0, 1 assignment ζ that
satisfies the premise of (2.2) (i.e., the propositional translation of the
premise of the implication in (2.1)).

In the current step we show that after assigning ζ to the conclusion of (2.2)
(i.e., to the propositional translation of the conclusion in (2.1)) one obtains
precisely ¬C (formally, a renaming of ¬C, where ¬C is the 3DNF obtained
by negating C and using the de Morgan laws).

V. Take the propositional proof obtained in III., and apply the assignment ζ to
it. The proof then becomes a polynomial-size TC0-Frege proof of a formula
φ → ¬C, where φ is a propositional sentence (without variables) logically
equivalent to True (because ζ satisfies it, by IV.) From this, one can easily
obtain a polynomial-size TC0-Frege refutation of C (or equivalently, a proof
of ¬C).

The bulk of our work lies in I. and especially in II. We need to formalize the
necessary properties used in proving the correctness of the FKO witnesses and
show that the correctness argument can be carried out in the weak theory. There
are two main obstacles in this process. The first obstacle is that the correctness
(soundness) of the witness is originally proved using spectral methods, which
assumes that eigenvalues and eigenvectors are over the reals ; whereas the reals
are not defined in our weak theory. The second obstacle is that one needs to prove
the correctness of the witness, and in particular the part related to the spectral
method, constructively (formally in our case, inside VTC0). Specifically, linear
algebra is not known to be (computationally) in TC0, and (proof-complexity-wise)
it is conjectured that TC0-Frege do not admit short proofs of the statements of
linear algebra (more specifically still, short proofs relating to inverse matrices and
the determinant properties; see [89] on this).
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The first obstacle is solved using rational approximations of sufficient accu-
racy (polynomially small errors), and showing how to carry out the proof in the
theory with such approximations. The second obstacle is solved basically by
constructing the argument (the main formula above) in a way that exploits non-
determinism (i.e., in a way that enables supplying additional witnesses for the
properties needed to prove the correctness of the original witness; e.g, (approxi-
mations of) all eigenvectors and all eigenvalues of the appropriate matrices in the
original witness). In other words, we do not have to construct certain objects but
can provide them, given the possibility to certify the property we need. Formally,
this means that we put additional witnesses in the FKO predicate occurring in
the main formula in I. above. This, of course, leads to TC0-proofs that are not
totally uniform.

We will now elaborate a bit more on Steps I. and II.

2.0.4 Step I.

To understand how to formalize the notion of an FKO witness, we first have to
define what that notion actually is. In [37] the following was observed

1. Any satisfying assignment for a random 3CNF C satisfies many clauses of
C as 3XOR, that is, it either satisfies all or exactly one of the literals in
these clauses.

2. Not too many of the clauses of C can be satisfied as NAE (Not All Equal),
that is there are a reasonable amount of clauses, where all 3 literals are
satisfied.

3. For any random 3CNF, there exist many distinct, but not disjoint sets of
their clauses, such that each of this sets one of its clauses is not satisfied as
3XOR.

If there exists too many of the sets guaranteed by item 3, we cannot satisfy item
1 anymore, so the 3CNF is not satisfiable. We will make this observation more
precise now.

We call the collection of clauses in item 3) an even k-tuple and define it as
follows

Definition 2.2 (Even k-tuple). For any given k, a sequence S of k many clauses
is an even k-tuple iff every variable appears an even number of times in the
sequence. Formally, this predicate is denoted by TPL(S, k).

Observe that if S is an even k-tuple then k is even (since the total number of
variable occurrences n is even, by assumption that each variable occurs an even
number of times; and k = n/3, since each clause has three variables). In light of
the fact that many clauses have to be satisfied as 3XOR (item 1. in the above
observation), we define the following:

Definition 2.3 (Inconsistent k-tuple). An even k-tuple is said to be inconsistent
if the total number of negations in its clauses is odd. Formally, the predicate is
denoted by ITPL(S, k).
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Observe that at least one of the clauses in an inconsistent k-tuple cannot be
satisfied as 3XOR. Additionally, we need the the largest eigenvalue λ of the
following matrix, because it provides an upper bound to the number of clauses
that can be satisfied as NAE (item 2 above).

Definition 2.4 (Mat(M,C)). We define the predicate Mat(M,C) that holds
iff M is an n × n rational matrix such that Mij equals 1

2
times the number of

clauses in C where xi and xj appear with different polarity minus 1
2

times the
number of clauses where they appear with the same polarity. More formally, we
have

Mij :=
m−1∑

k=0

E
(k)
ij , for any i, j ∈ [n], (2.3)

where E
(k)
ij corresponds to the kth clause in C as follows:

E
(k)
ij :=





1
2
, xεi

i , x
εj

j ∈ C[k] and εi 6= εj, for some εi, εj ∈ {0, 1} and i 6= j;
−1

2
, xεi

i , x
εj

j ∈ C[k] and εi = εj, for some εi, εj ∈ {0, 1} and i 6= j;
0, otherwise.

(2.4)

We refer to Lemma 2.11 for the actual bound of the formulas satisfied as
NAE. Also, the eigenvalue λ poses a problem as on the one-hand, the eigenval-
ue is a real number and on the other hand, we cannot construct eigenvalues in
our theory, even if they are rational. To circumvent this, we define a predicate
EigValBound(M, λ̄, V ) that ensures that λ̄ is a collection of n rational approx-
imations of the eigenvalues of the matrix M and that V is the rational matrix
whose rows are the rational approximations of the eigenvectors of M (where the
ith row in V is the approximation of the approximate eigenvector λi).

The notion of imbalance provides us with a natural upper bound for the total
number of satisfied literals.

Definition 2.5 (The imbalance Imb(C, y)). For a 3CNF C we define the function
i-imbalance iImb(C, i) to be the absolute value of the difference of negated occur-
rences of xi and non-negated occurrences of xi in the 3CNF C (where x1, . . . , xn

are considered to be all the variables in C). It is denoted by iImb(C, i). For a
3CNF C, the predicate imbalance of C, denoted Imb(C, y), is true iff y equals
the sum over the i-imbalances of all the variables, that is:

Imb(S, y)↔ y =
n∑

i=1

iImb(C, i).

We can now formulate the witness and give a sketch of the proof of its correct-
ness. But first, we need one more definition, which gives a bound to the number
of inconsistent k-tuples (as for item 3):

Definition 2.6 ((t, k, d)-collection). A (t, k, d)-collection D of a 3CNF C with
m clauses is an array of t many inconsistent k-tuples, which contain only clauses
from C, and each clause appears in at most d many such inconsistent k-tuples.
The predicate is denoted Coll(t, k, d,C,D).

The witness for unsatisfiability of C contains
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• The imbalance I given as Imb(C, y),

• the largest eigenvalue λ from Mat(M,C) and

• a (t, k, d)-collection Coll(t, k, d,C,D).

Before we will state the main formula, we will restate the result from [37] of how
the witness is applied.

Theorem 2.7 ([37]). Let C be a 3CNF with n variables and m clauses and the

FKO witness as above. If t > d·(I+λn)
2

, then C is not satisfiable.

We can now present the main formula that we are going to prove in VTC0.
It says that if the Feige-Kim-Ofek witness fulfills the inequality t > d·(I+λn)

2
+o(1)

(the o(1) stems from the approximations) then there exists a clause in C that is
not satisfied by any assignment A (the predicate NotSAT(C[i], A) is a straight-
forward formalization of this property):

Definition 2.8 (The main formula). The main formula is the following formula
(λ̄ denotes n distinct number parameters λ1, . . . , λn):

(
3CNF(C, n,m) ∧Coll(t, k, d,C,D) ∧ Imb(C, I) ∧Mat(M,C)∧

EigValBound(M, λ̄, V ) ∧ λ = max{λ1, . . . , λn} ∧ t >
d · (I + λn)

2
+ o(1)

)

−→ ∃i < mNotSAT(C[i], A).

2.0.5 Step II.

The proof of the main formula in VTC0 is rather tedious, so we will only give
the main results needed to follow it and refer to the appendix for the details.

Theorem 2.9 (Main). The theory VTC0 proves the main formula (Definition
2.8).

We will give a very brief sketch of the argument. The proof uses the following
lemmas, the proofs of which can be found in Appendix A:

Let satNAE(A,C) be the string function that returns the set of all clauses in
C that are satisfied as NAE by A and satLit(A,C) the set of all literals that are
satisfied by A.

Lemma 2.10 (Lemma A.50 in Appendix A). (Assuming the premise of the main
formula) the theory VTC0 proves:

numones(satLit(A,C)) ≤ 3m+ I

2
.
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Lemma 2.11 (Lemma A.55 in Appendix A). (Assuming the premise of the main
formula) the theory VTC0 proves:

numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

Lemma 2.12 (Lemma A.56 in Appendix A). (Assuming the premise of the main
formula) the theory VTC0 proves that the number of clauses in C that are not
satisfied as 3XOR by A is at least ⌈t/d⌉.

Proof of Theorem 2.9. We will argue in VTC0. Assume that the premise of the
main formula (see Definition 2.8) holds. By Lemma 2.10 the maximal number of
literals satisfied by the assignment A is

3m+ I

2
.

By Lemma 2.11 at most
nλ+ 3m

4
+ o(1)

clauses are satisfied as NAE. The remaining (m− nλ+3m
4

+ o(1)) clauses must be
satisfied 3 times. Thus the number of clauses satisfied twice is at most

3m+ I

2
− 3 · (m− nλ+ 3m

4
)

︸ ︷︷ ︸
satisfied 3 times

− nλ+ 3m

4︸ ︷︷ ︸
satisfied once

+o(1) =
−3m+ I

2
+
nλ+ 3m

2
+ o(1)

=
nλ+ I

2
+ o(1).

On the other hand, by Lemma 2.12, this number is at least ⌈t/d⌉. Thus we get

t ≤ d · ⌈t/d⌉ ≤ d · (nλ+ I)

2
+ o(1),

contradicting the premise

t >
d · (I + λn)

2
+ o(1).
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3. Cuts of Models of V0

In this chapter we will give a synopsis of [66]. The full version including the
proofs is given as Appendix B in the end of this thesis.

In Section 3.1, we will reproduce the main argument of the article and conclude
a simulation result by exploiting an algorithm for evaluating formulas. We will
give a strengthened simulation result in Section 3.2, which builds on a different
algorithm that evaluates general monotone circuits. The main result of [66] is the
proof of a formalized version of Nepomnjascij’s Theorem [68] in a small cut of a
model of V0. The theorem is as follows:

Theorem 3.1 (Nepomnjascij [68]). Let c ∈ N and 0 < ǫ < 1 be constants.
Then if the language L ∈ TimeSpace(nc, nǫ), the relation x ∈ L is definable by a
ΣB

0 -formula over N.

Using a standard evaluation algorithm the formalized version of this theorem
guarantees the ΣB

0 -definability of MFV in the cut. This guarantees the existence
of an evaluation, i.e. it shows that the cut is a model of VNC1. In Section 3.2
we will strengthen this latter result in a straightforward way to obtain a model of
VNC. In both cases that implies a subexponential simulation result with respect
to the proof systems related to the theories. We will now introduce the notion of
a cut I of a given two-sorted arithmetic modelM.

Definition 3.2 (Cut). Let T be a two-sorted arithmetic theory and

N = {N1, N2,+
N , ·N ,≤N , 0N , 1N , |·|N ,=N

1 ,=
N
2 ,∈N}

a model of T . A cut

M = {M1,M2,+
M , ·M ,≤M , 0M , 1M , |·|M ,=M

1 ,=
M
2 ,∈M}

in N is any substructure such that

• M1 ⊆ N1, M2 ⊆ N2,

• 0M = 0N , 1M = 1N ,

• M1 is closed under +N , ·N and downwards with respect to ≤N ,

• M2 = {X ∈ N2 | X ⊆M1}, and

• ◦M is the restriction of ◦N to M1 and M2 for all relation and function
symbols ◦ ∈ L2

A.

We call this cut the Polylogarithmic Cut iff

x ∈M1 ⇔ ∃a ∈ N1, k ∈ N x ≤ |a|k .
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3.1 Polylogarithmic Cuts and VNC1

To infer the simulation result, we need a bounded version of the Reflection Prin-
ciples we have defined in Section 1.3.3.

Given a term t and a variable x, we can also introduce the t-bounded version
of the Reflection Principle for some given pps P , RefP (t(x)) that claims soundness
only for t-bounded proofs.

Definition 3.3 (Bounded Reflection). Let t be a L2
Ar-term, x a first-sort variable

and P a pps. Then the Bounded Reflection Principle RefP (t(x)) is the formula

∀Π ≤ t(x)∀X ≤ t(x)∀Z ≤ t(x)((Fla(X) ∧ PrfP (Π, X))→ (Z � X)).

We can now generalize Theorem 1.46 in the following way.

Theorem 3.4. Let t be a L2
A-term and m a number variable. If t(m) < m for

m large enough and if V0 ⊢ ∀xRefF (t(x)) then for every propositional formula
ϕ with a Frege proof of length t(m) there is a bounded depth Frege proof of ϕ of
length mO(1).

The following corollary will be of interest to us.

Corollary 3.5. If V0 ⊢ RefF (|x|k) for all k ∈ N, then bounded depth Frege sub
exponentially simulates Frege: For all D > 1, δ > 0 exists d ≥ D, such that the
existence of a Frege proof of length n of a depth D formula implies the existence
of a depth d Frege proof of length at most 2nδ

.

Given a polynomially bounded Turing machine A in a binary encoding, we
can ΣB

1 define a predicate ACCA(X), that states that X is accepted by A. This
can readily be observed, since, provided some machine A, there is a constant
number of states σ1, . . . , σk and the whole computation can be written into a
matrix W of polynomial size. We can also define a ΣB

1 -predicate REACHA(X,Y )
that says that A reaches configuration Y from configuration X in at most p(|X|)
steps. The definition is essentially the same as for ACC. The formalized version
of Nepomnjascij’s Theorem now says that ACCA(X) can be ΣB

0 -defined, if the
machine A computes a language L ∈ TimeSpace(nc, nǫ) and the objects are
small (i.e. lie in the polylogarithmic cut).

Theorem 3.6. Let N � V0. Let m = |a| for some a ∈ N1 and let c, k ∈ N and
ǫ < 1. If L ∈ TimeSpace(mc,mǫ) is computed by Turing machine A, then there
exists a ΣB

0 definition in N of the ΣB
1 -predicate ACCA on the interval [0,mk].

I.e. any Y ∈ L, bounded by mk is ΣB
0 -definable in N and therefore exists in the

polylogarithmic cut of N .

Proof Sketch. We inductively on d define a ΣB
0 relation reachd

A(I, p1, p2, cell, comp)
that states that the p2th cell of the work tape of A, starting on configuration I
and computing for p1 ·md 1−ǫ

k steps via the computation comp is cell. As d depends
only on A and k we will be doing this induction outside of the theory to construct
d many formulas. We will then prove the above mentioned properties of reachA

by ΣB
0 induction on p1.
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It is then straightforward to prove by induction on the number of lines in
comp that comp is uniquely defined by reach0

A. We let

Reach0
A(I, p1, p2, cell) =def ∃comp < q(|I|) reach0

A(I, p1, p2, cell, comp),

where q is some polynomial depending on the encoding.
Now proceed by inductively defining reachd

A and Reachd
A. Again, we can prove

uniqueness of the computation by induction on the number of its lines and let

Reachd
A(i, p1, p2, cell) =def ∃comp < q(|I|) reachd

A(i, p1, p2, cell, comp).

We now can give a ΣB
0 definition of the predicate W [〈i, j, ·〉] coding the compu-

tation as in ACCA on input X of length mk. Informally the predicate W [〈i, j, ·〉]
says that we compute the configurations of A by iteratively using the predicates
Reachd

A through Reach0
A. That is, we first exhaust applications of Reachd

A (i.e.
we first make the biggest steps) until another application would lead us beyond
the configuration con we want to check. We can then use the configuration cond,
that we obtained from the applications of Reachd

A, in Reachd−1
A to get configura-

tion cond−1 and so on until we reach configuration con. It remains to check that
W [〈i, j, ·〉] coincides with the predicate ACCA. This follows by induction on the
length of the computation.

We can now conclude that such a cut is a model of VNC1 by providing an
algorithm for formula evaluation. The algorithm can be found in the proof of
Theorem B.14 in Appendix B.

Theorem 3.7. Let N � V0 and M ⊆ N be the polylogarithmic cut. Then
M � VNC1.

Using the corollary to Theorem 3.4, this yields the following simulation result
first proved by Filmus, Pitassi and Santhanam [39].

Theorem 3.8 ([39]). Every Frege system is sub exponentially simulated by AC0-
Frege systems.

As VNC1 extends VTC0, we can also infer the following result about bounded
depth Frege proofs of random 3CNF using Theorem 2.1 in Chapter 2.

Theorem 3.9. For almost every random 3CNF A with n variables and m = c·n1,4

clauses, where c is a large constant, ¬A has subexponentially bounded AC0-Frege
proofs.

This yields a weak separation result on random instances between Resolution
and bounded depth Frege.

3.2 Polylogarithmic Cuts and VNC

In this section we will generalize Theorem 3.7 in the sense that we show that the
polylogarithmic cut of any V0 model is actually a model of VNC instead of only
VNC1. This result stems from discussions with Antonina Kolokolova in the SAS
programme in Cambridge and subsequently in Prague.
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As before we formalize an NCk circuit in L2
A by defining the underlying set

of nodes via a predicate G[〈a, b〉] that is true iff the bth node in layer a is ∧ and
false iff it is ∨ and an edge relation E[〈a, b, c〉] that is true iff node b on layer a is
connected with node c on layer a+ 1.

Keep in mind that the definition of V NCk is

Fanin2(n, |n|k , E)→ ∃Y ≤ 〈|n|k , n〉δLMCV (n, |n|k , E,G, I, Y ),

where Fanin2 is the formula stating that every node has at most 2 incoming edges
and δLMCV (n, d, E,G, I, Y ) is the formula that states that Y is an evaluation of
the layered circuit G,E, with width n and depth d, on input I. See Definition 1.37
in Section 1.3.2.

The following is a recursive algorithm computing the value of Y [〈j, i〉], given
a circuit G,E, an input I and a node i in layer j.

NodeValue(G,E,I,i,j)

• boolean left_value; boolean right_value;

• int left_succ; int right_succ;

• If j=0

– Output I[i]; End;

• Else If j > 0

– If G[〈j,i〉]=1
∗ While k<|G〈j-1,·〉| AND left_succ = 0

· k++;
· If E(j-1,k,i)

· left_succ := k;End(If);

· End(While);
∗ left_value := NodeValue(G,E,I,left_succ,j-1);

∗ While k≥left_succ AND k<|G〈j-1,·〉| AND right_succ = 0

· k++;
· If E(j-1,k,i)

· right_succ := k;End(If);

· End(While);
∗ right_value := NodeValue(G,E,I,right_succ,j-1);

∗ Output (left_value AND right_value); End;

– Else If G[〈j,i〉]=0
∗ While k<|G〈j-1,·〉| AND left_succ = 0

· k++;
· If E(j-1,k,i)

· left_succ := k;End(If);

· End(While);
∗ left_value := NodeValue(G,E,I,left_succ,j-1);

∗ While k≥left_succ AND k<|G〈j-1,·〉| AND right_succ = 0
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· k++;
· If E(j-1,k,i)

· right_succ := k;End(If);

· End(While);
∗ right_value := NodeValue(G,E,I,right_succ,j-1);

∗ Output (left_value OR right_value); End;

• Else

– Output (0); End;

Informally, the algorithm evaluates each node in a depth-first search fash-
ion. Therefore, unlike in the algorithm anticipated in the definition of VNCk,
it suffices to use a polylogarithmic amount of space. The algorithm clearly runs
in polynomial time. It is easy to see by induction on the depth of the layer to
be evaluated, that the algorithm computes the evaluation Y from the formula
δLMCV . Therefore we have the following theorem.

Theorem 3.10. If N � V0 and M is its polylogarithmic cut, then M � VNC.

Proof. Apply Theorem B.13 to the above algorithm. It remains to be verified
that the predicate defined in this way coincides with the one from the definition
of VNC. We will prove this via induction on the depth of the layer in the circuit.
To this end let Y be the predicate whose existence is guaranteed by the definition
of VNC and let Y ′ be the predicate that stems from the above algorithm.

By induction on j we will show that for every i, Y [〈i, j〉] = Y ′[〈i, j〉]. If j is 0,
then Y [〈i, j〉] = Y ′[〈i, j〉] because both coincide with the ith input bit. Now, to
show that Y [〈i, j+1〉] = Y ′[〈i, j+1〉], we know by assumption that both matrices
are the same for the two bits, which determine Y [〈i, j+1〉] and Y ′[〈i, j+1〉]. But
the bit in Y is defined from these two in the same way as the one in Y ′. Thus,
they are the same.
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4. Computations in VTC0

In this chapter we want to shed light on the motivation that lead to [66] and the
reasons why these ideas do not seem to work, if they are approached as we did.
The main result we were interested in, was the alleged non-automatizability of
Resolution, more precisely, we wanted to give a proof of its non-automatizability
with respect to cryptographic assumptions, as was first done in [61] for EF and
subsequently in [18] and [17] for F and TC0-Frege. To use this approach in a
straightforward way we would have had to prove that Resolution does not have
feasible interpolation, which is not true (see [58]). However, in [6] it was shown
that it is sufficient to prove that Res(log), an extension of Resolution, does not
have feasible interpolation in quasipolynomial time. A question that is still open.
So the main idea was to start with a theory which correspond to Res(log), which
should be T 2

1 , and hope to prove the correctness of RSA or the Diffie-Hellman key
exchange protocol (DH) in a small cut of models of that theory. It became obvious
that RSA could not play the part, as we would be needed to do exponentiation
with respect to different bases. DH, on the other hand, only needed computations
with respect to a fixed generator, something that could, in principle, be done
using repeated squaring and a big table to look up the values. So the things
that we would have to do is to assess the strength of the theory of small cuts of
models of T 2

1 and then prove that this theory is strong enough to prove iterated
multiplication (which we need for the repeated squaring). To start out, we first
wanted to formalize in VTC0 iterated multiplication, as was done for TC0 in
[51]. The next step would have been to show that the cut is a model of VTC0

(or its one sorted equivalent). Unfortunately, it seems that VTC0 might be far
stronger a theory than we are able to show in such cuts. The proof we had in
mind was something in the lines of that of [66], that is, proving Nepomnjascij’s
Theorem or using a similar argument as in its proof. However, if one examines
the proof of the formalized Nepomnjascij Theorem it becomes evident that the
quantifier complexity is not only related to the time the algorithm needs, but
also to the size of the set we wish to compute. As the sets in question have size
at most log(a)k for arbitrary k, we cannot produce a fixed quantifier-depth we
need induction for. Therefore a theory such as T 2

1 is far to weak to support that
argument. Another problem is, that it is seemingly very hard to carry over the
results from [51] to VTC0. That is, even if the idea is correct, our approach to
proving it does not work.

Nonetheless, understanding the computational strength of VTC0 is of great
interest. Not in the least because a question we have to deal with eventually
is, whether the approach taken in [29], to produce theories representing certain
complexity classes leads to the right results. The general approach in [29] is to
take a complete problem for some complexity class and add an axiom formalizing
this to a theory, say V0. The class we get is a sort of minimal class for that
complexity class. But can we really capture the computational strength in this
way? It seems that the notion of completeness is too strong, as the reduction
often cannot be done within the theory. So what remains is a theory represent-
ing some aspects of a complexity class and there is little reason to believe that
adding a finite number of additional axioms can settle this question. But in any
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case theories like VTC0 give us an excellent insight into the differences between
theories and the real world.

To this end, here we present some partial results. We will construct an ex-
tension of VTC0 that proves the correctness of DH. The obvious continuation
would be to get rid of the additional axioms. So far, we have not been able to do
so.

4.1 DH and extensions of VTC0

A first observation we already mentioned before, is that the extensions of V0 we
work with are not perfect representatives of the computational strength of the
complexity class they are related to. This becomes apparent when e.g. trying to
deduce some version of iterated multiplication including some of its properties.
This all is contrasted by a result by Hesse, Allender and Barrington [51], that
puts iterated multiplication into very uniform TC0. Another observation is that
iterated multiplication is possible in polylogarithmic cuts of models of V0, as one
can easily produce a space efficient algorithm for it and then apply the formalized
Nepomnjascij’s Theorem 3.6. Nevertheless, we will try to formalize it properly in
some theory that is given syntactically. To this end we will start with VTC0 and
add what seems to be necessary. We will stay the whole time within the limits
of TC0-computable concepts.

For a possible application towards non-automatizability, we wish to verify in
VTC0 the security of the Diffie-Hellman Key Exchange Protocol (DH) [34]. We
will first sketch a proof of its correctness (with respect to the least significant bit)
outside any theory to pinpoint the properties needed to be proven in VTC0 and
then continue to work out these properties within the theory.

Definition 4.1 (Diffie-Hellman [34]). The Diffie-Hellman Key Exchange Protocol
(DH), maybe better Diffie-Hellman-Merkle Key Exchange Protocol, is working as
follows. Assume we have two parties, Alice and Bob, who want to generate a
common secret key to start a symmetrically encoded conversation. They use
a cyclic group, say Z∗

P , and a generator g ∈ Z∗
P , which is supposedly public

information. They then proceed as follows:

1. Alice generates randomly a number a < P and sends ga to Bob.

2. Bob generates randomly a number b < P and sends gb to Alice.

3. Alice computes (gb)a and Bob computes (ga)b.

It is well known that DH is secure iff every bit is secure. We will now prove
the correctness of the protocol for the least significant bit, that is, we will show
that a code will never code an even bit and at the same time an odd bit.

Proof. Let X,Y, P, g, a, b, c, d be strings of length n. Interpret g as if it is an
element of Z∗

P and especially let all computations be with respect to Z∗
P .

Then let A0 be the statement:

ga = X ∧ gb = Y ∧ ga·b is even
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and A1 be the statement:

gc = X ∧ gd = Y ∧ gc·d is odd.

Then a proof of correctness with respect to the least significant bit is a proof of
¬(A0 ∧ A1).

We can prove the unsatisfiability of A0 and A1 as follows.

gab mod (P )

= (ga mod (P ))b mod (P )

= Xb mod (P )

= (gc mod (P ))b mod (P )

= gcb mod (P )

= gbc mod (P )

= (gb mod (P ))c mod (P )

= Y c mod (P )

= (gd mod (P ))c mod (P )

= gdc mod (P )

= gcd mod (P ).

(4.1)

As A0 claims that ga·b is even, while A1 claims that gc·d is odd, A0 ∧ A1 is not
satisfiable.

To do this proof in VTC0 we have to show that for a fixed generator g we
can verify the following rules of exponentiation:

• gab mod (P ) = (ga mod (P ))b mod (P ).

• gab mod (P ) = gba mod (P ).

• We have to be able to tell whether gx = X for some fixed X and arbitrary
x.

• We have to be able to tell the parity of gx mod (P ) for arbitrary x.

We will start by formalizing a version of exponentiation of strings modulo a
string and work in VTC0 with this exponentiation added axiomatically. More
precisely we want to formalize the relation Y = (GX)Z mod P by a formula
expG,P (Y,X,Z). To this end let expG,P (Y,X,Z) be the universal closure of the
conjunction of the following formulas:

1. expG,P (1, 0, Z)

2. expG,P (1, X, 0)

3. expG,P (Y,X + 1, 1) ∧ expG,P (Y ′, X, 1)→ Y = Y ′ ·G mod P

4. expG,P (Y,X,Z + 1) ∧ expG,P (Y ′, X, Z) ∧ expG,P (Y ′′, X, 1) → Y = Y ′ · Y ′′

mod P
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5. expG,P (Y,X,Z)↔ expG,P (Y,X · Z, 1)

6. expG,P (Y,X,Z)↔ expG,P (Y, 1, X · Z)

7. expG,P (Y,X +X ′, Z)∧ expG,P (Y ′, X, Z)∧ expG,P (Y ′′, X ′, Z)→ Y = Y ′ · Y ′′

mod P

8. expG,P (Y,X,Z + Z ′) ∧ expG,P (Y ′, X, Z) ∧ expG,P (Y ′′, X, Z ′)→ Y = Y ′ · Y ′′

mod P

9. expG,P (Y,X ·X ′, Z)↔ expG,P (Y,X,Z ·X ′)

10. expG,P (Y,X, 1)∧ expG,P (Y,X ′, 1)→ (expG,P (Y ′, X, Z)↔ expG,P (Y ′, X ′, Z))

11. A 6= B → ¬(expG,P (A,X,Z) ∧ expG,P (B,X,Z)).

We let

EXPG,P ≡def ∀X ≤ t1(n)∀Z ≤ t3(n)∃Y ≤ t3(n)expG,P (Y,X,Z).

Multiplication and modulo can be ΣB
1 -defined in VTC0. We let

MOD(Y,X, P ) ≡ ∃Z.X = Z · P + Y.

See [29] IX.3.6.3 for a formalization of multiplication and proofs of its main prop-
erties.

Proposition 4.2 ([29] Lemma IX.3.28). VTC0 proves that multiplication of
strings is commutative.

To work in VTC0 we will need an additional symbol for the multiplication
function or define a predicate witnessing it. We choose to work in VTC0(·),
which is VTC0 with an additional function symbol and additional axioms as in
[29] IX.3.6.3, defining · to be the multiplication function.

Proposition 4.3. With multiplication MOD(Y,X, P ) can be ΣB
0 -defined.

Proof. The following definition is ΣB
0 :

(Y = X − (|X| − |P |) · P ∧X − (|X| − |P |) · P < P ) ∨
(Y = X − (|X| − |P |+ 1) · P ∧X − (|X| − |P |) · P ≥ P ).

Proposition 4.4. VTC0(·) + {EXPG,P} ⊢ ¬(A0 ∧ A1).

Proof. We will argue in VTC0(·) + {EXPG,P}. By A0 we have

expG,P (K,A ·B, 1), for some even K.

Now, by Rule 9 of expG,P we get that the above is equivalent to

expG,P (K,A,B).
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Now, from A0 and A1 we have

expG,P (X,A, 1) and expG,P (X,C, 1).

Therefore, an application of Rule 10 yields

expG,P (K,C,B).

An applications of Rule 5, followed by by commutativity of multiplication and
another application of Rule 5 yields

expG,P (K,B,C).

From A0 and A1 we get

expG,P (Y,B, 1) and expG,P (Y,D, 1)

and, using Rule 10 another time,

expG,P (K,D,C).

Rule 5 together with commutativity of multiplication now yields

expG,P (K,C ·D, 1).

From A1 we can deduce

expG,P (K ′, C ·D, 1) for some odd K ′.

This, however, contradicts Rule 11.

4.1.1 Proving EXPG,P

The proof of Proposition 4.4 can only be turned into a TC0 -Frege proof if one
adds a witness for exponentiation, for example a look-up table. The drawback is
that this is an exponential sized object and the proof size will therefore explode.
To circumvent this problem we will try to formalize the exponentiation of a given
generator G of Z∗

P in VTC0(·) using iterated multiplication and a table only for
iterated squaring of G and then use this to carry out the above argument.

To this end we let

sqG,P (S) ≡ ∀i ≤ n(S[0] = 1∧S[1] = G∧ (i > 1→ S[i+ 1] = S[i] ·S[i] mod P ))

and
SQG,P ≡ ∃S ≤ t(n)sqG,P (S),

where the bound t(n) stems from the sequence encoding. Also

dsqG,P (S) ≡ ∀i, j ≤ n(S[0, 0] = G∧
(j > 0→ S[0, j + 1] = S[j] · S[j] mod P )∧
(i > 0 ∧ j > 0→ S[i+ 1, j] = S[i, j] · S[i, j] mod P ))

and
DSQG,P ≡ ∃S ≤ t(n)dsqG,P (S).
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Thus, SQG,P says that the sequence 〈1, G1, G2 mod P, . . . , G2n

mod P 〉 exists

and DSQG,P says that the matrix 〈(G2i

)2j

mod P 〉 exists. Moreover, dsqG,P and

sqG,P are ΣB
0 -definable in VTC0 from one another. Therefore, if SQG,P holds, so

does DSQG,P and vice versa.
Additionally, we want to postulate for any prime P and any sequence (Si)i<n

of strings of length at most n the existence of a string PROD, such that

PROD =
n∏

i

(Si mod P ) mod P.

Thus, we let

prod(S, P ) = T ≡∀i ≤ n(T [0] = S[0]∧
T [i+ 1] = T [i] · S[i+ 1] mod P

and
ProdS,P ≡ ∃T ≤ t(n)prod(S, P ) = T.

Additionally we want ProdS,P to obey certain rules of the product, such as

1. Uniqueness

∀S, P, T, T ′(prod(S, P ) = T ∧ prod(S, P ) = T ′ → T = T ′)

2. Commutativity

∀P, S, S ′, T, T ′((∀i∃jS[i] = S ′[j]) ∧ (∀i∃jS ′[i] = S[j])

∧ prod(S, P ) = T ∧ prod(S ′, P ) = T ′ → T = T ′)

3. Compatibility with Multiplication If S = S ′⌢S ′′, where ⌢ denotes concate-
nation, then

prod(S, P ) = prod(S ′, P ) · prod(S ′′, P ).

PRODS,P will be the conjunction of ProdS,P and the above rules, PRODP the
universal closure with respect to S.

We can show in V0 with a the product axioms added, that a product can be
evaluated step by step, that is, the following proposition holds.

Proposition 4.5. VTC0(·) + PRODP ⊢ ∀i ≤ |S| (length(S)− 1 = length(S ′) ∧
S ′[0] = S[0] · S[1] ∧ i > 1→ S[i] = S ′[i− 1]))→ prod(S ′, P ) = prod(S, P ).

Proof. By induction on length(S) and the definition of prod.

For a string S and a string T coding a sequence of length |S| we let the
restriction of T to S, T ↾ S, be the string T ′ with

∀i < |S| (Si → T ′[i] = T [i] ∧ ¬Si → T ′[i] = 1).

For a string T coding a matrix of size |S · S ′| we let the restriction of T to S, S ′,
T ↾ (S, S ′), be the string T ′ with

∀i, j < |S| (Si · S ′
j → T ′[i, j] = T [i, j] ∧ ¬Si · S ′

j → T ′[i, j] = 1).
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We can now define what it means for a string G to be a generator of Z∗
P . Let

GEN(G,G′, P ) ≡ sqG,P (G′) ∧ ∀S, S ′ < P¬prod(G′ ↾ S, P ) = prod(G′ ↾ S ′, P ).

That is, GI mod P is different for all I < P .
A string P represents a prime iff

PRIME(P ) ≡ ∀S, S ′ < P (S · S ′ 6= P )

holds. We now claim the following.

Proposition 4.6. VTC0(·)+PRODP +SQG,P ⊢ (PRIME(P )∧GEN(G,G′, P )→
EXPG,P ).

Proof. We have to give a definition of EXPG,P within our setting and prove its
properties. To this end we let

exp∗
G,P (X,Y, Z) ≡ dsqG,P (G′) ∧X = prod(G′ ↾ (Y, Z), P ).

We can justify this definition as in N2 the following holds. For any string X let
bin(X) :=

∑
i 2

iXi the number X represents in binary. Then

(GX)Y = (bin(G)bin(X))bin(Y )

= (bin(G)
∑

i 2iXi)
∑

j 2jYj

= bin(G)(
∑

i 2iXi)·(
∑

j 2jYj)

= bin(G)
∑

i

∑
j(2

i·2jXi·Yj)

= bin(G)
∑

i

∑
j(2

i+jXi·Yj)

=
∏

i,j

bin(G)2i+jXiYj .

We will show now that exp∗
G,P fulfills all items of the definition of expG,P

(4.1):
Let G′ be such that dsqG,P (G′) holds.

1. prod(G′ ↾ (0, Z), P ) = prod(1, P ) = 1.

2. prod(G′ ↾ (Y, 0), P ) = prod(1, P ) = 1.

3. follows from Compatibility with Multiplication.

4. We have to show that

prod(G′ ↾ (Y, Z + 1), P ) = prod(G′ ↾ (Y, Z), P ) · prod(G′ ↾ (Y, 1), P ).

We will prove this by induction on Z. If Z = 0 the statement follows from
item 2 above. Now, for Z > 0 we take a look at the columns ci of the matrix
G′ ↾ (Y, Z) where Yi = 1. Inductively on the index of the first 0 in Z, we
can use Proposition 4.5.

5. follows straightforward from the definition.

6. follows straightforward from the definition.
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7. We have to show that

prod(G′ ↾ (Y, Z), P ) · prod(G′ ↾ (Y ′, Z), P ) = prod(G′ ↾ (Y + Y ′, Z), P ).

We proceed by induction of Y ′. If Y ′ = 0 the statement follows from item
1. For the induction step we can apply item 3. It remains to show that

prod(G′ ↾ (Y + (Y ′ + 1), Z), P ) = prod(G′ ↾ (Y + Y ′, Z), P ) ·G mod P.

The statement now follows from Commutativity and Compatibility with
Multiplication.

8. analogously as in the previous item using items 2 and 4 instead of 1 and 3.

9. analogously to 5.

10. by induction on Z and 4.

11. by uniqueness of the product.

The overall goal is now to further reduce the axioms to eventually reach a
minimal theory for a) modulo exponentiation or b) for a correctness proof of DH.
The former statement is interesting for finding a proper theory for TC0, as we
are well within this complexity class, yet it seems hard to formalize what we did
above purely in VTC0. The latter is interesting from a more applied view, as
was explained in the beginning of this chapter. Also, if we could devise a weak
theory that proves the correctness of DH, we might be able to develop a uniform
proof of the main result of [18]. Unfortunately I was so far unable to produce
anything noteworthy to further any of these approaches.
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5. Conclusion

We will recapture the major results of this thesis now and later give an outlook
towards ways to improve them. Basically, the results can be perceived in two
different ways. On the one hand they comprise results about bounded arithmetic
theories and their strength. On the other hand, they consist of results about
efficient provability in propositional proof systems and therefore also about sep-
arations of such systems. We will treat them separately.

Concerning bounded arithmetic, the main result is Theorem 3.6 (Theorem B.13
in Appendix B), which states that a formalized version of Nepomnjascij’s The-
orem holds for polylogarithmic cuts of models of V0. That result is interesting,
mainly because it allows for plentiful applications concerning the definability of
small sets in models in V0. In some sense the algorithmic view might be perceived
to be more natural, as it seems to be better adaptable to our way of thinking.
For example, it is straightforward to give an algorithm that computes the size of
a given set, yet the definition of this is quite tedious in weak bounded arithmetic.
So, by our result, straightforwardly V0 can tell the size of polylogarithmic sized
sets (and thus its polylogarithmic cut is a model of VTC0), while it is non-trivial
to derive that result directly (see Paris and Wilkie [74, 75]).

Concerning proof complexity our results are more manifold. Theorem 2.1
(Theorem 1 in Appendix A) gives a separation result between Resolution and
TC0-Frege, that does not depend on any semantical properties of the tautologies,
i.e. it is not important what they say, only that they have some simple structural
property. In a weaker sense this is also true for Theorem 3.9 (Theorem B.17 in
Appendix B) and separation between Resolution and bounded depth Frege. The
proof of Theorem 2.1 also shows that sometimes it is possible to apply methods
in proof systems that exceed their associated computational strength (proper rea-
soning about eigenvalues is presumably only possible from NC2 onwards). This
is mainly due to the non determinism of proofs. It suffices to know that there is
an object that satisfies a needed condition, e.g. being an eigenvalue and there-
fore having certain properties, to be able to use it in a proof. This certainly
does not yield uniform proofs, but the non-uniformity only stems from certain
substitutions.

Apart from the aforementioned separation results we also obtain a new proof of
the sub exponential simulation result due to Filmus, Pitassi and Santhanam [39]
between Frege and bounded depth Frege. Moreover, analyzing the theory VNC
should yield a strengthening of Frege that is still sub exponentially simulated by
bounded depth Frege systems. This is in the light of Section 3.2 in Chapter 3 of
this thesis.

Outlook

There are a few natural ideas of how to extend the results from this thesis.
Concerning the results about polylogarithmic cuts, it would be interesting to de-
termine what theory is necessary as a base theory, to conclude that the cut is a
model of VP. The latter theory is rather strong and corresponds to extended
Frege systems. That is, to Frege systems that make use of extension axioms.
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Supposedly, VNC is still weaker, so it might be a good starting point as a base
theory. Unfortunately I do not see yet, how or if the additional strength gives rise
to a stronger version of Nepomnjascij’s Theorem, i.e. one, where stronger means
of computation already yield definability, or whether they grant any additional
strength to algorithms that can be defined using the proved formalization. An-
other interesting direction would be the opposite: What happens if we weaken the
base theory? Can we still get some sensible results? I do not have much intuition
about this, but this could prove to be very interesting in the question about the
non-automatizability of Resolution, as was already discussed in Chapter 4.

A straightforward way of strengthening Theorem 2.1 would be to try to argue
in a weaker theory than VTC0. As we already use approximations for the rational
numbers and thus do all our counting arguments with approximated values, it
is rather natural to assume that we do not need a proper version of counting,
but could do with some sort of approximated counting, as was introduced by
Jeřábek [55]. Unfortunately computing with approximations of rational numbers
is only part of the story. We need to explicitly be able to add modulo 2, which
cannot be done using approximations. Thus we probably can weaken the theory
to a theory of approximated counting, but we would have to explicitly add an
axiom for counting modulo 2. This should still be interesting, though. Another
way, proposed by Iddo Tzameret, would be to formalize a weaker result than
[37], namely [38]. This should be doable using only approximated counting (and
thus would correspond to bounded depth Frege), but the clause-to-variable ratio
we could prove the result for would not suffice to conclude the separation from
Resolution.

Concerning the computability of certain functions, especially modulo expo-
nentiation and modulo iterated multiplication, it would be very interesting to
devise a weak natural theory in which that is possible and which also proves
certain properties of that function. Such a theory might be a good candidate
for a natural formalization of the strength of the circuit class TC0. I would also
find a result which only considers calculations with respect to a fixed generator
most interesting, as this might allow for the use of cryptographic assumptions to
obtain other results. It would certainly be interesting to produce a proof that
shows that VTC0 is not strong enough to do so.

46



Bibliography

[1] M. Ajtai. The Complexity of the Pigeonhole Principle. Proceedings of FOCS,
1988, pp.346–355.

[2] M. Alekhnovich. Lower Bounds for k-DNF Resolution on Random 3-CNFs.
Proceedings of STOC, 2005, pp.251—256.

[3] M. Alekhnovich and A. A. Razborov. Lower Bounds for Polynomial Calculus:
Non-Binomial Case. Proceedings of FOCS, 2001, pp.190—199.

[4] M. Alekhnovich and A. A. Razborov. Resolution is not Automatizable Unless
W[P] is Tractable. SIAM Journal of Computing, Vol. 38(4), 2008, pp.1347—
1363.

[5] S. Arora and B. Barak. Computational Complexity. Cambridge University
Press, 2009.

[6] A. Atserias and M. L. Bonet. On the Automatizability of Resolution and
Related Propositional Proof Systems. Information and Computation, Vol.
189(2), 2004, pp. 182–201.

[7] A. Atserias, M. L. Bonet and J. Esteban. Lower Bounds for the Weak
Pigeonhole Principle and Random Formulas Beyond Resolution. Information
and Computation, Vol. 176, 2002.

[8] J. Barwise. Handbook of Mathematical Logic. Studies in Logic and the
Foundations of Mathematics, Vol. 90, Elsevier, 1977.
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[55] E. Jeřábek. Approximate counting by hashing in bounded arithmetic. Jour-
nal of Symbolic Logic, Vol. 74(3), 2009, pp. 829-–860.
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A. Short Refutations for Random
3CNF

This paper deals with the average complexity of propositional proofs. Our aim is
to show that standard propositional proof systems, within the hierarchy of Frege
proofs, admit short random 3CNF refutations and can outperform resolution for
almost all unsatisfiable 3CNF formulas, for a sufficiently large clause-to-variable
ratio. Specifically, we show that most 3CNF formulas with n variables and at
least cn1.4 clauses, for a sufficiently large constant c, have polynomial-size in
n propositional refutations whose proof-lines are constant depth circuits with
threshold gates (namely, TC0-Frege proofs). This is in contrast to resolution
(that can be viewed as depth-1 Frege) for which it is known that most 3CNF
formulas with at most n1.5−ǫ clauses (for 0 < ǫ < 1

2
) do not admit sub-exponential

refutations [25, 15].
The main technical contribution of this paper is a propositional characteri-

zation of the random 3CNF unsatisfiability witnesses given by Feige at al. [37].
In particular we show how to carry out certain spectral arguments inside weak
propositional proof systems at least as strong as TC0-Frege. The latter should
hopefully be useful in further propositional formalizations of spectral arguments.
This also places a stream of recent works on efficient refutation algorithms using
spectral arguments—beginning in the work of Goerdt and Krivelevich [46] and
culminating in Feige et al. [37]—within the framework of propositional proof
complexity. Loosely speaking, we show that all these refutation algorithms and
witnesses, considered from the perspective of propositional proof complexity, are
not stronger than TC0-Frege.

A.0.2 Background in proof complexity

Propositional proof complexity is the systematic study of the efficiency of proof
systems establishing propositional tautologies (or dually, refuting unsatisfiable
formulas). Abstractly one can view a propositional proof system as a determin-
istic polynomial-time algorithm A that receives a string π (“the proof”) and a
propositional formula Φ such that there exists a π with A(π,Φ) = 1 iff Φ is a
tautology. Such an A is called an abstract proof system or a Cook-Reckhow proof
system due to [30]. Nevertheless, most research in proof complexity is dedicated
to more concrete or structured models, in which proofs are sequences of lines,
and each line is derived from previous lines by “local” and sound rules.

Perhaps the most studied family of propositional proof systems are those com-
ing from propositional logic, under the name Frege systems, and their fragments
(and extensions). In this setting, proofs are written as sequences of Boolean
formulas (proof-lines) where each line is either an axiom or was derived from
previous lines by means of simple sound derivation rules. The complexity of a
proof is just the number of symbols it contains, that is, the total size of formulas
in it. And different proof systems are compared via the concept of polynomial
simulation: a proof system P polynomially-simulates another proof system Q if
there is a polynomial-time computable function f that maps Q-proofs to P -proofs
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of the same tautologies. The definition of Frege systems is sufficiently robust, in
the sense that different formalizations can polynomially-simulate each other [83].

It is common to consider fragments (or extensions) of Frege proof systems
induced by restricting the proof-lines to contain presumably weaker (or stronger)
circuit classes than Boolean formulas. The stratification of Frege proof systems is
thus analogous to that of Boolean circuit classes: Frege proofs consist of Boolean
formulas (i.e., NC1) as proof-lines, TC0-Frege (also known as Threshold Logic)
consists of TC0 proof-lines, Bounded Depth Frege has AC0 proof-lines, depth-d
Frege has circuits of depth-d proof-lines, etc. In this framework, the resolution
system can be viewed as depth-1 Frege. Similarly, one usually considers extensions
of Frege system such as NCi-Frege, for i > 1, and P/poly-Frege (which is in fact
the Extended Frege system as shown in [54]). Restrictions (and extensions) of
Frege proof systems form a hierarchy with respect to polynomial-simulations,
though it is open whether the hierarchy is proper.

It thus constitutes one of the main goals of proof complexity to understand the
above hierarchy of Frege systems, and to separate different propositional proof
systems, that is, to show that one proof system does not polynomially simulate
another proof system. These questions also relate in certain sense to the hierarchy
of Boolean circuits (from AC0, through, AC0[p], TC0, NC1, and so forth; see
[27]). Many separations between propositional proof systems (not just in the
Frege hierarchy) are known. For this kind of results it is enough to demonstrate a
single family of tautologies requiring super-polynomial proof-size in one system,
while having polynomial-size proofs in the other system. In the case of Frege
proofs there are already known separations between certain fragments of it (e.g.,
separation of depth-d Frege from depth d+ 1 Frege was shown by Kraj́ıček [56]).
It is also known that TC0-Frege is strictly stronger than resolution and than
bounded depth Frege proof system, since, e.g., TC0-Frege admits polynomial-size
proofs of the propositional pigeonhole principle, while resolution and bounded
depth Frege do not (see [50] for the resolution lower bound, [1] for the bounded
depth Frege lower bound and [29] for the corresponding TC0-Frege upper bound).

Average-case proof complexity—the random 3CNF model. Much like
in algorithmic research, it is important to know the average-case complexity of
propositional proof systems, and not just their worst-case behavior. To this end
one usually considers the model of random 3CNF formulas, where m clauses with
three literals each, out of all possible 23 ·

(
n

3

)
clauses with n variables, are chosen

independently, with repetitions. When m is greater than cn for some sufficiently
large c (say, c = 5), it is known that with high probability a random 3CNF is un-
satisfiable. (As m gets larger the task of refuting the 3CNF becomes easier since
we have more constraints to use.) In average-case analysis of proofs we investi-
gate whether such unsatisfiable random 3CNFs also have short (polynomial-size)
refutations in a given proof system. The importance of average-case analysis of
proof systems is that it gives us a better understanding of the complexity of a
system than merely the worst-case analysis. For example, if we separate two
proof systems in the average case—i.e., show that for almost all 3CNF one proof
system admits polynomial-size refutations, while the other system does not—we
establish a stronger separation.

Until now only weak proof systems like resolution and Res(k)
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(for k ≤
√

log n/ log log n; the latter system introduced in [59] is an extension
of resolution that operates with kDNF formulas) and polynomial calculus (and
an extension of it) were analyzed in the random 3CNF model; for these systems
exponential lower bounds are known for random 3CNFs (with varying number
of clauses) [25, 10, 15, 7, 87, 2, 14, 3, 42]. For random 3CNFs with n variables
and n1.5−ǫ (0 < ǫ < 1

2
) clauses it is known that there are no sub-exponential

size resolution refutations [15]. For many proof systems, like cutting planes (CP)
and bounded depth Frege (AC0-Frege), it is a major open problem to prove
random 3CNF lower bounds (even for number of clauses near the threshold of
unsatisfiability, e.g., random 3CNFs with n variables and 5n clauses). The results
mentioned above only concerned lower bounds. On the other hand, to the best
of our knowledge, the only known non-trivial polynomial-size upper bound on
random kCNFs refutations in any non-abstract propositional proof system is for
resolution. This is a result of Beame et al. [10], and it applies for fairly large
number of clauses (specifically, Ω(nk−1/ log n)).

Efficient refutation algorithms. A different kind of results on refuting ran-
dom kCNFs were investigated in Goerdt and Krivelevich [46] and subsequent
works by Goerdt and Lanka [47], Friedman, Goerdt and Krivelevich [41], Feige
and Ofek [38] and Feige [36]. Here, one studies efficient refutation algorithms for
kCNFs. Specifically, an efficient refutation algorithm receives a kCNF (above the
unsatisfiability threshold) and outputs either “unsatisfiable” or “don’t know”; if
the algorithm answers “unsatisfiable” then the kCNF is required to be indeed
unsatisfiable; also, the algorithm should output “unsatisfiable” with high proba-
bility (which by definition, is also the correct answer). Such refutation algorithms
can be viewed as abstract proof systems (according to the definition in Subsection
A.0.2) having short proofs on the average-case: A(Φ) is a deterministic polytime
machine whose input is only kCNFs (we can think of the proposed proof π input
as being always the empty string). On input Φ the machine A runs the refuta-
tion algorithm and answers 1 iff the refutation algorithm answers “unsatisfiable”;
otherwise, A can decide, e.g. by brute-force search, whether Φ is unsatisfiable
or not. (In a similar manner, if the original efficient refutation algorithm is non-
deterministic then we also get an abstract proof system for kCNFs; now the
proof π that A receives is the description of an accepting run of the refutation
algorithm.)

Goerdt and Krivelevich [46] initiated the use of spectral methods to devise
efficient algorithms for refuting kCNFs. The idea is that a kCNF with n variables
can be associated with a graph on n vertices (or directly with a certain matrix).
It is possible to show that certain properties of the associated graph witness the
unsatisfiability of the original kCNF. One then uses a spectral method to give
evidence for the desired graph property, and hence to witness the unsatisfiability
of the original kCNF. Now, if we consider a random kCNF then the associated
graph essentially becomes random too, and so one may show that the appropriate
property witnessing the unsatisfiability of the kCNF occurs with high probability
in the graph. The best (with respect to number of clauses) refutation algorithms
devised in this way work for 3CNFs with at least Ω(n1.5) clauses [38].

Continuing this line of research, Feige, Kim and Ofek [37] considered efficient
non-deterministic refutation algorithms (in other words, efficient witnesses for
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unsatisfiability of 3CNFs). They established the currently best (with respect
to the number of clauses) efficient, alas non-deterministic, refutation procedure:
they showed that with probability converging to 1 a random 3CNF with n vari-
ables and at least cn1.4 clauses has a polynomial-size witness, for sufficiently big
constant c.

The result in the current paper shows that all the above refutation algorithms,
viewed as abstract proof systems, are not stronger (on average) than TC0-Frege.
The short TC0-Frege refutations will be based on the witnesses from [37], and so
the refutations hold for the same clause-to-variable ratio as in that paper.

A.0.3 Our result

The main result of this paper is a polynomial-size upper bound on random 3CNF
formulas refutations in a proof system operating with constant-depth threshold
circuits (known as Threshold Logic or TC0-Frege; see Definition A.14). Since
Frege and Extended Frege proof systems polynomially simulate TC0-Frege proofs,
the upper bound holds for these proof systems as well. (The actual formulation
of TC0-Frege is not important since different formulations, given in [23, 65, 18,
70, 29], polynomially simulate each other.)

Theorem 1. With probability 1−o(1) a random 3CNF formula with n variables
and cn1.4 clauses (for a sufficiently large constant c) has polynomial-size TC0-Frege
refutations.

Beame, Karp, Pitassi, and Saks [10] and Ben-Sasson and Wigderson [15]
showed that with probability 1− o(1) resolution does not admit sub-exponential
refutations for random 3CNF formulas when the number of clauses is at most
n1.5−ǫ, for any constant 0 < ǫ < 1/2.1 Therefore, Theorem 1 shows that TC0-
Frege has an exponential speed-up over resolution for random 3CNFs with at least
cn1.4 clauses (when the number of clauses does not exceed n1.5−ǫ, for 0 < ǫ < 1/2).

We now explain the potential significance of our work and its motivations. It
is well known that most contemporary SAT-solvers are based on the resolution
proof system. Formally, this means that these SAT-solvers use a backtracking
algorithm that branch on a single variable and construct in effect a resolution
refutation (in case the CNF instance considered is unsatisfiable). (The original
backtracking algorithm DPLL constructs a tree-like resolution refutation [32, 31].)
It was known since [25] that resolution is weak in the average case. Our work
gives further impetus to the quest to build SAT-solvers based on stronger proof
systems than resolution. Although there is little hope to devise polynomial-
time algorithms for constructing minimal TC0-Frege proofs or even resolution
refutations (this stems from the conditional non-automatizability results for TC0-
Frege and resolution, proved in [18] and [4], respectively), practical experience
shows that current resolution based SAT-solvers are quite powerful. Therefore,

1Beame et al. [10] showed such a lower bound for n5/4−ǫ number of clauses (for any constant
0 < ǫ < 1/4). Ben-Sasson and Wigderson [15] introduced the size-width tradeoff that enabled
them to prove an exponential lower bound for random 3CNF formulas with n1.5−ǫ number of
clauses (for any constant 0 < ǫ < 1/2), but the actual proof for this specific clause-number
appears in [12].
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our random 3CNF upper bound theoretically justifies an attempt to extend SAT-
solvers beyond resolution.

Our result also advances the understanding of the relative strength of propo-
sitional proof systems: proving non-trivial upper bounds clearly rules out cor-
responding lower bounds attempts. We conjecture that random 3CNF upper
bounds similar to Theorem 1 could be achieved even for systems weaker than
TC0-Frege on the expense of at most a quasipolynomial increase in the size of
proofs. This might help in understanding the limits of known techniques used to
prove random 3CNFs lower bounds on resolution and Res(k) refutations.

The main result also contributes to our understanding of probabilistic refuta-
tion algorithms: we give an explicit logical characterization of the Feige et al. [37]
witnesses. This places a stream of results on probabilistic refutation algorithms
using spectral methods, starting from Goerdt and Krivelevich [46], in the propo-
sitional proof complexity setting. This is a non-trivial job, especially because of
the need to propositionally simulate spectral arguments. Moreover, our formal-
ization of the spectral argument and its short propositional proofs might help
in formalizing different arguments based on spectral techniques (e.g., reasoning
about expander graphs).

A.0.4 Relations to previous works

The proof complexity of random 3CNF formulas have already been discussed
above: for weak proof systems like resolution and Res(k) there are known expo-
nential lower bounds with varying number of clauses [15]; with regards to upper
bounds, there are known polynomial size resolution refutations on random 3CNF
formulas with Ω(n2/ log n) number of clauses [10]. Here we discuss several known
upper and lower bounds on refutations of different distributions than the random
3CNF model. (This is not an exhaustive list of all distributions studied.)

Ben-Sasson and Bilu [13] have studied the complexity of refuting random 4-
Exactly-Half SAT formulas. This distribution is defined by choosing at random m
clauses out of all possible clauses with 4 literals over n variables. A set of clauses
is 4-exactly-half satisfiable iff there is an assignment that satisfies exactly two
literals in each clause. It is possible to show that when m = cn, for sufficiently
large constant c, a random 4-Exactly-Half SAT formulas with m clauses and n
variables is unsatisfiable with high probability. Ben-Sasson and Bilu [13] showed
that almost all 4-Exactly-Half SAT formulas with m = n · log n clauses and
n variables do not have sub-exponential resolution refutations. On the other
hand, [13] provided a polynomial-time refutation algorithm for 4-Exactly-Half
SAT formulas.

Other possible distribution on unsatisfiable formulas for which one can ob-
tain a separation in the average case between two (non-abstract) proof systems
is 3-LIN formulas over the two element field F2, or equivalently 3XOR formulas.
A 3-LIN formula is a collection of linear equations over F2, where each equation
has precisely three variables. When the number of randomly chosen linear equa-
tions with 3 variables is large enough, one obtains that with high probability the
collection is unsatisfiable (over F2). It is possible to show that the polynomial
calculus proof system, as well as TC0-Frege, can efficiently refute such random
instances with high probability, by simulating Gaussian elimination.
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A Different type of distribution over unsatisfiable CNF formulas can possi-
bly be constructed from the formulas (termed proof complexity generators) in
Kraj́ıček [60]. We refer the reader to [60] for more details on this.

A.0.5 The structure of the argument

Here we outline informally (and in some places in a simplified manner) the struc-
ture of the proof of the main theorem. We need to construct certain TC0-Frege
proofs. Constructing such propositional proofs directly is technically cumber-
some, and so we opt to construct it indirectly by using a first-order (two-sorted)
characterization of (short proofs in) TC0-Frege: we use the theory VTC0 intro-
duced in [70] (we follow tightly [29]). When restricted to proving only statements
of a certain form (formally, ΣB

0 formulas), the theory VTC0 characterizes (uni-
form) polynomial-size TC0-Frege proofs.

The construction of polynomial-size TC0-Frege refutations for random 3CNF
formulas, will consist of the following steps:

I. Formalize the following statement as a first-order formula:

∀ assignment A
(
C is a 3CNF and w is its FKO unsatisfiabiliy witness −→

exists a clause Ci in C such that Ci(A) = 0
)
,

(A.1)

where an FKO witness is a suitable formalization of the unsatisfiability
witness defined by Feige, Kim and Ofek [37]. The corresponding predicate
is called the FKO predicate.

II. Prove formula (A.1) in the theory VTC0.

III. Translate the proof in Step II into a family of propositional TC0-Frege proofs
(of the family of propositional translations of (A.1)). By Theorem A.42
(proved in [29]), this will be a polynomial-size propositional proof (in the
size of C). The translation of (A.1) will consist of a family of propositional
formulas of the form:

JC is a 3CNF and w is its FKO unsatisfiabiliy witnessK −→
Jexists a clause Ci in C such that Ci(A) = 0K,

(A.2)

where J·K denotes the mapping from first-order formulas to families of propo-
sitional formulas. By the nature of the propositional translation (second-
sort) variables in the original first-order formula translate into a collection
of propositional variables. Thus, (A.2) will consist of propositional variables
derived from the variables in (A.1).

IV. For the next step we first notice the following two facts:

(i) Assume that C is a random 3CNF with n variables and cn1.4 clauses
(for a sufficiently large constant c). By [37], with high probability
there exists an FKO unsatisfiability witness w for C. Both w and C
can be encoded as finite sets of numbers, as required by the predicate
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for 3CNF and the FKO predicate in (A.1). Let us identify w and C
with their encodings. Then, assuming (A.1) was formalized correctly,
assigning w and C to (A.1) satisfies the premise of the implication in
(A.1).

(ii) Now, by the definition of the translation from first-order formulas to
propositional formulas, if an object α satisfies the predicate P (X)
(i.e., P (α) is true in the standard model), then there is a propositional
assignment of 0, 1 values that satisfies the propositional translation of
P (X). Thus, by Item (i) above, there exists an 0, 1 assignment ζ that
satisfies the premise of (A.2) (i.e., the propositional translation of the
premise of the implication in (A.1)).

In the current step we show that after assigning ζ to the conclusion of (A.2)
(i.e., to the propositional translation of the conclusion in (A.1)) one obtains
precisely ¬C (formally, a renaming of ¬C, where ¬C is the 3DNF obtained
by negating C and using the de Morgan laws).

V. Take the propositional proof obtained in (III), and apply the assignment ζ to
it. The proof then becomes a polynomial-size TC0-Frege proof of a formula
φ → ¬C, where φ is a propositional sentence (without variables) logically
equivalent to True (because ζ satisfies it, by (IV)). From this, one can
easily obtain a polynomial-size TC0-Frege refutation of C (or equivalently,
a proof of ¬C).

The bulk of our work lies in (I) and especially in (II). We need to formalize
the necessary properties used in proving the correctness of the FKO witnesses and
show that the correctness argument can be carried out in the weak theory. There
are two main obstacles in this process. The first obstacle is that the correctness
(soundness) of the witness is originally proved using spectral methods, which
assumes that eigenvalues and eigenvectors are over the reals ; whereas the reals
are not defined in our weak theory. The second obstacle is that one needs to prove
the correctness of the witness, and in particular the part related to the spectral
method, constructively (formally in our case, inside VTC0). Specifically, linear
algebra is not known to be (computationally) in TC0, and (proof-complexity-wise)
it is conjectured that TC0-Frege do not admit short proofs of the statements of
linear algebra (more specifically still, short proofs relating to inverse matrices and
the determinant properties; see [89] on this).

The first obstacle is solved using rational approximations of sufficient accu-
racy (polynomially small errors), and showing how to carry out the proof in the
theory with such approximations. The second obstacle is solved basically by
constructing the argument (the main formula above) in a way that exploits non-
determinism (i.e., in a way that enables supplying additional witnesses for the
properties needed to prove the correctness of the original witness; e.g, all eigen-
vectors and all eigenvalues of the appropriate matrices in the original witness). In
other words, we do not have to construct certain objects but can provide them,
given the possibility to certify the property we need. Formally, this means that
we put additional witnesses in the FKO predicate occurring in the main formula
in (I) above.
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A.0.6 Overview of the Proof

Preliminary notations. A random 3CNF is generated by choosing indepen-
dently, with repetitions, m clauses with three literals each, out of all possible
23 ·

(
n

3

)
clauses with n variables x1, . . . , xn. We say that a property holds with

high probability when the probability is 1 − o(1). We now define the notion of
TC0 formulas and TC0-Frege proofs. The system we give is only one of many pos-
sibilities to define such proof systems (see e.g. [18]). The class of TC0 formulas
are built up using unbounded fan-in connectives ∧,∨,¬ and threshold gates Thi,
for i ∈ N, where Thi(A1, . . . , An) is true if and only if at least i of the Ak’s are
true. The depth of a formula is the maximal nesting of connectives in it and the
size of a formula is the total number of connectives in it.

Definition A.1 (TC0-Frege (informal)). A TC0-Frege proof system is a sequent
calculus with a set of standard sound derivation rules and axioms. We give only
the following rule as an example:
(Thi-left): From the sequents Thi(A2 . . . An),Γ −→ ∆ and
Thi−1(A2 . . . An), A1,Γ −→ ∆ we may infer the sequent Thi(A1 . . . An),Γ −→ ∆,
for arbitrary TC0 formulas Ai and sets Γ,∆ of TC0 formulas. (The intended
meaning of Γ −→ ∆ is that the conjunction of the formulas in Γ implies the
disjunction of the formulas in ∆.)

A TC0-frege proof of a formula ϕ is a sequence of sequents π = (S1, . . . , Sk)
such that Sk = ϕ and every sequent in it is either an axiom or was derived from
previous lines by a derivation rule. The size of the proof π is the total size of
all formulas in its sequents. The depth of the proof π is the maximal depth of a
formula in its sequents. A TC0-Frege proof of a family of formulas {ϕi : i ∈ N}
is a family of sequences {(Si

1, . . . , S
i
ki) : i ∈ N}, where each Si

j is a TC0 formula
that can be derived from some Si

k for k < j using the above rules, such that
Si

ki = −→ ϕi, and there is a common constant c bounding the depth of every
formula in all the sequences.

Overview of theories of bounded arithmetic. Here, we highlight the theo-
ries VTC0, as defined by Cook and Nguyen [29]. This is a (first-order) two-sorted
theory, having a first sort for natural number variables and a second sort for bit
strings (formally, they are finite sets of natural numbers whose characteristic
vectors are bit strings). The theory VTC0 is not a propositional proof system
but it corresponds to TC0-Frege (Theorem A.42). We choose to work with the
theory because it is easier to carry out proofs in a first-order theory than with
propositional proofs.

The language of two-sorted arithmetic, denoted L2
A, consists of the following

relation, function and constant symbols: {+, ·,≤, 0, 1, | |,=1,=2,∈}. The intend-
ed semantic of this language is the standard model N2 of two-sorted arithmetic
consisting of a first-sort universe U1 = N and a second-sort universe U2 of all
finite subsets of N. 0 and 1 are interpreted in N2 as zero and one. The functions
+ and · are addition and multiplication of numbers, ≤ is the less-than relation
on numbers. The function | | maps a finite set of numbers to its largest ele-
ment plus one. The relation =1 is interpreted as equality between numbers, =2

is interpreted as equality between finite sets of numbers. The relation ∈ holds
for a number n and a finite set of numbers N if and only if n is an element of
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N . We denote the first-sort (number) variables by lower-case letters x, y, z, ...,
and the second-sort (string) variables by capital letters X,Y, Z, .... We can build
formulas in the usual way, using two sorts of quantifiers, number quantifiers and
string quantifiers. A number quantifier ∃x (∀x) is polynomially bounded if it is
of the form ∃x(x ≤ f(n) ∧ . . . ) (∀x(x ≤ f(n) → . . . )) for some number term
f . Given some function symbol f , a formula ϕ is in ΣB

0 (f) if it uses no string
quantifiers and all number quantifiers are polynomially bounded and it possibly
uses the function symbol f . We represent a finite set of natural numbers N by a
finite string SN = S0

N . . . S
|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will
abuse notation and identify N and SN .

We now state informally the formalizations of the proofs in the theory, rather.
For this overview it is sufficient to know only two things about VTC0. First,
the kind of reasoning (formally, proofs) the theory allows: the theory VTC0 is
meant to allow reasoning that involves counting. Specifically, it enables one to
use the function numones(X) whose value is the number of ones in the string
X (or equivalently, the number of elements in the set X). Second, the relation
between VTC0 and TC0-Frege, described below.

Definition A.2 (Propositional translation (informal)). Let ϕ(~x, ~X) be a ΣB
0

formula. The propositional translation of ϕ is a family JϕK = {JϕK~m;~n | mi, ni ∈ N}
of propositional formulas in variables pXi

j for everyXi ∈ ~X. The intended meaning
is that JϕK is a valid family of formulas if and only if the formula

∀~x∀ ~X(
∧
|Xi| = ni)→ ϕ(~m, ~X)

is true in the standard model N2 of two sorted arithmetic. For given ~m,~n ∈ N

we will define JϕK by induction on the complexity of the formula JϕK~m;~n.

We can now state the relation between provability of an arithmetical statement
ϕ in VTC0 to the provability of the family JϕK in TC0-Frege as follows.

Theorem A.3 (Section X.4.3. [29]). Let ϕ(~x, ~X) be a ΣB
0 formula. Then, if

VTC0 proves ϕ(~x, ~X) then there is a polynomial size family of TC0-Frege proofs
of JϕK.

Feige-Kim-Ofek witnesses and the main formula. We now sketch the
main two-sorted first-order formula we are going to prove in the theory VTC0.
Basically, it will formalize the correctness of the Feige et al. witnesses. The
formula we construct will itself speak about 3CNFs C =

∧m
α=1Cα, where n is the

number of variables and m is the number of clauses. Each clause Cα is of the form
xℓ1

i ∨ xℓ2
j ∨ xℓ3

k , for ℓ1, ℓ2, ℓ3 ∈ {0, 1}, where x1
i abbreviates xi and x0

i abbreviates
¬xi. A clause Cα is coded by the sequence 〈i, j, k, 〈ℓ1, ℓ2, ℓ3〉, α〉, where 〈·, . . . , ·〉
is the tupling function and 〈·, . . . , ·〉kj is the jth element in a k-tuple. The defining
ΣB

0 -formula of the relation is:

Clause(x, n,m)↔∃i, j, k ≤ n∃α ≤ m∃ℓ ≤ 8.

〈x〉51 = i ∧ 〈x〉52 = j ∧ 〈x〉53 = k ∧ 〈x〉54 = ℓ ∧ 〈x〉55 = α.

For some clause C and a string variable A (interpreted as a Boolean assign-
ment), we define by a ΣB

0 (numones) formula the following predicate, stating that
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C is not satisfied under the assignment A:

NotSAT(C,A) ≡ ∃i, j, k ≤n
(
〈C〉51 = i ∧ (A(i)↔ 〈〈C〉54〉31 = 0)

)

∧
(
〈C〉52 = j ∧ (A(j)↔ 〈〈C〉54〉32 = 0)

)

∧
(
〈C〉53 = k ∧ (A(k)↔ 〈〈C〉54〉33 = 0)

)
.

The imbalance of a variable xi is the absolute value of its positive occurrences
and negative occurrences in C. The imbalance of C is the sum over the imbalances
of all variables (whose predicate is denoted Imb(C, I)).

We now state the main formula that we are going to prove in VTC0. It
says that if there exists a certain witness with certain properties then there ex-
ists a clause in C that is not satisfied by any assignment A (one can think of
all the free variables in the formula as universally quantified). To actually con-
struct the main formula, we need to define several predicates that we do not
have the space to cover in this extended abstract. One important predicate is
EigValBound(M,~λ, V ) that ensures that given the matrix M , which will corre-
spond to the 3CNF C in a manner made precise (via the Mat(M,C) predicate),
~λ is a collection of n rational approximations of the normalized eigenvalues of M
and that V is the rational matrix whose rows are the rational approximations
of the eigenvectors of M . Another predicate is the Coll(t, k, d, n,m,C,D) that
states that D is a (t, k, d)-collection of t inconsistent k-tuples of C (with up to d
intersections)—which is a concept introduced in [37].

Definition A.4 (Main Formula). The Main Formula is the following

ΣB
0 (numones) formula (~λ denotes n distinct number parameters λ1, . . . , λn):
(

3CNF(C, n,m) ∧Coll(t, k, d, n,m,C,D) ∧ Imb(C, I) ∧Mat(M,C)∧

EigValBound(M,~λ, V ) ∧ λ = max{~λ} ∧ t >
d · (I + λn)

2
+ o(1)

)

−→ ∃i ≤ mNotSAT(C[i], A).

Proof of the main formula. The following is our key theorem:

Theorem A.5 (Key). The theory VTC0 proves the Main Formula (Definition
A.48).

The proof in the theory follows the proof of correctness of the unsatisfiability
witnesses introduced in Feige et al. [37]. Showing how to carry out this proof
in VTC0 constitutes our main body of work. We shall only state some of the
lemmas we prove, and discuss the spectral bound. The proofs can be found in
the attached full version.

Proof. (Overview) We reason inside VTC0. Assume by a way of contradiction
that the premise of the implication in the Main Formula holds and that there is an
assignment A ∈ {0, 1}n (construed as a string variable of length n) that satisfies
every clause in C. We define the following sets and functions in the theory. Let
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satLit(A,C) be the string function that outputs the set of all positions of literals
in C that are satisfied by A. If the literals of a clause are not all true or not all
false under A, then we say that the clause is satisfied as NAE (standing for “not
all equal”) by A. Let satNAE(A,C) be the string function that returns the set of
all clauses in C that are satisfied as NAE by A.

Lemma A.6. VTC0 proves: numones(satLit(A,C)) ≤ 3m+I
2
.

We now bound the number of clauses in C that contain exactly two literals
satisfied by A.

Lemma A.7. VTC0 proves: Assume the premise of the Main Formula and let
h be the number of clauses in C that contain exactly two literals satisfied by A.
Then

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) .

The following lemma provides an upper bound on the number of clauses in C
that can be satisfied as NAE by the assignment A.

Lemma A.8. (Assuming the premise of the Main Formula) VTC0 proves that:

numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

The proof of this lemma involves a spectral argument. Carrying out this
argument in the theory is fairly difficult because one has to cope with rational
approximations (as the eigenvalues and eigenvectors might be irrationals, and so
undefined in the theory) and further the proof must be sufficiently constructive, in
the sense that it would fit in the theory VTC0. Specifically, we need the following
lemma (for an assignment A we define its associated vector a ∈ {−1, 1}n such
that a(i) = 1 if A(i) = 1 and a(i) = −1 if A(i) = 0):

Lemma A.9 (Main spectral bound). The theory VTC0 proves: assuming

EigValBound(M,~λ, V ) holds, then for any assignment A to n variables:

atMa ≤ λn+ o(1) . (A.3)

The idea of proving the spectral bound in VTC0 (Lemma A.9). We
explain here informally how we proceed to prove the bound atMa ≤ λn + o(1),
for any a ∈ {−1, 1}n, in the theory VTC0, assuming that Mat(M,C) and

EigValBound(M,~λ, V ) hold (Lemma A.68). The idea of the proof of this in-

equality is as follows: in the predicate EigValBound(M,~λ, V ) we certify that
the rows of a given matrix V are rational approximations of the normalized eigen-
vector basis of M . Since M is symmetric and real, V will approximate an or-
thonormal matrix, and V t will approximate V −1 (this is where we circumvent
the need to prove the correctness of inverting a matrix in the theory VTC0).
Thus, V −1 approximates the matrix of the basis transformation from the stan-
dard basis to the eigenvector basis. Note that a (as a {−1, 1} vector) is already
almost described in the standard basis. Hence, it will be possible to prove in the
theory that V ta is the representation of a in the (approximate) eigenvector basis,
i.e., we shall have an equality a =

∑n
i=1 γivi + o(1), for vi’s the approximate

eigenvectors of M and rationals γi’s. After plugging-in this equality in atMa,
to prove atMa ≤ λn we only need to validate computations—using also the fact
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that we know the inequalities Mvi ≤ λvi + o(1), for any i ∈ [n] (since this will

be witnessed in the predicate EigValBound(M,~λ, V ) as well).

We can now finish the proof of the key theorem. In VTC0 (and assuming the
premise of the Main Formula), let h be the number of clauses in C that contain
exactly two literals satisfied by A. We have:

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) (by Lemma A.52)

≤ 3m+ I

2
− 3m+

3m+ λn

2
+ o(1) =

I + λn

2
+ o(1) . (by Lemma A.55)

(A.4)

Since we assumed that A satisfies C, then every clause in C has at least one
literal satisfied by A. Thus, the clauses in C that are not satisfied as 3XOR
by A are precisely the clauses that have exactly two literals satisfied by A. By
(A.36), the number of clauses that have exactly two literals satisfied by A is at
most I+λn

2
+ o(1). We now use our witness, assumed to exist in the premise of

the Main Formula, to show that:

Lemma A.10 (In VTC0). (Assuming the premise of the Main Formula) the
number of clauses in C that are not satisfied as 3XOR by A is at least ⌈t/d⌉.

Thus, by Lemma A.10 and the fact that the number of clauses in C not
satisfied as 3XOR by A is at most I+λn

2
+ o(1), we get t = d · t

d
≤ d ·

⌈
t
d

⌉
≤

d · I+λn
2

+ o(1), which contradicts our assumption (in the Main Formula) that

t > d(I+λn)
2

+ o(1).

A.0.7 Organization of the paper

The remainder of the paper is organized as follows. Section A.1 contains general
preliminary definitions and notations, including propositional proof systems and
the TC0-Frege proof system. Section A.2 contains a long exposition of the basic
logical setting we use, that is, the relevant theories of (two-sorted) bounded arith-
metic (V0 and VTC0, from [29]), and a detailed explanation of how to formalize
certain proofs in these theories. This includes defining certain syntactic objects
in the theories as well as counting and doing computations in the theory. Readers
who already know the basics of bounded arithmetic can skip Section A.2, and
look only at specific parts or definitions, when needed. Section A.3 provides the
formalization of the main formula we prove in the theory. This formula expresses
the correctness of the Feige at al. witnesses for unsatisfiability [37]. Section A.4
contains the proof of the main formula, excluding the lemma establishing the
spectral inequality which is deferred to a section of its own. Section A.5 provides
the full proof in the theory of the spectral inequality. Section A.6 finally puts ev-
erything together, and shows how to obtain short propositional refutations from
the proof in the theory of the main formula.
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A.1 Preliminaries

We write [n] for {1, . . . , n}. We denote by ⊤,⊥ the truth values true and false,
respectively.

Definition A.11 (3CNF). A literal is a propositional variable xi or its negation
¬xi. A 3-clause is a disjunction of three literals. A 3CNF is a conjunction of
3-clauses.

Definition A.12 (Random 3CNF). A random 3CNF is generated by choosing
independently, with repetitions, m clauses with three literals each, out of all
possible 23 ·

(
n

3

)
clauses with n variables x1, . . . , xn.

We say that a property holds with high probability when it holds with proba-
bility 1− o(1).

A.1.1 Miscellaneous linear algebra notations

We denote by Rk and Qk the k-dimensional real and rational vector spaces in
the canonical basis e1, . . . , ek. The vectors in these spaces are given as sequences
a = (a1 . . . ak). In this context for some k-dimensional vector space V and two
vectors a, b ∈ V by 〈a, b〉 we denote the inner product of a and b which is defined
by 〈a, b〉 :=

∑k
i=1 ai · bi. Two vectors a, b are orthogonal if 〈a, b〉 = 0. The

(Euclidean) norm of a vector a is denoted by ||a|| and is defined as
√∑k

i=1 a
2
i .

A vector a is called normal if ||a|| = 1. A set of vectors is called orthonormal if
they are pairwise orthogonal and normal. A function f : V −→ W is linear if for
all v, w ∈ V , f(c1v + c2w) = c1f(v) + c2f(w). Every linear function f : V −→ W
can be represented by a matrix Af = (ai,j)i≤dim(W ),j≤dim(V ). Observe that the
representation depends not only on f but also on the bases of V and W . A
matrix A = (ai,j) is symmetric if ai,j = aj,i for all i, j. If for some matrix A and
vector v it holds that Av = λv we call v an eigenvector and λ an eigenvalue of A.

Fact 1 (cf. [53]). The eigenvectors of any real symmetric matrix A : V −→ V
are an orthogonal basis of V , and the eigenvalues of A are all real numbers.

A.1.2 Propositional proofs and TC0-Frege systems

In this section we define the notion of TC0 formulas. Then we define the proposi-
tional proof system TC0-Frege as a sequent calculus operating with TC0 formulas
and prove basic properties of it. We will follow the exposition from [29]. The
system we give is only one of many possibilities to define such proof systems (see
e.g. [18] for a polynomially-equivalent definition).

The class of TC0 formulas consists basically of unbounded fan-in constant
depth formulas with ∧,∨,¬ and threshold gates. Formally, we define:

Definition A.13 (TC0 formula). A TC0 formula is built from

(i) propositional constants ⊥ and ⊤,

(ii) propositional variables pi for i ∈ N,
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(iii) connectives ¬ and Thi, for i ∈ N.

Items (i) and (ii) constitute the atomic formulas. TC0 formulas are defined
inductively from atomic formulas via the connectives:

(a) if A is a formula, then so is ¬A and

(b) for n > 1 and i ∈ N, if A1, . . . , An are formulas, then so is ThiA1 . . . An.

The depth of a formula is the maximal nesting of connectives in it and the size
of the formula is the total number of connectives in it.

For the sake of readability we will also use parentheses in our formulas, though
they are not necessary. The semantics of the Threshold Connectives Thi are as
follows. Thi(A1, . . . , An) is true if and only if at least i of the Ak are true.
Therefore we will abbreviate Thi(A1, . . . , Ai) as

∧
k≤i

Ak and Th1(A1, . . . , Ai) as
∨
k≤i

Ak. Moreover we let Th0(A1, . . . , An) = ⊤ and Thi(A1, . . . , An) = ⊥, for

i > n.
The following is the sequent calculus TC0-Frege.

Definition A.14 (TC0-Frege). A TC0-Frege proof system is a sequent calculus
with the axioms

A −→ A, ⊥ −→, −→ ⊤,
where A is any TC0 formula, and the following derivation rules:

Weaken-left: From the sequent Γ −→ ∆ we may infer the sequent Γ, A −→ ∆.

Weaken-right: From the sequent Γ −→ ∆ we may infer the sequent Γ −→ A,∆.

Exchange-left: From the sequent Γ1, A1, A2,Γ2 −→ ∆ we may infer the sequent
Γ1, A2, A1,Γ2 −→ ∆.

Exchange-right: From the sequent Γ −→ ∆1, A1, A2,∆2 we may infer the se-
quent Γ −→ ∆1, A2, A1,∆2.

Contract-left: From the sequent Γ, A,A −→ ∆ we may infer the sequent Γ, A −→
∆.

Contract-right: From the sequent Γ −→ A,A,∆ we may infer the sequent
Γ −→ A,∆.

¬-left: From the sequent Γ −→ A,∆ we may infer the sequent Γ,¬A −→ ∆.

¬-right: From the sequent Γ, A −→ ∆ we may infer the sequent Γ −→ ¬A,∆.

All-left: From the sequent A1, . . . , An,Γ −→ ∆ we may infer the sequent
ThnA1 . . . An,Γ −→ ∆.

All-right: From the sequents Γ −→ A1,∆, . . . , Γ −→ An,∆ we may infer the
sequent Γ −→ ThnA1 . . . An,∆.

One-left: From the sequents A1,Γ −→ ∆, . . . , A1,Γ −→ ∆ we may infer the
sequent Th1A1 . . . An,Γ −→ ∆.
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One-right: From the sequent Γ −→ A1, . . . , An,∆ we may infer the sequent
Γ −→ Th1A1 . . . An,∆.

Thi-left: From the sequents ThiA2 . . . An,Γ −→ ∆ and Thi−1A2 . . . An, A1,Γ −→
∆ we may infer the sequent ThiA1 . . . An,Γ −→ ∆.

Thi-right: From sequents Γ −→ ThiA2 . . . An, A1,∆ and Γ −→ Thi−1A2 . . . An,∆
we may infer the sequent Γ −→ ThiA1 . . . An,∆.

Cut: From the sequents Γ −→ A,∆ and Γ, A −→ ∆ we may infer the sequent
Γ −→ ∆,

for arbitrary TC0 formulas Ai and sets Γ,∆ of TC0 formulas. The intended
meaning of Γ −→ ∆ is that the conjunction of the formulas in Γ implies the
disjunction of the formulas in ∆. A TC0-frege proof of a formula ϕ is a sequence
of sequents π = (S1, . . . , Sk) such that Sk =−→ ϕ and every sequent in it is either
an axiom or was derived from previous lines by a derivation rule. The size of the
proof π is the total size of all formulas in its sequents. The depth of the proof π
is the maximal depth of a formula in its sequents. A TC0-Frege proof of a family
of formulas {ϕi : i ∈ N} is a family of sequences {(Si

1, . . . , S
i
ki) : i ∈ N}, where

each Si
j is a TC0 formula that can be derived from some Si

k for k < j using the
above rules, such that Si

ki = −→ ϕi, and there is a common constant c bounding
the depth of every formula in all the sequences.

Proposition A.15. The proof system TC0-Frege is sound and complete. That
is, every formula A proven in the above way is a tautology and every tautology
can be derived by proofs in the above sense.

Definition A.16 (Polynomial simulation; separation). Let P,Q be two propo-
sitional proof systems that establish Boolean tautologies (or refute unsatisfiable
Boolean formulas, or refute unsatisfiable CNF formulas). We say that P polyno-
mially simulates Q if there is a polynomial-time computable function f such that
given a Q-proof of τ outputs a P -proof of τ . If P does not polynomially simulate
Q or vice versa we say that P is separated from Q.

Sometimes, it is enough to talk about weak polynomial simulations: we say
that a proof system P weakly polynomially simulates the proof system Q if there
is a polynomial p such that for every propositional tautology τ , if the minimal
Q-proof of τ is of size s then the minimal P -proof of τ is of size at most p(s).

For a possibly partial {0, 1} assignment ~a to the propositional variables, we
write ϕ[~a] to denote the formula ϕ in which propositional variables are substituted
by their values in ~a. For a proof π = (ϕ1, . . . , ϕℓ) we write π[~a] to denote π =
(ϕ1[~a], . . . , ϕℓ[~a]). The system TC0-Frege can efficiently evaluate assignments to
some of the variables of formulas in the following sense.

Claim A.17. Let ϕ(~p, ~q) be a propositional formula in variables p1 . . . pm1 and
q1 . . . qm2 and let ~a ∈ {0, 1}m1 . If TC0-Frege proves ϕ(~p, ~q) with a proof πϕ of
length n, then it also proves ϕ(~a, ~q) in a proof πϕ[~a] of length n. Additionally,
for any formula ϕ(~p) in variables p1 . . . pm1 and an assignment ~a ∈ {0, 1}m1 , TC0-
Frege has polynomial size proofs of either ϕ[~a] or ¬ϕ[~a].

15



Proof sketch: Consider with πϕ and substitute each occurrence of pi by ai. The
resulting proof remains correct and proves ϕ(~a, ~q), because every TC0-Frege rule
application is still correct after the assignment.

The second claim is proved by induction over the complexity of ϕ. If ϕ[~a]
is true we can construct a proof by proving the (substitution instances of the)
atomic formulas and then proceeding using the appropriate rules of the calculus
by the way the formula is built up.

If ϕ[~a] is false, then we proceed in the same way as above with ¬ϕ[~a] instead
of ϕ[~a]. Claim

A.2 Theories of Bounded Arithmetic

In this section we give some of the necessary background from logic. Specifically,
we present the theory V0 and its extension VTC0, as developed by Cook and
Nguyen [29] (see also [92]). These are weak systems of arithmetic, namely, frag-
ments of Peano Arithmetic, usually referred to as theories of Bounded Arithmetic
(for other treatments of theories of bounded arithmetic see also [20, 49, 57]). The
theories are (first-order) two-sorted theories, having a first sort for natural num-
bers and a second sort for finite sets of numbers (representing bit-strings via their
characteristic functions). The theory V0 corresponds (in a manner made precise)
to bounded depth Frege, and VTC0 corresponds to TC0-Frege (see Section A.2.2).
The complexity classes AC0, TC0, and their corresponding function classes FAC0

and FTC0 are also defined using the two-sorted universe (specifically, the first-
ordered sort [numbers] are given to the machines in unary representation and the
second-sort as binary strings).

Definition A.18 (Language of two-sorted arithmetic L2
A). The language of two-

sorted arithmetic, denoted L2
A, consists of the following relation, function and

constant symbols:
{+, ·,≤, 0, 1, | |,=1,=2,∈} .

We describe the intended meaning of the symbols by considering the standard
model N2 of two-sorted Peano Arithmetic. It consists of a first-sort universe
U1 = N and a second-sort universe U2 of all finite subsets of N. The constants
0 and 1 are interpreted in N2 as the appropriate natural numbers zero and one,
respectively. The functions + and · are the usual addition and multiplication on
the universe of natural numbers, respectively. The relation ≤ is the appropriate
“less or equal than” relation on the first-sort universe. The function |·| maps a
finite set of numbers to its largest element plus one. The relation =1 is interpreted
as equality between numbers, =2 is interpreted as equality between finite sets of
numbers. The relation n ∈ N holds for a number n and a finite set of numbers
N if and only if n is an element of N .

We denote the first-sort (number) variables by lower-case letters x, y, z, ...,
and the second-sort (string) variables by capital letters X,Y, Z, .... We build
formulas in the usual way, using two sorts of quantifiers: number quantifiers and
string quantifiers. A number quantifier is said to be bounded if it is of the form
∃x(x ≤ t ∧ . . . ) or ∀x(x ≤ t → . . . ), respectively, for some number term t that
does not contain x. We abbreviate ∃x(x ≤ t ∧ . . . ) and ∀x(x ≤ t → . . . ) by
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∃x ≤ t and ∀x ≤ t, respectively. A string quantifier is said to be bounded if it is
of the form ∃X(|X| ≤ t∧ . . . ) or ∀X(|X| ≤ t→ . . . ) for some number term t that
does not contain X. We abbreviate ∃X(|X| ≤ t ∧ . . . ) and ∀X(|X| ≤ t → . . . )
by ∃X ≤ t and ∀X ≤ t, respectively. A formula is in ΣB

0 or ΠB
0 if it uses no

string quantifiers and all number quantifiers are bounded. A formula is in ΣB
i+1

or ΠB
i+1 if it is of the form ∃X1 ≤ t1 . . . ∃Xm ≤ tmψ or ∀X1 ≤ t1 . . . ∀Xm ≤ tmψ,

where ψ ∈ ΠB
i and ψ ∈ ΣB

i , respectively, and ti does not contain Xi, for all
i = 1, . . . ,m. We write ∀ΣB

0 to denote the universal closure of ΣB
0 . (i.e., the class

of ΣB
0 -formulas that possibly have (not necessarily bounded) universal quantifiers

in their front). We usually abbreviate t ∈ T , for a number term t and a string
term T , as T (t).

For a language L ⊇ L2
A we write ΣB

0 (L) to denote ΣB
0 formulas in the language

L.
As mentioned before a finite set of natural numbers N represents a finite

string SN = S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse
notation and identify N and SN .

In the context of a proof in the theory, we write nc to mean the term n · · ·n︸ ︷︷ ︸
c times

.

The (first-order) two-sorted proof system LK2. For proving statements in
the two-sorted theories we need to specify a proof system to work with (this should
not be confused with the propositional proof system we use). We shall work with
a standard (two sorted) sequent calculus LK2 as defined in [29], section IV.4.
This sequent calculus includes the standard logical rules of the sequent calculus
for first-order logic LK augmented with four rules for introducing second-sort
quantifiers. We also have the standard equality axioms (for first- and second-
sorts) for the underlying language L2

A (and when we extend the language, we
assume we also add the equality axioms for the additional function and relation
symbols). It is not essential to know precisely the system LK2 since we shall not
be completely formal when proving statements in the two-sorted theories.

A.2.1 The theory V0

The base theory we shall work with is V0 and it consists of the following axioms:

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1→ x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x)→ x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0→ ∃y ≤ x(y + 1 = x)

L1. X(y)→ y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i)↔ Y (i)))→ X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y(X(z)↔ ϕ(z)) , for all ϕ ∈ ΣB

0

where X does not occur free in ϕ .
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Here, the Axioms Basic 1 through Basic 12 are the usual axioms used to define
Peano Arithmetic without induction (PA−), which settle the basic properties of
addition, multiplication, ordering, and of the constants 0 and 1. The Axiom L1
says that the length of a string coding a finite set is an upper bound to the size
of its elements. L2 says that |X| gives the largest element of X plus 1. SE is the
extensionality axiom for strings which states that two strings are equal if they
code the same sets. Finally, ΣB

0 -COMP is the comprehension axiom scheme for
ΣB

0 formulas (it is an axiom for each such formula) and implies the existence of
all sets which contain exactly the elements that fulfill any given ΣB

0 property.
When speaking about theories we will always assume that the theories are

two-sorted theories.

Proposition A.19 (Corollary V.1.8. [29]). The theory V0 proves the (number)
induction axiom scheme for ΣB

0 formulas Φ:

(Φ(0) ∧ ∀x (Φ(x)→ Φ(x+ 1)))→ ∀zΦ(z).

In the above induction axiom, x is a number variable and Φ can have addi-
tional free variables of both sorts.

The following is a basic notion needed to extend our language with new func-
tion symbols (we write ∃!yΦ to denote ∃x(Φ(x)∧ ∀y(Φ(y/x)→ x = y)), where y
is a new variable not appearing in Φ):

Definition A.20 (Two-sorted definability). Let T be a theory over the language
L ⊇ L2

A and let Φ be a set of formulas in the language L. A number function

f is Φ-definable in a theory T iff there is a formula ϕ(~x, y, ~X) in Φ such that T
proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that2

y = f(~x, ~X)↔ ϕ(~x, y, ~X). (A.5)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y )
in Φ such that T proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y )

and it holds that
Y = F (~x, ~X)↔ ϕ(~x, ~X, Y ). (A.6)

Finally, a relation R(~x, ~X) is Φ-definable in a theory T iff there is a formula

ϕ(~x, ~X, Y ) in Φ such that it holds that

R(~x, ~X)↔ ϕ(~x, ~X). (A.7)

The formulas (A.5), (A.6), and (A.7) are the defining axioms for f , F , and R,
respectively.

Definition A.21 (Conservative extension of a theory). Let T be a theory in the
language L. We say that a theory T ′ ⊇ T in the language L′ ⊇ L is conservative
over T if every L formula provable in T ′ is also provable in T .

2Meaning it holds in the standard two-sorted model N2.
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We can expand the language L and a theory T over the language L by adding
symbols for arbitrary functions f (or relations R) to L and their defining axioms
Af (or AR) to the theory T . If the appropriate functions are definable in T (ac-
cording to Definition A.20) then the theory T +Af (+AR) is conservative over T .
This enables one to add new function and relation symbols to the language while
proving statement inside a theory; as long as these function and relation symbols
are definable in the theory, every statement in the original language proved in
the extended theory (with the additional defining-axioms for the functions and
relations) is provable in the original theory over the original language. However,
extending the language and the theory in such a way does not guarantee that one
can use the new function symbols in the comprehension (and induction) axiom
schemes. In other words, using the comprehension (and induction) axioms over
the expanded language might not result in a conservative extension. Therefore,
definability will not be enough for our purposes. We will show precisely in the
sequel (Sections A.2.1 and A.2.2) how to make sure that a function is both de-
finable in the theories we work with and also can be used in the corresponding
comprehension and induction axiom schemes (while preserving conservativity).

When expanding the language with new function symbols we can assume that
in bounded formulas the bounding terms possibly use function symbols from the
the expanded language.3

Extending V0 with new function and relation symbols

Here we describe a process (presented in Section V.4. in [29]) by which we can
extend the language L2

A of V0 by new function symbols, obtaining a conservative
extension of V0 that can also prove the comprehension and induction axiom
schemes in the extended language.

First note that every relation or function symbol has an intended or standard
interpretation over the standard model N2 (for instance, the standard interpreta-
tion of the binary function “+” is that of the addition of two natural numbers).
If not explicitly defined otherwise, we will always assume that a defining axiom
of a symbol in the language defines a symbol in a way that its interpretation in
N2 is the standard one. Note also that we shall use the same symbol F (~x, ~X)
to denote a function and the function symbol in the (extended) language in the
theory.

Definition A.22 (Relation representable in a language). Let Φ be a set of formu-

las in a language L extending L2
A. We say a relation R(~x, ~X) is representable by

a formula from Φ iff there is a formula ϕ(~x, ~X, Y ) in Φ such that in the standard
two-sorted model N2 (and when all relation and function symbols in L get their
intended interpretation), it holds that:

R(~x, ~X)↔ ϕ(~x, ~X). (A.8)

We say that a number function f(~x, ~X) is polynomially-bounded if f(~x, ~X) ≤
poly(~x, ~|X|). We say that a string function F (~x, ~X) is polynomially-bounded if

|F (~x, ~X)| ≤ poly(~x, ~|X|).
3Because any definable function in a bounded theory can be bounded by a term in the

original language L2

A (cf. [29]).
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Definition A.23 (Bit-definition). Let F (~x, ~X) be a polynomially-bounded string

function. We define the bit-graph of F to be the relation R(i, ~x, ~X), where i is a
number variable, such that

F (~x, ~X)(i)↔ i < t(~x, ~X) ∧R(i, ~x, ~X),

for some number term t(~x, ~X).

Definition A.24 (ΣB
0 -definability from a language; Definition V.4.1.2. in [29]).

We say that a number function f is ΣB
0 -definable from a language L ⊇ L2

A, if
f is polynomially-bounded and its graph is represented by a ΣB

0 (L) formula ϕ.
We call the formula ϕ the defining axiom of f . We say that a string function
F is ΣB

0 -definable from a language L ⊇ L2
A, if F is polynomially-bounded and

its bit-graph is representable by a ΣB
0 (L) formula ϕ. We call the formula ϕ the

defining axiom of F or the bit-defining axiom of F .

Note: We used the term defining axiom of a function f in both the case where
f is defined from a language (Definition A.24) and in case f is definable in the
theory (Definition A.20). We will show in the sequel that for our purposes these
two notions coincide: when we define a function from a language the function
will be definable also in the relevant theory, and so the defining axiom of f from
the language will be the defining axiom of f in the theory (when the theory is
possibly extended conservatively to include new function symbols).

Also, note that if the graph of a function F is representable by a ΣB
0 (L)

formula then clearly also the bit-graph of F is representable by a ΣB
0 (L) formula.

Therefore, it suffices to show a ΣB
0 (L) formula representing the graph of a function

F to establish that F is ΣB
0 -definable from L.

Definition A.25 (AC0-reduction). A number function f is AC0-reducible to
L ⊇ L2

A iff there is a possibly empty sequence of functions F1, . . . , Fk such that
Fi is ΣB

0 -definable from L ∪ {F1, . . . , Fi−1}, for any i = 1, . . . , k, and f is ΣB
0 -

definable from L ∪ {F1, . . . , Fk}.
We now describe the standard process enabling one to extend a theory T ⊇ V0

over the language L2
A with new function symbols obtaining a conservative exten-

sion of T such that the new function symbols can also be used in comprehension
and induction axiom schemes in the theory (see Section V.4. in [29] for the
proofs):

(i) If the number function f is ΣB
0 -definable from L2

A, then T over the language
L2

A ∪{f}, augmented with the defining axiom of f , is a conservative exten-
sion of T and we can also prove the comprehension and induction axioms
for ΣB

0 (f) formulas.

(ii) If the string function F is ΣB
0 -definable from L2

A, then T over the language
L2

A ∪ {F}, augmented with the bit-defining axiom of F , is a conservative
extension of T and we can also prove the comprehension and induction
axioms for ΣB

0 (F ) formulas.

(iii) We can now iterate the above process of extending the language L2
A(f) (or

equivalently, L2
A(F )) to conservatively add more functions f2, f3, . . . to the

language, which can also be used in comprehension and induction axioms.
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By the aforementioned and by Definition A.25, we can extend the language of
a theory with a new function symbol f , whenever f is AC0-reducible to L2

A. This
results in an extended theory (in an extended language) which is conservative, and
can prove the comprehension and induction axioms for formulas in the extended
language. In the sequel, when defining a new function in V0 we may simply
say that it is ΣB

0 -definable (or bit-definable) in V0 and give its ΣB
0 -defining (bit-

defining, respectively) axiom (that can possibly use also previously ΣB
0 -defined

(or bit defined) function symbols).
Extending the language of V0 with new relation symbols is simple: every

relation R(~x, ~X) which is representable by a ΣB
0 (L) formula, where L is an ex-

tension of the language with new function symbols obtained as shown above, can
be added itself to the language. This results in a conservative extension of V0

that also proves the ΣB
0 induction and comprehension axioms in the extended

language.

Definition A.26 (FAC0). A string (number) function is in FAC0 if it is poly-
nomially bounded and its bit-graph (graph, respectively) is definable by a ΣB

0

formula in the language L2
A.

Basic formalizations in V0

In this section we show how to formalize basic notions in the theory V0.

Characteristic function of a relation. For a given predicate R we denote
by χR the characteristic function of R. If R is ΣB

0 -definable in V0 then χR is
ΣB

0 -definable in V0, using the following defining axiom:

y = χR(~x, ~X)↔
(
R(~x, ~X)→ y = 1 ∧ ¬R(~x, ~X)→ y = 0

)
.

Natural number sequences of constant length. For two numbers x, y let
〈x, y〉 := (x + y)(x + y + 1) + 2y be the pairing function, and let left(z), right(z)
be the (easily ΣB

0 -definable in V0) projection functions of the first and second
element in the pair z, respectively. It should be clear from the context when we
mean 〈a, b〉 as an inner product of two vectors and when we mean it as the pairing
function. We also ΣB

0 -define inductively 〈v1, . . . , vk〉 := 〈〈v1, . . . , vk−1〉, vk〉, for
any constant k. Then V0 proves the injectivity of the pairing function and lets
us handle such pairs in a standard way.

Notation: Given a number x, coding a sequence of natural numbers of length
k, we write 〈x〉ki , for i = 1, . . . , k, to denote the number in the ith position in x.
This is a ΣB

0 -definable function in V0 (defined via left(x), right(x) functions).

Rational numbers. Given the natural numbers, we can define the integers in
V0 by identifying an integer number with a pair 〈a, b〉, such that a is its “positive”
part and b is its “negative” part. We can define addition, product and subtraction
of integers. All with ΣB

0 definitions.
Having the integer numbers, we define the rational numbers as follows: for two

integer numbers a, b, the rational number a/b, is defined by the pair 〈a, b〉. We
can define addition, subtraction and multiplication of rational numbers in V0 by
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ΣB
0 definitions. (See for example in [69]). However, we shall take a simpler path in

this paper: throughout this paper, all rational numbers used inside the

theories have the same denominator n2c, for some fixed constant c.
This enables us to represent every rational number with a pair of integer numbers,
such that each has a value polynomial in n. Addition and multiplication of two
rational numbers is also ΣB

0 -definable in V0. This also makes it more convenient
to sum a non-constant number of rational numbers in VTC0 (see Proposition
A.33). To keep the invariant that all denominators are n2c, we then make sure
that all the rational numbers resulting from computation in the proof in the
theory are indeed integer products of 1/n2c. This will hold since by inspection of
the computations made in the theory it will be clear that:

1. all initial rational numbers will be integer products of 1/nc;

2. all arithmetic operations done on rational numbers are one of the following:

(a) addition of two rational numbers (this preserves the denominator);

(b) if we multiply two rational numbers x, y then x = nc·a
n2c and y = nc·b

n2c for
some two integers a, b, and so x·y = ab

n2c will have n2c as a denominator.

Convention: For the sake of readability we sometimes treat an integer number
m in the theory as its corresponding rational number m/1, thus enabling one to
compute with both types. (This is easy to achieve formally. E.g., one can define
a function numones ′(X) that outputs the corresponding rational number of the
integer numones(X).)

Absolute numbers. We can ΣB
0 -define in V0 the absolute value function for

integer numbers absZ(·) from the language L2
A as follows (the function max is

easily ΣB
0 -definable):

y = absZ(x) ↔ y = 〈max(left(x)− right(x), right(x)− left(x)), 0〉.

We ΣB
0 -define the absolute value function for rational numbers absQ(·) in V0 as

follows:
y = absQ(x) ↔ y = 〈absZ(left(x)), 〈n2c, 0〉〉.

For simplicity, we shall suppress the subscript Z,Q in absZ, absQ; the choice
of function can be determined from the context.

Number (natural, integers and rational) sequences of polynomial length.
If we wish to talk about sequences of numbers (whether natural, integers or ratio-
nals) where the lengths of the sequences are non-constant, we have to use string
variables. Using the number tupling function we can encode sequences as sets of
numbers (recall that a string is identified with the finite set of numbers encoding
it). Essentially, a sequence is encoded as a string Z such that the xth number
in the sequence is y if the number 〈x, y〉 is in Z. Formally we have the following
ΣB

0 -defining formula for the function seq(x, Z):

y = seq(x, Z)↔ (y < |Z| ∧ Z(〈x, y〉) ∧ ∀z < y¬Z(〈x, z〉))
∨ (∀z < |Z|¬Z(〈x, z〉) ∧ y = |Z|). (A.9)
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Formula (A.9) states that the xth element in the sequence coded by Z is y iff
〈x, y〉 is in Z and no other number smaller than y also “occupies the xth position
in the sequence”, and that if no number occupies position x then the function
returns the length of the string variable Z. We write Z[x] to abbreviate seq(x, Z).

According to the definition of the function seq(x, Z) above, there might be
more than one string Z that encodes the same sequence of numbers. However,
we sometimes need to determine a unique string encoding a sequence. To this
end we use a ΣB

0 formula, denoted SEQ(y, Z), which asserts that Z is the lexi-
cographically smallest string that encodes a sequence of y + 1 numbers (i.e., no
string with smaller binary code encodes the same sequence). Specifically, the
formula states that if w = 〈i, j〉 is in Z then j is indeed the ith element in the
sequence coded by Z, and for all y ≥ j the pair 〈i, y〉 is not contained in Z:

SEQ(y, Z) ≡∀w < |Z| (Z(w)↔ ∃i ≤ y∃j < |Z| (w = 〈i, j〉 ∧ j = Z[i])) .
(A.10)

Note that elements of sequences Z coded by strings are referred to as Z[i], while
elements of sequences x coded by a number are referred to as 〈x〉ki (for k the
length of the sequence x). We define the number function length(Z) to be the
length of the sequence Z, as follows:

ℓ = length(Z)↔ SEQ(ℓ, Z) ∧ ∃w < |Z|∃j < |Z|(Z(w) ∧ w = 〈ℓ− 1, j〉) .

The defining axiom of length(Z) states that Z encodes a sequence and is the
lexicographically smallest string that encodes this sequence and that the largest
position in the sequence which is occupied is ℓ− 1 (by definition there will be no
pair 〈a, b〉 ∈ Z with a > ℓ− 1).

Array of strings. We want to encode a sequence of strings as an array. We
use the relation RowArray(x, Z) to denote the xth string in Z as follows (we
follow the treatment in [29], Definition V.4.26, page 114).

Definition A.27 (Array of strings). The functionRowArray(x, Z), denoted Z [x],
is ΣB

0 -definable in V0 using the following bit-definition:4

RowArray(x, Z)(i) ↔ (i < |Z| ∧ Z(〈x, i〉)).

We will abuse notation and write length(Z) for the length of the array Z
(i.e., numbers of strings in Z) even when Z is a RowArray (and not a sequence
according to the predicate SEQ).

Functions for constructing sequences.

Definition A.28 (Sequencef (y, ~x, ~X)). Let f(z, ~x, ~X) be a ΣB
0 -definable number

function in V0 (or a ΣB
1 -definable number function in VTC0[see section A.2.2

below]), then Sequencef (y, ~x, ~X) is the string function ΣB
0 -definable in V0(or ΣB

1 -

definable in VTC0, respectively) that returns the number sequence whose jth

position is f(j, ~x, ~X), for j = 0, . . . , y.

4We use the name “RowArray” (instead of the name “Row” used in [29]).
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In other words, Sequencef (y, ~x, ~X) returns the graph of the function f(z, ~x, ~X)

up to y (that is, the sequence 〈f(0, ~x, ~X), . . . , f(y, ~x, ~X)〉). The following is the

ΣB
0 -definition of the Sequencef (y, ~x, ~X):

Y = Sequencef (y, ~x, ~X) ↔ SEQ(y, Y ) ∧ ∀z ≤ y (Y [i] = f(z, ~x, ~X)).

Sequences of numbers with higher-dimensions. For a constant k, let S be
a k-dimensional sequence of rational numbers. We encode a sequence S as a string
variable Z such that the 〈i1, . . . , ik〉th element in S is extracted by the function seq
(defined above). Specifically, we have S[〈i1, . . . , ik〉] = y iff 〈〈i1, . . . , ik〉, y〉 ∈ Z
and there is no z < y for which 〈〈i1, . . . , ik〉, z〉 ∈ Z. Accordingly, we write
Z[i1, . . . , ik] to abbreviate seq(〈i1, . . . , ik〉, Z).

Matrices. Given a rational n× n matrix M , we define it as a two-dimensional
sequence in the manner defined above; and refer to the number at row 1 ≤ i ≤ n
and column 1 ≤ j ≤ n of M as M [i, j]. We can define the string function that
extracts the xth row of M , and the xth column of M , respectively, with ΣB

0

formulas as follows. First define f(M, i, x) := M [i, x], g(M, i, x) := M [x, i], for
any i = 0, 1, . . . , n (for i = 0, the value of M [i, x] and M [x, i] does not matter; but
this value is still defined by definition of the function seq). Then use Definition
A.28 to define:

Row(i,M) := Sequencef (i, n)

Column(i,M) := Sequenceg(i, n) .

A.2.2 The theory VTC0

It is known that V0 is incapable of proving basic counting statements. Specifically,
it is known that the function that sums a sequence of numbers (of non-constant
length) is not provably total, namely, is not ΣB

1 -definable in V0. Therefore, if
a proof involves such computations we might not be able to perform it in V0.
The theory VTC0 extends V0, and is meant to allow reasoning that involves
counting, and specifically to sum a non-constant sequence of numbers. The theory
VTC0 was introduced in [70]; we refer the reader to Section IX.3.2 [29] for a full
treatment of this theory. The ΣB

0 theorems of VTC0 correspond to polynomial-
size TC0-Frege propositional proofs, which will enable us to prove the main result
of this paper.

Definition A.29 (NUMONES). Let δNUM(y,X, Z) be the following ΣB
0 formula:

δNUM(y,X, Z) := SEQ(y, Z) ∧ Z[0] = 0 ∧ ∀u < y((X(u)→ Z[u+ 1] = Z[u] + 1)

∧ (¬X(u)→ Z[u+ 1] = Z[u])).

(A.11)

Define NUMONES to be the following ΣB
1 formula:

NUMONES := ∃Z ≤ 1 + 〈y, y〉δNUM(y,X, Z). (A.12)
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Informally one can think of the sequence Z(X), which existence is guaranteed
by NUMONES, as a sequence counting the number of ones in a string X, that is,
the uth entry in Z(X) is the number of ones appearing in the string X up to the
uth position.

Definition A.30 (VTC0). The theory VTC0 is the theory containing all axioms
of V0 and the axiom NUMONES.

Using NUMONES we can define the function numones(y,X) that, given y and
X, returns the yth entry of Z(X) via the following ΣB

1 -defining axiom

numones(y,X) = z ↔ ∃Z ≤ 1 + 〈|X| , |X|〉 (δNUM(|X| , X, Z) ∧ Z[y] = z) .
(A.13)

We shall use the following abbreviation:

numones(X) := numones(|X| − 1, X).

Next we show how to obtain the functions we will use in the theory VTC0 (these
will include the function numones).

Extending VTC0 with new function and relation symbols

Similar to the case of V0, we would like to extend the language L2
A of VTC0 with

new function and relation symbols, to obtain a conservative extension. Moreover,
we require that the new function and relation symbols could be used in induction
and comprehension axioms (while preserving conservativity). We can do this,
using results from Sections I.X.3.2 and I.X.3.3 in [29], as follows.

Definition A.31 (Number summation). For any number function f(z, ~x, ~X) de-

fine the number function sumf (y, ~x, ~X) by5

sumf (y, ~x, ~X) =

y∑

i=0

f(i, ~x, ~X) .

Recall that by Definition A.24, a string (number) function F is ΣB
0 -definable

from L ⊇ L2
A iff there is a ΣB

0 formula over the language L that bit-defines
(defines, respectively) the function F (when all the functions and relation symbols
in L get their intended interpretation).

We can use the following facts to extend the language of VTC0 with new
function symbols (proved in Section IX.3.2 in [29]): if f is a (number or string)
function in FTC0 (see below), then there is a ΣB

1 formula ϕ that represents its
graph, and the theory VTC0 extended with the defining axiom for f (using ϕ,
as in Definition A.24) over the language L = L2

A∪{f} is a conservative extension
of VTC0. And by Theorem IX.3.7 in Section IX.3.2 [29], VTC0 can prove the
induction and comprehension axioms for any ΣB

0 (L) formula.
Thus, to extend VTC0 with new function symbols, by the above it suffices

to show how to obtain FTC0 functions. For this we use the following equivalent
characterizations of FTC0 (see Sections IX.3.2 and IX.3.3 in [29]):

5Note that this is a definition in the metatheory (or in other words the standard two-sorted
model).
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Proposition A.32 (Theorem IX.3.12, Proposition IX.3.1 in [29]). The following
statements are equivalent:

1. The function f is ΣB
1 -definable in VTC0, and is applicable inside compre-

hension and induction axiom schemes.

2. The function f is in FTC0.

3. The function f is obtained from FAC0 by number summation and AC0-
reductions.

4. There exist a natural k and functions f1, . . . , fk = f such that for every
i = 1, . . . , k, the function fi is either definbale by a ΣB

0 formula in the
language L2

A ∪ {f1, . . . , fi−1} or there exists h ∈ L2
A ∪ {f1, . . . , fi−1} such

that fi = sumh.

5. The function f is AC0-reducible to L2
A ∪ {numones}.

Therefore, to obtain new FTC0 functions, and hence to extend conservatively
the language of VTC0 with function symbols that can also be used in compre-
hension and induction axioms, we can define a function with a ΣB

0 formula in
a language that contains sumf , for f in FAC0, and possibly contains also other
symbols already definable in V0. Then, we can iterate this process a finite num-
ber of times, where now sumf is defined also for f being a function defined in a
previous iteration. Since a function is in FTC0 iff it is ΣB

1 -definable in VTC0,
new functions obtained in this way, are said to be ΣB

1 -definable in VTC0.
To extend the language of VTC0 with new relation symbols, we can simply

add new ΣB
0 -definable relations, using possibly relation and function symbols

that where already added before to the language, and specifically the numones
function. Such relations can then be used in induction and comprehension axioms,
and we shall say that they are ΣB

0 -definable relations in VTC0.

Summation in VTC0

Here we show how to express and prove basic equalities and inequalities in the
theory VTC0.

Summation over natural and rational number sequences. Given a se-
quence X of natural numbers, we define the function that sums the numbers in
X until the yth position by sumseq(y,X) which is equal to

∑y
i=0 seq(i,X).

To sum sequences of rational numbers, on the other hand, we do the following.
For our purposes it is sufficient to sum many small (that is, polynomially bound-
ed) numbers (this is in contrast to additions of numbers encoded as strings).
Recall that we assume that all rational numbers in the theory have the same
denominator n2c, for some global constant c, independent of n.

Proposition A.33. Let X be a sequence of rational numbers with denominator
n2c and let sumQ(z,X) be the number function that outputs

∑z
i=0X[i]. Then,

the number function sumQ(z,X) is ΣB
1 -definable in VTC0.
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Proof. It suffices to show that there is a ΣB
0 formula that defines the number func-

tion sumQ(z,X) using only number summation functions and FAC0 functions.
The AC0 function seq(i,X) extracts the ith element (that is, rational num-

ber) from the sequence X (see Formula (A.9)). A rational number is a pair of
integers, and hence is a pair of pairs. Thus, gp(i,X) := left(left(seq(i,X))) ex-
tracts the positive part of the integer numerator of the ith rational number in
X, and gn(i,X) := right(left(seq(i,X))) extracts the negative part of the integer
numerator of the ith rational number in X. Note that both gp(i,X) and gn(i,X)
are FAC0 functions. Therefore, sumgp(z,X) equals the sum of all the positive
parts in X, and sumgn(z,X) equals the function that sums of all the negative
parts of the numerators in X. We can now define sumQ(z,X) as follows:

w = sumQ(z,X)↔ w =
〈
〈sumgp(z,X), sumgn(z,X)〉 ,

〈
n2c, 0

〉〉
(A.14)

Note indeed that 〈〈sumgp(z,X), sumgn(z,X)〉 , 〈n2c, 0〉〉 is a pair of integers that
encodes the desired rational number (with denominator n2c).

Notation: As a corollary from Proposition A.33, we can abuse notation as
follows: for f(y, ~x, ~X) a number function mapping to the rationals we write

sumf (n, ~x, ~X) to denote the sum of rationals
∑n

i=0 f(i, ~x, ~X), for some fixed ~x, ~X
and n. Abusing notation further, we can write in a formula in the theory simply∑n

i=0 f(i, ~x, ~X).

Expressing vectors and operations on vectors. Vectors over Q are defined
as sequences of rational numbers (for simplicity we shall assume that the number
at the 0 position of a vector is 0). Given two rational vectors v,u of size n, their
inner prduct, denoted 〈v,u〉, is defined as follows (we identify here v,u with
the string variables encoding v,u): let f(y,v,u) be the FAC0 number function
defined by f(y) := v[y] · u[y]. Then the inner product of v and u is defined by

innerprod(v,u) := sumQ

(
length(v) + 1, Sequencef (length(v) + 1)

)
.

The function that adds two rational vectors is easily seen to be in FAC0 (use
Definition A.28 to construct a sequence, where each entry in the sequence is the
addition of the corresponding entries of the two vectors).

Expressing product of matrices and vectors. Let v be an n-dimensional
rational vector and let M be an n×n rational matrix. Assume that f(z,M,v) :=
innerprod(Row(z,M),v). We ΣB

1 -define in VTC0 the product Mv as follows:

Matvecprod(M,v) := Sequencef (length(v) + 1,M,v) .

Notation: When reasoning in the theory VTC0 we sometimes abuse nota-
tion and write v · u or 〈v,u〉 instead of innerprod(u,v), and Mv instead of
Matvecprod(M,v), and utMv instead of 〈u,Mv〉.
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Counting in VTC0

Here we present basic statements involving counting of certain objects and sets,
provable in VTC0.

Notation: When reasoning in the theory VTC0, we will say that a family of
ΣB

0 -definable in VTC0 sets B0, . . . , Bℓ forms a partition of a set B whenever
VTC0 proves that (i)

⋃ℓ
i=0Bi = B, and (ii) Bi ∩ Bj = ∅, for all 0 ≤ i 6= j ≤ ℓ.

Here,
⋃ℓ

i=0Bi := {r : ∃i ≤ ℓ, Bi(r)}.

Proposition A.34 (Some counting in VTC0). Let B1, . . . , Bℓ be family of ΣB
0 -

definable sets in VTC0 that partition the set B (ℓ may be a variable). Then,
VTC0 proves:

numones(B) =
ℓ∑

i=1

numones(Bi) .

Proof. We proceed by induction on ℓ to show that
for every 0 ≤ y ≤ max{B1, . . . , Bℓ}:

numones(y,B1 ∪ . . . ∪Bℓ) =
ℓ∑

i=1

numones(y,Bi).

Base case: ℓ = 1. Thus, B = B1 and so we need to prove only numones(y,B1) =∑
i=1 numones(y,Bi). Since VTC0 proves that a summation that contains only

one summand B1 equals B1 we are done.

Induction step: ℓ > 1. We have B =
⋃ℓ

i=1Bi = (
⋃ℓ−1

i=1 Bi) ∪ Bℓ. Assume by

way of contradiction that (
⋃ℓ−1

i=1 Bi) ∩ Bℓ 6= ∅. Then VTC0 can prove that this
contradicts the assumption that Bi ∩ Bj = ∅, for all i 6= j (which holds since

the Bi’s form a partition of B). Hence, (
⋃ℓ−1

i=1 Bi) ∩ Bℓ = ∅, and by Claim A.35
(proved below):

numones(y,B) = numones(y,
ℓ−1⋃

i=1

Bi) + numones(y,Bℓ) (A.15)

=
ℓ−1∑

i=1

numones(y,Bi) + numones(y,Bℓ) (by induction hypothesis)

(A.16)

=
ℓ∑

i=1

numones(y,Bi). (A.17)

It remains to prove the following:

Claim A.35. (In VTC0) let A,B be two sets such that A ∩B = ∅, then for all
0 ≤ y ≤ max{|A|, |B|}:

numones(y,A ∪B) = numones(y,A) + numones(y,B).
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Proof of claim: We proceed by induction on y, using the defining axiom of
numones (stating the existence of a counting sequence for the input string vari-
able; see Equations (A.13) and (A.11)).

Base case: y = 0. The counting sequence Z for numones(A ∪B) is defined such
that Z[0] = 0. Thus,

0 = numones(0, A ∪B) = numones(0, A) + numones(0, B) = 0 + 0 = 0.

Induction step: 0 < y ≤ max{|A|, |B|}. By the defining axiom of numones we
have:

numones(y,A ∪B) =

{
numones(y − 1, A ∪B) + 1, y ∈ A ∪B;
numones(y − 1, A ∪B), otherwise.

(A.18)

We have to consider the following three cases:
Case 1: y ∈ A. Thus, by assumption that A and B are disjoint, we have y 6∈ B.
Also, we have y ∈ A ∪B. Therefore:

numones(y,A) + numones(y,B)

= numones(y − 1, A) + 1 + numones(y,B) (since y ∈ A)

= numones(y − 1, A) + 1 + numones(y − 1, B) (since y 6∈ B)

= numones(y − 1, A ∪B) + 1 (by induction hypothesis)

= numones(y,A ∪B) (since y ∈ A ∪B).

Case 2: y ∈ B. This is the same as Case 1.
Case 3: y 6∈ A ∪ B. This is similar to the previous cases. We omit the details.

Claim

Proposition A.36 (More counting in VTC0). Let ϕ(x) be a ΣB
0 formula (pos-

sibly in an extended language of VTC0). The theory VTC0 can prove that if
Z = {0 ≤ i < m : ϕ(i)} and for any 0 ≤ i < m,

γi =

{
a, ϕ(i);
b, ¬ϕ(i),

then ∑

i<m

γi = a · numones(Z) + b · (m− numones(Z)).

Proof. Since ϕ(x) is a ΣB
0 formula, by Section A.2.2, we can use the comprehen-

sion axiom scheme to define, for any 0 ≤ k ≤ m− 1, the set:

Zk := {i ≤ k : ϕ(i)} .

The claim is proved by induction on k.

Base case: k = 0. If ϕ(0) is true, then Z0 = {0}, and so numones(Z0) = 1.
By assumption we have γ0 = a = a · numones(Z0) + b · (1 − numones(Z0)).
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Otherwise, ϕ(0) is false and so Z0 = ∅, implying that numones(Zk) = 0. By
assumption again we have γ0 = b = a · numones(Z0) + b(1− numones(Z0)).

Induction step: k > 0.
Case 1: ϕ(k) is true. Thus Zk(k) is true and also

numones(Zk) = numones(Zk−1) + 1, (A.19)

and by assumption γk = a. Therefore,

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + a

= a · numones(Zk−1) + b · (k − 1− numones(Zk−1)) + a (by induction hypothesis)

= a · (numones(Zk−1) + 1) + b · (k − 1− numones(Zk−1)) (rearranging)

= a · numones(Zk) + b · (k − numones(Zk)) (by (A.19)).

Case 2: ϕ(k) is false. This is similar to Case 1. Specifically, Zk(k) is false and
also

numones(Zk) = numones(Zk−1), (A.20)

and by assumption γk = b. Therefore

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + b

= a · numones(Zk−1) + b · (k − 1− numones(Zk−1)) + b (by induction hypothesis)

= a · numones(Zk−1) + b · (k − 1− numones(Zk−1) + 1) (rearranging)

= a · numones(Zk) + b · (k − numones(Zk)) (by (A.20)).

For a number term t, we write ∀x ∈ [t] Φ to abbreviate ∀x ≤ t(x ≥ 1 → Φ).
We shall use the following proposition in Section A.4 (Lemma A.56).

Proposition A.37. The theory VTC0 proves the following statement. Let F (x)
be a string function. Let d < t be a natural number and assume that any number
in any set F (1), . . . , F (t) occurs in at most d many sets in F (1), . . . , F (t). Let
g(x) be a number function such that g(1), . . . , g(t) are (not necessarily distinct)
numbers with g(i) ∈ F (i) for all i ∈ [t]. Then numones({g(i) : i ∈ [t]}) ≥ ⌈t/d⌉.

Proof. Let Img(g(x)) := {i : g(x) ∈ F (i)} be a string function (it is ΣB
0 -definable

in V0). By assumption

∀z ∈ [t] (numones(Img(g(z))) ≤ d) . (A.21)

Since for any i ∈ [t], g(i) ∈ F (i), we can prove in VTC0 that
⋃

z∈[t] Img(g(z))

equals {1, 2, . . . , t}, and so VTC0 proves:

numones



⋃

z∈[t]

Img(g(z))


 = t. (A.22)
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Claim A.38. (Under the assumptions of the proposition) VTC0 proves:

numones



⋃

z∈[t]

Img(g(z))


 ≤ d · numones({g(i) : i ∈ [t]}).

Proof of claim: The proof follows from (A.21), by induction on t.
Base case: t = 1. We have

numones(∪z∈[t]Img(g(z))) = numones(Img(g(1)))

≤ d (by assumption)

= d · numones({g(1)})
= d · numones({g(i) : i ∈ [t]}).

Induction step:
Case 1: g(t) ∈ {g(i) : i ∈ [t− 1]}. Thus,

{g(i) : i ∈ [t−1]} = {g(i) : i ∈ [t]} and
⋃

i∈[t−1]

Img(g(i)) =
⋃

i∈[t]

Img(g(i)).

(A.23)
Therefore,

numones



⋃

i∈[t]

Img(g(i))


 = numones



⋃

i∈[t−1]

Img(g(i))




≤ d · numones ({g(i) : i ∈ [t− 1]}) (by hypothesis)

= d · numones ({g(i) : i ∈ [t]}) (by (A.23)).

Case 2: g(t) 6∈ {g(i) : i ∈ [t− 1]}. Thus,

numones({g(i) : i ∈ [t− 1]}) + 1 = numones({g(i) : i ∈ [t]}. (A.24)

We have

numones



⋃

z∈[t]

Img(g(z))


 ≤ numones



⋃

z∈[t−1]

Img(g(z))


+ numones (Img(g(t))) ,

and by induction hypothesis

≤ d · numones ({g(i) : i ∈ [t− 1]})
+ numones (Img(g(t)))

≤ d · (numones({g(i) : i ∈ [t]})− 1)

+ numones (Img(g(t))) (by (A.24))

≤ d · (numones({g(i) : i ∈ [t]})− 1) + d

(by assumption)

= d · numones({g(i) : i ∈ [t]}).
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Claim

Thus, by Claim A.38 and by (A.22), we get:

t ≤ d · numones({g(i) : i ∈ [t]}),

which leads to t/d ≤ numones({g(i) : i ∈ [t]}), and since numones({g(i) : i ∈
[t]}) is an integer number we get:

⌈t/d⌉ ≤ ⌈numones({g(i) : i ∈ [t]})⌉ = numones({g(i) : i ∈ [t]}).

Manipulating big sums in VTC0

We need to prove basic properties of summation (having a non-constant number
of summands) like commutativity, associativity, distributivity, substitution in big
sums, rearranging etc., in VTC0, to be able to carry out basic calculations in the
theory. As a consequence of this section we will be able to freely derive inequal-
ities and equalities between big summations (using rearranging, substitutions of
equals, etc.) in VTC0.

Proposition A.39 (Basic properties of sums in VTC0). In what follows we
consider the theory VTC0 over an extended language (including possibly new
ΣB

1 -definable function symbols in VTC0 and their defining axioms). The function
f(i) is a number function symbol mapping to the rationals or naturals (possibly
with additional undisplayed parameters). The theory VTC0 proves the following
statements:

Substitution: Assume that u(i), v(i) are two terms (possibly with additional
undisplayed parameters), such that u(i) = v(i) for any i ≤ n, then

n∑

i=0

f(u(i)) =
n∑

i=0

f(v(i)).

Distributivity: Assume that u is a term that does not contain the variable i,
then

u ·
n∑

i=0

f(i) =
n∑

i=0

u · f(i).

Rearranging: Assume that I = {0, . . . , n} and let I1, . . . , Ik be a definable par-
tition of I (specifically, the sets I1, . . . , Ik are all ΣB

0 -definable in VTC0 and
VTC0 proves that the Ij’s form a partition of I). Then

n∑

i=0

f(i) =
k∑

j=1

∑

i∈Ij

f(i),

where
∑

i∈Ij
f(i) denotes the term

∑|Ij |−1
i=0 f(δ(i)) where δ(i) is the function

that enumerates (in ascending order) the elements in Ij.
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Inequalities: Let g(i) be a number function mapping to the rationals or naturals
(possibly with additional undisplayed parameters), such that f(i) ≤ g(i) for
all 0 ≤ i ≤ n, then

n∑

i=0

f(i) ≤
n∑

i=0

g(i).

Proof.
Substitution: When we work in the theory VTC0 we implicitly assume that
we have equality axioms stating that if t = t′, for any two terms t, t′, then F (t) =
F (t′), for any function F (including functions F that are from the extended
language of VTC0). Since we assume that f(i) is a ΣB

1 -definable number function
in VTC0, the function g(n) :=

∑n
i=0 f(i) is also ΣB

1 -definable in VTC0, and so
we also have the equality axiom for g(n). Thus, if u(i) = v(i), for any i ≤ n, then
we can prove also g(u(n)) = g(v(n)).

Distributivity: This is proved simply by induction on n. We omit the details.

Rearranging: Because I1, . . . , Ik are ΣB
0 -definable sets in VTC0 we can define

the family of sequences S1, . . . , Sk, each of length n+ 1, such that

Sj[i] :=

{
f(i), i ∈ Ij ;
0, otherwise.

The theory VTC0 proves, by induction on n, that

k∑

j=1

n∑

i=0

Sj[i] =
n∑

i=0

f(i).

For any j = 1, . . . , k, we can ΣB
1 -define in VTC0 the function δj : {0, . . . , |Ij| −

1} → {0, . . . , n} such that δj(ℓ) = i iff i is the (ℓ+ 1)th element in Ij (when the
elements in Ij are ordered in ascending order). In other words, the δj’s functions
enumerate the elements in Ij.

We can now prove in VTC0 that

n∑

i=0

Sj[i] =

|Ij |−1∑

i=0

f(δj(i)),

from which, by Substitution (proved above), we can prove:

k∑

i=1

n∑

i=0

Sj[i] =
k∑

i=1

|Ij |−1∑

i=0

f(δj(i)).

Inequalities: This can be proved in VTC0 simply by induction on n. We omit
the details.

All the equalities and inequalities which contain big summations that we will
derive in the theory, can be proved using Proposition A.39. We shall not state
this explicitly in the text, but continue to derive such equalities and inequalities
freely.
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The relation between VTC0 and TC0-Frege

In this section we show how one can translate a ΣB
0 formula ϕ into a family

of propositional formulas JϕK. We then state the theorem showing that if the
universal closure of a ΣB

0 formula ϕ is provable in VTC0 then the propositional
translation JϕK has a polynomial-size proof in TC0-Frege.

Definition A.40 (Propositional translation J·K of ΣB
0 formulas). Let ϕ(~x, ~X) be

a ΣB
0 formula. The propositional translation of ϕ is a family

JϕK = {JϕK~m;~n | mi, ni ∈ N}

of propositional formulas in variables pXi

j for everyXi ∈ ~X. The intended meaning
is that JϕK is a valid family of formulas if and only if the formula

∀~x∀ ~X
(
(
∧
|Xi| = ni)→ ϕ(~m, ~X)

)

is true in the standard model N2 of two sorted arithmetic, where n denotes the
nth numeral, for any n ∈ N.

For given ~m,~n ∈ N we define JϕK by induction on the size of the formula
JϕK~m;~n. We denote the value of a term t by val(t).

Case 1: Let ϕ(~x, ~X) be an atomic formula.

• If ϕ(~x, ~X) is ⊤ (or ⊥), then JϕK~m,~n := ⊤ (or ⊥).

• If ϕ(~x, ~X) is Xi = Xi, then JϕK~m,~n := ⊤.

• If ϕ(~x, ~X) is Xi = Xj for i 6= j, then (using the fact that V0contains the
extensionality axiom SE) instead of translating ϕ, we translate the V0-
equivalent formula

|Xi| = |Xj| ∧ ∀k ≤ |X| (Xi(k)↔ Xj(k))).

• If ϕ(~x, ~X) is t1(~y, |~Y |) = t2(~z, |~Z|) for terms t1, t2, number variables ~y, ~z and

string variables ~Y , ~Z, where ~y ∪ ~z = ~x and ~Y ∪ ~Z = ~X, and ~my, ~mz and
~nY , ~nZ denote the corresponding assignments of numerals ~m,~n to the ~y, ~z
and ~Y , ~Z variables, respectively. Then

JϕK~m,~n :=

{
⊤ if val(t1(~m

Y , ~nY )) = val(t2(~m
Z , ~nZ)) and

⊥ otherwise.

• If ϕ(~x, ~X) is t1(~y, |~Y |) ≤ t2(~z, |~Z|) for terms t1, t2, number variables ~y, ~z and

string variables ~Y , ~Z, then

JϕK~m,~n :=

{
⊤ if val(t1(~m

Y , ~nY )) ≤ val(t2(~m
Z , ~nZ)) and

⊥ otherwise.
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• If ϕ(~x, ~X) is Xi(t(~x, | ~X|)), then

JϕK~m,~n := ⊥ if ni = 0

and otherwise

JϕK~m,~n :=





pXi

val(t(~m,~n)) if val(t(~m,~n)) < ni − 1,

⊤ if val(t(~m,~n)) = ni − 1,

⊥ if val(t(~m,~n)) > ni − 1.

Case 2: The formula ϕ is not atomic.

• If ϕ ≡ ψ1 ∧ ψ2 we let

JϕK~m,~n := Jψ1K~m,~n ∧ Jψ2K~m,~n.

• If ϕ ≡ ψ1 ∨ ψ2 we let

JϕK~m,~n := Jψ1K~m,~n ∨ Jψ2K~m,~n.

• If ϕ ≡ ¬ψ we let
JϕK~m,~n := ¬JψK~m,~n.

• If ϕ ≡ ∃y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=

val(t(~m,~n))∨

i=0

Jψ(i, ~x, ~X)K~m,~n.

• If ϕ ≡ ∀y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=

val(t(~m,~n))∧

i=0

Jψ(i, ~x, ~X)K~m,~n.

This concludes the translation for ΣB
0 formulas.

Proposition A.41 (Lemma VII.2.2 [29]). For every ΣB
0 formula ϕ(~x, ~X) there

exists a constant d ∈ N and a polynomial p(~m,~n) such that for all ~m,~n ∈ N,

the propositional translation Jϕ(~x, ~X)K~m,~n has depth at most d and size at most
p(~m,~n).

We can now state the relation between provability of an arithmetical statement
ϕ in VTC0 to the provability of the family JϕK in TC0-Frege as follows.

Theorem A.42 (Section X.4.3. [29]). Let ϕ(~x, ~X) be a ΣB
0 formula. Then, if

VTC0 proves ϕ(~x, ~X) then there is a polynomial size family of TC0-Frege proofs
of JϕK.
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A.3 Feige-Kim-Ofek Witnesses and the Main For-

mula

In this section we define the main formula we are going to prove in the theory. We
are concerned with proofs of 3CNF formulas. Let us fix the following notation.
With n we will denote the number of propositional variables x1, . . . , xn and with
m we will denote the number of clauses appearing in the 3CNF denoted C =∧m−1

α=0 Cα. Each clause Cα is of the form xℓ1
i ∨ xℓ2

j ∨ xℓ3
k , for ℓ1, ℓ2, ℓ3 ∈ {0, 1},

where x1
i abbreviates xi and x0

i abbreviates ¬xi. A clause Cα is represented by
the sequence 〈i, j, k, 〈ℓ1, ℓ2, ℓ3〉, α〉. The defining ΣB

0 formula of the relation is:

Clause(x, n,m)↔ ∃i, j, k ≤ n∃α < m∃ℓ ≤ 8

(i > 0 ∧ j > 0 ∧ k > 0 ∧ 〈x〉51 = i ∧ 〈x〉52 = j ∧ 〈x〉53 = k ∧ 〈x〉54 = ℓ ∧ 〈x〉55 = α).

A 3CNF C ≡ ∧m−1
α=0 Cα is represented by the sequence (C0, . . . , Cm−1). Since m

is non-constant, we use a string variable to code C. The defining ΣB
0 formula of

this relation is

3CNF(C, n,m)↔ ∀i < m
(
Clause(C[i], n,m) ∧ 〈C[i]〉55 = i

)
.

For a number variable x, we ΣB
0 -define Even(x) by the formula ∃y ≤ x(2 ·y =

x) (meaning that x is an even number). Accordingly, we define Odd(x) by
¬even(x).

For some clause C and a string variable A (interpreted as a Boolean assign-
ment), we ΣB

0 -define the following predicate, stating that C is not satisfied under
the assignment A:

NotSAT(C,A) ≡∃i, j, k ≤ n
(
〈C〉51 = i ∧ (A(i)↔ 〈〈C〉54〉31 = 0)

)

∧
(
〈C〉52 = j ∧ (A(j)↔ 〈〈C〉54〉32 = 0)

)

∧
(
〈C〉53 = k ∧ (A(k)↔ 〈〈C〉54〉33 = 0)

)
.

We need the following notations and definitions to facilitate the formalization
of certain sets and objects:

Notation:

1. When considering a set of clauses, then a clause in C will be referred to
only by its index 0 ≤ i < m. Thus, a set of clauses from C is a set of
natural numbers less than m.

2. A set of literal positions from C will be coded as a set of numbers 〈a, b〉,
where 0 ≤ a < m is the index of a clause in C and b = 1, 2, 3 is the index
of a literal in the clause.

3. For 0 ≤ i < m and ε = 0, 1 and a sequence S of 3-clauses we define
LitPos(S, i, ε) to be the string function that outputs the set of (positions of)
literals xε

i in S. In other words, we have:

LitPos(S, i, ε) :=
{
〈j, ℓ〉 : j < length(S) ∧ ℓ ≤ 3 ∧ 〈S[j]〉5ℓ = i ∧ 〈〈S[j]〉54〉3ℓ = ε

}
.
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4. Let satLit(A,C) be the string function that outputs the set of all literal
positions in C that are satisfied by A.

5. The function Lit(C, i) returns the ith literal xε
j of the clause C, for i = 1, 2, 3,

in the form of a pair 〈j, ε〉.

6. If the literals of a clause are not all true or not all false under A, then we
say that the clause is satisfied as NAE (standing for “not all equal”) by A.
We can easily ΣB

0 -define the predicate SatL(z, A), stating that the literal
z is satisfied by the assignment A in VTC0. Let:

NAE(C,A) ↔Clause(C) ∧
∨

i=1,2,3

SatL (Lit(C, i), A)∧
∨

i=1,2,3

¬SatL (Lit(C, i), A)

be the ΣB
0 relation that states that the assignment A satisfies the 3-clause

C as NAE. Let satNAE(A,C) be the string function that outputs the set of
clauses in C that are satisfied as NAE by A.

The functions LitPos(S, i, ε), satLit(A,C) and satNAE(A,C) above are all AC0-
reducible to the language L2

A and so we can assume that we have these functions
(along with their defining axioms) in VTC0 (see Section A.2.1). All the functions
in this section will be AC0-reducible to L2

A ∪{numones}, and all the relations in
this section will have ΣB

0 definitions in the language L2
A extended to include both

our new function symbols and numones .

Definition A.43 (Even k-tuple). For any given k, a sequence S of k clauses is an
even k-tuple iff every variable appears an even number of times in the sequence.
Formally, the predicate is denoted TPL(S, k):

TPL(S, k) ↔ length(S) = k ∧
∀i ≤ n, Even (numones(LitPos(S, i, 0)) + numones(LitPos(S, i, 1))) .

(A.25)

Observe that if S is an even k-tuple then k is even (since the total number of
variable occurrences N is even, by assumption that each variable occurs an even
number of times; and k = N/3, since each clause has three variables).

Definition A.44 (Inconsistent k-tuple). An even k-tuple is said to be inconsis-
tent if the total number of negations in its clauses is odd. Formally, the predicate
is denoted by ITPL(S, k):

ITPL(S, k)↔ TPL(S, k) ∧Odd

(
n∑

i=1

numones(LitPos(S, i, 1))

)
.

Definition A.45 (The imbalance Imb(S, y)). For a 3CNF S we define the func-
tion i-imbalance iImb(S, i) to be the absolute value of the difference of negat-
ed occurrences of xi and non-negated occurrences of xi in the 3CNF S (where
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x1, . . . , xn are considered to be all the variables in S). It is defined simply by the
term:

iImb(S, i) := abs(numones(LitPos(i, 0, S))− numones(LitPos(i, 1, S))).

For a 3CNF S, the predicate imbalance of S, denoted Imb(S, y), is true iff y
equals the sum over the i-imbalances of all the variables, that is:

Imb(S, y)↔ y =
n∑

i=1

iImb(S, i).

Definition A.46 ((t, k, d)-collection). A (t, k, d)-collection D of a 3CNF C with
m clauses is an array (coded as in Definition A.27) of t many inconsistent k-
tuples, which contain only clauses from C, and each clause appears in at most
d many such inconsistent k-tuples. The predicate is denoted Coll(t, k, d,C,D)
and is defined by the following formula:

length(D) = t∧
∀i < t ITPL(D [i], k)∧
∀i < t∀ℓ < k∃j < |C| (D [i][ℓ] = C[j])∧

∀j < |C|
t−1∑

i=0

k−1∑

ℓ=0

χ=(〈D [i][ℓ]〉55, j) ≤ d.

Definition A.47 (Mat(M,C)). We define the predicate Mat(M,C) that holds
iff M is an n × n rational matrix such that Mij equals 1

2
times the number of

clauses in C where xi and xj appear with different polarity minus 1
2

times the
number of clauses where they appear with the same polarity. More formally, we
have

Mij :=
m−1∑

k=0

E
(k)
ij , for any i, j ∈ [n], (A.26)

where E
(k)
ij corresponds to the kth clause in C as follows:

E
(k)
ij :=





1
2
, xεi

i , x
εj

j ∈ C[k] and εi 6= εj, for some εi, εj ∈ {0, 1} and i 6= j;
−1

2
, xεi

i , x
εj

j ∈ C[k] and εi = εj, for some εi, εj ∈ {0, 1} and i 6= j;
0, otherwise.

(A.27)

Note that E
(k)
ij is definable by a ΣB

0 formula (in L2
A), and so Mat(M,C) is a

ΣB
0 -definable relation in VTC0.

Finally, we need a predicate EigValBound(M,~λ, V ) that ensures that ~λ is
a collection of n rational approximations of the eigenvalues of the matrix M and
that V is the rational matrix whose rows are the rational approximations of the
eigenvectors of M (where the ith row in V is the approximation of the approx-
imate eigenvector λi). For the sake of readability we defer the formal definition

of the predicate EigValBound(M,~λ, V ) and all the lemmas that relate to it,
including the proofs in the theory making use of this predicate, to Section A.5.

Notation: 1. The notation o(1) appearing inside a formula in the proof within
the theory, and specifically in Definition A.48 below, stands for a term of the
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form b/nc, for b a number symbol greater than 0, and c some positive constant
(and where a rational number is encoded in the way described in Section A.2.1).

2. Given two terms t and f(n) in the language L2
A, where n is a number

variable, we say that VTC0 proves t = O(f(n)), to mean that there exists some
constant c (independent of n) such that VTC0 proves t ≤ c · f(n), where c is a
term without variables in the language L2

A.

We can now state the main formula that we are going to prove in VTC0. It
says that if the Feige-Kim-Ofek witness fulfills the inequality t > d·(I+λn)

2
+ o(1)

then there exists a clause in C that is not satisfied by any assignment A (one can
think of all the free variables in the formula as universally quantified):

Definition A.48 (The main formula). The main formula is the following formula

(~λ denotes n distinct number parameters λ1, . . . , λn):

(
3CNF(C, n,m) ∧Coll(t, k, d,C,D) ∧ Imb(C, I) ∧Mat(M,C)∧

EigValBound(M,~λ, V ) ∧ λ = max{λ1, . . . , λn} ∧ t >
d · (I + λn)

2
+ o(1)

)

−→ ∃i < mNotSAT(C[i], A).

A.4 Proof of the Main Formula

In this section we prove our key theorem:

Theorem A.49 (Key). The theory VTC0 proves the main formula (Definition
A.48).

Proof. We reason inside VTC0. Assume by way of contradiction that the premise
of the implication in the main formula holds and that there is an assignment
A ∈ {0, 1}n (construed as a string variable of length n) that satisfies every clause
in C. Recall that satLit(A,C) is the set of all literal positions that are satisfied
by A.

Lemma A.50. (Assuming the premise of the main formula) the theory VTC0

proves:

numones(satLit(A,C)) ≤ 3m+ I

2
.

Proof. First observe that for any assignment A and any 1 ≤ i ≤ n the set
of satisfied literals of xi is defined by LitPos(C, i, A(i)). Therefore, the sets
LitPos(C, 1, A(1)), . . . , LitPos(C, n, A(n)) form a partition of satLit(A,C) (prov-
ably in VTC0), and thus by Proposition A.34, VTC0 proves that

numones(satLit(A,C)) =
n∑

i=1

numones(LitPos(C, i, A(i))). (A.28)
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By (A.28) we get

numones(satLit(A,C)) ≤
n∑

i=1

max{numones(LitPos(C, i, 0)), numones(LitPos(C, i, 1))}.

(A.29)
For any 1 ≤ i ≤ n, define the term

LitPos(C, i) := LitPos(C, i, 0) ∪ LitPos(C, i, 1).

Then by

iImb(C, i) + numones(LitPos(C, i))

2
=

iImb(C, i) + numones(LitPos(C, i, 0)) + numones(LitPos(C, i, 1))

2
,

and since, by Definition A.45,
iImb(C, i) = abs (numones(LitPos(C, i, 0))− numones(LitPos(C, i, 1))), the theo-
ry VTC0 proves that for any 1 ≤ i ≤ n:

max{numones(LitPos(C, i, 0)), numones(LitPos)(C, i, 1)} =

iImb(C, i) + numones(LitPos(C, i))

2
.

(A.30)

Claim A.51. (Assuming the premise of the main formula) the theory VTC0

proves:
n∑

i=1

iImb(C, i) + numones(LitPos(C, i))

2
=
I + 3m

2
.

Proof of claim: First recall the definition of imbalance (Definition A.45) I =∑n
i=1 iImb(C, i). Thus it remains to prove that

∑n
i=1 numones(LitPos(C, i)) =

3m. For this, note that LitPos(C, i), for i = 1, . . . , n, partition the set of all
literal positions in C. In other words, we can prove that: (i) if H is the set of
all literal positions in C (this set is clearly ΣB

0 -definable in VTC0) then H =
∪n

i=1LitPos(C, i); and (ii) LitPos(C, i) ∩ LitPos(C, j) = ∅, for all 1 ≤ i 6= j ≤ n.
Therefore, by Proposition A.34 we can prove that:

numones(H) =
n∑

i=1

numones(LitPos(C, i)). (A.31)

Now, the set H of all literal position in C can be partitioned (provably in VTC0)
by the sets T1, . . . , Tm, where each Tj, for 0 ≤ j < m, is the set of the three
literals in the jth clause in C. Thus, again by Proposition A.34, we can prove
that numones(H) = 3m. By (A.31) we therefore have

n∑

i=1

numones(LitPos(C, i)) = 3m.

Claim
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We conclude that:

numones(satLit(A,C))

≤
n∑

i=1

max{numones(LitPos(C, i, 0)), numones(LitPos(C, i, 1)) (by (A.29))

=
n∑

i=1

iImb(C, i) + LitPos(C, i)

2
(by (A.30))

=
I + 3m

2
. (by Claim A.51).

We now bound the number of clauses in C that contain exactly two literals
satisfied by A. We say that a 3-clause is satisfied by a given assignment as NAE
(which stands for not all equal) if the literals in the clause do not all have the
same truth values. That is, if either exactly one or exactly two literals in the
clause are satisfied by the assignment.

Recall that satNAE(A,C) is the function that returns the set of all clauses
(formally, indices < m) that are satisfied as NAE by A.

Lemma A.52. (Assuming the premise of the main formula) the theory VTC0

proves: let h be the number of clauses in C that contain exactly two literals
satisfied by A. Then

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) .

Proof. For i = 0, 1, 2, 3, let Bi be the set of clauses in C that contain exactly i
literals satisfied by A. For i = 0, 1, 2, 3, let Fi be the string function that maps
a clause (index) C to the set of literal positions that are satisfied by A in case
there are exactly i such literals and to the empty set otherwise:

Fi(j) =

{
{l1, . . . , li}, if j ∈ Bi ;
∅, otherwise

(where a literals lk is coded, as before, by the pair 〈a, b〉 for a an index of a clause
in C and b the position of the literal in the clause). Every such function Fi is
ΣB

0 -defined in VTC0. We also ΣB
0 -define the image of Fi as follows:

Img(Fi) := {x : ∃y < m (Fi(y))(x)}.

Claim A.53. (Assuming the premise of the main formula) the theory VTC0

proves:

numones(satLit(A,C)) =
3∑

i=1

numones(Img(Fi)).

Proof of claim: In light of Proposition A.34, it suffices to prove that satLit(A,C)
is partitioned by Img(F1), Img(F2), Img(F3) (note that Img(F0) = ∅ by defini-
tion), in the sense that:

(i) satLit(A,C) = Img(F1) ∪ Img(F2) ∪ Img(F3), and
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(ii) Img(Fi) ∩ Img(Fj) = ∅, for all 1 ≤ i 6= j ≤ 3.

We prove (i): consider a literal x ∈ satLit(A,C), and let x = 〈a, b〉. We know
that the clause Ca contains the literal x. Now, either zero, or one, or two of the
remaining literals in Ca are satisfied by A. So x must be in either F1(a) or in
F2(a) or in F3(a), respectively. Item (ii) is easy to prove by the definition of the
Fi’s. We omit the details. Claim

Claim A.54. For any i = 1, 2, 3, numones(Img(Fi)) = i · numones(Bi).

Proof of claim: Fix some i = 1, 2, 3. We prove the claim by induction on
the number of clauses j < m (we can consider the sets Bi and the functions
Fi having an additional parameter that determines until which clause to build
the sets. That is, Bi(z) is the set of clauses from 0 to z that have i literals
satisfied by A; and similarly we add a parameter for the Fi’s). In the base case
j = 0 there is only one clause C0. Depending on A we know how many literals
in C0 are satisfied by A. And so 0 ∈ Bi iff i literals are satisfied by A in C0 iff
numones(Fi(0)) = i = i · 1 = i · numones(Bi). The induction step is similar and
we omit the details. Claim

By Claim A.53 and Claim A.54 we get:

numones(satLit(A,C)) =
∑

i=1,2,3

numones(Img(Fi))

=
∑

i=1,2,3

i · numones(Bi) . (A.32)

It is easy to show (in a similar manner to Claim A.53) that B1 ∪ B2 ∪ B3 =
{0, . . . ,m − 1} and Bi ∩ Bj = ∅, for any 1 ≤ i 6= j ≤ 3. From this, using
Proposition A.34, we get that m = numones(B1)+numones(B2)+numones(B3),
and so:

numones(B1) = m− numones(B2)− numones(B3) . (A.33)

Thus, by (A.32):

numones(satLit(A,C)) = m− numones(B2)− numones(B3) (A.34)

+ 2 · numones(B2) + 3 · numones(B3)

= m+ 2 · numones(B3) + numones(B2) ,

and so

numones(B2) =numones(satLit(A,C))−m− 2 · numones(B3) . (A.35)

The set of clauses in C that are NAE satisfied by A (i.e., satNAE(A,C)) is equal
to the set of clauses having either one or two literals satisfied by A; the latter
two sets are just B1 and B2, and since they are (provably in VTC0) disjoint we
have (using also (A.33)):

numones(B3) = m−(numones(B1)+numones(B2)) = m−numones(satNAE(A,C)) .
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Plugging this into (A.35), and using Lemma A.50, we get:

numones(B2) = numones(satLit(A,C))− 3m+ 2 · numones(satNAE(A,C))

≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)).

This concludes the proof of Lemma A.52

The following lemma provides an upper bound on the number of clauses in C
that can be satisfied as NAE by the assignment A.

Lemma A.55. (Assuming the premise of the main formula) the theory VTC0

proves:
numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

The proof of this lemma involves a spectral argument. Carrying out this
argument in the theory is fairly difficult because one has to work with rational
approximations (as the eigenvalues and eigenvectors might be irrationals, and so
undefined in the theory) and further the proof must be sufficiently constructive,
in the sense that it would fit in the theory VTC0. We thus defer to a separate
section (Section A.5) all treatment of the spectral argument. Given the desired
spectral inequality, we can prove Lemma A.55—this is done in Section A.4.2.

We can now finish the proof of the key theorem:

Concluding the proof of the theorem (Theorem A.49). In VTC0 (and
assuming the premise of the main formula), let h be the number of clauses in C
that contain exactly two literals satisfied by A. We have:

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) (by Lemma A.52)

≤ 3m+ I

2
− 3m+

3m+ λn

2
+ o(1) (by Lemma A.55)

=
I + λn

2
+ o(1) . (A.36)

Since we assumed that A satisfies C, then every clause in C has at least one
literal satisfied by A. Thus, the clauses in C that are not satisfied as 3XOR by A
are precisely the clauses that have exactly two literals satisfied by A. By (A.36),
the number of clauses that have exactly two literals satisfied by A is at most
I+λn

2
+ o(1). We now use Lemma A.57 (proved in the next subsection) to prove

the following lemma:

Lemma A.56. (Assuming the premise of the main formula) the theory VTC0

proves that the number of clauses in C that are not satisfied as 3XOR by A is at
least ⌈t/d⌉.

Proof. Consider the collection Coll(t, k, d,C,D) in the premise of the main
formula. Then, D is a sequence of t inconsistent k-tuples from C, and every pair
of k-tuples in D intersect6 on at most d clauses from C. By Lemma A.57, each
of the t inconsistent k-tuples contains a clause which is unsatisfied as 3XOR by

6Where a clause is identified with its index 0, . . . ,m− 1 in C, so that two identical clauses
with a different index are considered as two different clauses.
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A. Since each such clause may appear in at most d other inconsistent k tuples,
using Proposition A.37 the theory VTC0 proves that the total number of distinct
clauses not satisfied as 3XOR by A is at least ⌈t/d⌉.

Using this Lemma, we can finish the proof of the key Theorem A.49, as follows:
by Lemma A.56 and the fact that the number of clauses in C that are not satisfied
as 3XOR by A is at most I+λn

2
+ o(1), we get

t = d · t
d
≤ d ·

⌈
t

d

⌉
≤ d · I + λn

2
+ o(1) , (A.37)

which contradicts our assumption (in the main formula) that t > d(I+λn)
2

+ o(1).
Formally, we need to take care here for the “o(1)” notation. Recall that o(1)
stands for a term b/nc for some constants number term b and a constant c.
Therefore, it is enough to require that if our assumption (in the premise of the

main formula) is t > d(I+λn)
2

+ b/nc, then in (A.37) above we have t ≤ d ·
⌈

t
d

⌉
≤

d · I+λn
2

+ b′/nc′ , so that b/nc ≤ b′/nc′ . (This requirement will be easily satisfied
when applying our theorem (see Corollary A.76).)

A.4.1 Formulas satisfied as 3XOR

Here we prove the missing lemma that was used in the proof of Lemma A.56.

Notation: For a sequence S of k many 3-clauses, and for 0 ≤ α < k, we denote
the three variables in the clause S[α] by xiα , xjα

, xhα
, and abbreviate 〈〈S[α]〉54〉3t ,

which is the polarity of the tth variable in S[α], by ℓαt , for t = 1, 2, 3. Thus,

x
ℓα
1

i , x
ℓα
2

j , x
ℓα
3

h , are the three literals in S[α] and the values of ¬A(i) ⊕ ℓα1 ,¬A(j) ⊕
ℓα2 ,¬A(h) ⊕ ℓα3 are the values that A assigns to x

ℓα
1

i , x
ℓα
2

j , x
ℓα
3

h , respectively, where
⊕ is the XOR operator. We also abuse notation and write ¬A(i) inside a term
to mean the characteristic function of the predicate ¬A(i), that is, the function
that returns 1 if ¬A(i) is true, and 0 otherwise.

For a clause C and an assignment A the predicate 3XOR(C,A) says that A
satisfies exactly one or three of the literals in C. If we denote by xi, xj, xh the
three variables in C and by ℓ1, ℓ2, ℓ3 their respective polarities, we have:

3XOR(C,A) iff ¬A(i)⊕ ℓ1 + ¬A(j)⊕ ℓ2 + ¬A(h)⊕ ℓ3 = 1 mod 2 ,

and formally the predicate 3XOR is ΣB
0 -definable by the following formula:

3XOR(C,A) := Odd(¬A(i) + ℓ1 + ¬A(j) + ℓ2 + ¬A(h) + ℓ3) .

Lemma A.57. The theory VTC0 proves that if S is an inconsistent (even) k-
tuple, then for every assignment A to its variables there exists α < k such that
A satisfies exactly zero or exactly two literals in the clause S[α]. More formally,
VTC0 proves:

∀A ≤ n∀k ≤ n∀S ≤ p(n)∃α < k (|A| = n ∧ ITPL(S, k)→ ¬3XOR (S[α], A)) ,

for some (polynomial) term p(·).

Proof. We need the following claim:
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Claim A.58. Let f(y) be a number function definable in VTC0. Then VTC0

proves the following statements:

1. (∀α < k,Odd(f(α))) ∧ Even(k) → Even

(∑k−1
α=0 f(α)

)
;

2. (∀α < k,Even(f(α))) → Even

(∑k−1
α=0 f(α)

)
;

3. (∀α < k,Odd(f(α))) ∧ Odd(k) → Odd

(∑k−1
α=0 f(α)

)
.

Proof of claim: Consider Item 1 (the other items are similar). The proof is by
induction on k, showing that

((∀α < k∃y(2y + 1 = f(α))) ∧ ∃y(2y = k))→ ∃y
k−1∑

α=0

f(α) = 2y ,

and using the fact that V0 proves that Odd(x)↔ ∃y ≤ x(2y + 1 = x) (e.g., by
induction on x). We omit the details. Claim

Now, assume by way of contradiction that A satisfies all the clauses in S as
3XORs. Thus, for any α < k, if we define f(α) := ¬A(iα) + ℓα1 + ¬A(jα) + ℓα2 +
¬A(hα) + ℓα3 , then Odd(f(α)). Hence, because Even(k), by Claim A.58 we can
prove that:

k−1∑

α=0

(¬A(iα)⊕ ℓα1 + ¬A(jα)⊕ ℓα2 + ¬A(hα)⊕ ℓα3 ) = 0 mod 2. (A.38)

Recall that every variable appears an even number of times in S. Thus, if a
variable has an odd number of negative appearances then it also has an odd
number of positive appearances. Similarly, if a variable has an even number of
negative appearances then it also has an even number of positive appearances.
Let I0 ∈ {0, . . . , n − 1} be the indices of variables having an even number of
positive (and thus negative) appearances in S and let I1 = {0, . . . , n − 1} \ I0
be the indices of variables having an odd number of positive (and thus negative)
appearances in S. Thus, the left hand side of (A.38), can be written as follows
(for ε = 0, 1, we denote by xε

i (A) the truth value of the literal xε
i under A):

∑

i∈I0


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times


+

∑

i∈I1


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times


 .

(A.39)

Claim A.59. For any i ∈ I0 (and any string variable A of size n) the theory
VTC0 proves that

x1
i (A) + . . .+ x1

i (A)︸ ︷︷ ︸
even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times

is an even number.
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Proof of claim: Reason in VTC0 as follows: assume that A(i) = 0. Then
x1

i (A) = 0 and x0
i (A) = 1 and so by Claim A.58 the sum of evenly many x1

i (A)’s
is even and the sum of evenly many x0

i (A)’s is also even. The sum of two even
numbers is even, and so we are done. (The case where A(i) = 1 is similar.) Claim

By Claims A.58 and A.59, the theory VTC0 proves

Even



∑

i∈I0


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times




 . (A.40)

Similarly to the above claims we have:

Claim A.60. For any i ∈ I1 (and any string variable A of size n) the theory
VTC0 proves that

x1
i (A) + . . .+ x1

i (A)︸ ︷︷ ︸
odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times

is an odd number.

Since by assumption S is an inconsistent k-tuple, the number of negative liter-
als is odd (Definition A.44), and so (provably in VTC0) the number of variables
that has an odd number of negative appearances must be odd, in other words,
|I1| is odd. Therefore, by Claims A.60 and A.58, VTC0 proves:

Odd



∑

i∈I1


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times




 . (A.41)

Since VTC0 proves both (A.40) and (A.41), VTC0 proves that (A.39) is odd,
which contradicts (A.38). This implies that not all the clauses in S are satisfied
as 3XOR by the assignment A.

A.4.2 Bounding the number of NAE satisfying assign-
ments

Here we prove Lemma A.55 used to prove the key theorem (Theorem A.49).
Recall that satNAE(A,C) is the string function that outputs the set of clauses in
C that are satisfied as NAE by A (see Section A.3). The proof of the following
lemma is based on the spectral inequality proved in Section A.5.

Lemma A.55 (Assuming the premise of the main formula) VTC0 proves

numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

Proof. Let a be a vector from {−1, 1}n such that a(i) = 2A(i)−1. Thus, a(i) = 1
if A(i) = 1 and a(i) = −1 if A(i) = 0. We can prove in VTC0 (by definition of
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inner products and a product of a matrix and a vector—innerprod and Matvecprod
function symbols, respectively, as defined in Section A.2.2) the following:

atMa =
n∑

i=1

n∑

j=1

Mija(i)a(j). (A.42)

By assumption Mat(M,C) holds (see Definition A.47) and so by definition A.47
and by (A.42) we can prove in VTC0 that:

atMa =
n∑

i=1

n∑

j=1

m−1∑

k=0

E
(k)
ij a(i)a(j), (A.43)

where E
(k)
ij , for any i, j ∈ [n], is:

E
(k)
ij :=





+1
2
, xεi

i , x
εj

j ∈ C[k] and εi 6= εj, for some εi, εj ∈ {0, 1} and i 6= j;
−1

2
, xεi

i , x
εj

j ∈ C[k] and εi = εj, for some εi, εj ∈ {0, 1} and i 6= j;
0, otherwise.

(A.44)
By rearranging (A.43) we get

atMa =
m−1∑

k=0

n∑

i=1

n∑

j=1

E
(k)
ij a(i)a(j),

and since E
(k)
ij = 0 whenever either xi 6∈ C[k] or xj 6∈ C[k], we get

=
m−1∑

k=1

∑

i,j∈{r : xr∈C[k]}

E
(k)
ij a(i)a(j),

and further, since E
(k)
ij = 0 if i = j, and E

(k)
ij = E

(k)
ji , for any i, j, we have

=
m−1∑

k=0

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j). (A.45)

Claim A.61. The theory VTC0 (in fact already V0) proves that for any k =
0, . . . ,m− 1:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) =

{
+1, NAE(C[k], A);
−3, ¬NAE(C[k], A).

Proof of claim: For any i < j ∈ {r : xr ∈ C[k]}, if A(i) 6= A(j) (which means
that a(i) 6= a(j)) then a(i)a(j) = −1, and if A(i) = A(j) (which means that
a(i) = a(j)) then a(i)a(j) = 1. Thus, by (A.44), For any i < j ∈ {r : xr ∈ C[k]}:

E
(k)
ij =

{
+1

2
, if xεi

i 6= x
εj

j under a;
−1

2
, if xεi

i = x
εj

j under a.
(A.46)
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Note that if NAE(C[k], A) is true then there are exactly two pairs of literals
xεi

i , x
εj

j , i < j, for which xεi

i and x
εj

j get different values under the assignment a
(if A assigns 1 (i.e., ⊤) to one literal and 0 (i.e., ⊥) to the other two literals, then
two pairs have different values and one pair has the same value; and similarly if A
assigns 0 to one literal and 1 to the other two literals). Therefore, if NAE(C[k], A)
is true then

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(
1

2
+

1

2
− 1

2

)
= 1.

On the other hand, if NAE(C[k], A) is false then all pairs of literals xεi

i , x
εj

j , i < j,
get the same value under the assignment A, and so:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(
−1

2
− 1

2
− 1

2

)
= −3.

Claim

Let Z = {i < m : NAE (C[i], A)} (note that Z = satNAE(A,C)), and for any

k = 0, . . . ,m − 1, let γk =
∑

i<j∈{r : xr∈C[k]} 2E
(k)
ij a(i)a(j). Then, by Claim A.61

and Proposition A.36:

m−1∑

i=0

γi = 1 · numones(Z)− 3 · (m− numones(Z))

= 4 · numones(Z)− 3m

= 4 · numones(satNAE(A,C))− 3m.

(A.47)

By (A.45) we have
m−1∑

i=0

γi = atMa, (A.48)

and by the spectral inequality proved in Lemma A.68 in the next section, we
have:

atMa ≤ λn+ o(1).

By (A.47) we thus get

4 · numones(satNAE(A,C))− 3m ≤ λn+ o(1),

which leads to

numones(satNAE(A,C)) ≤ λn+ 3m

4
+ o(1).

A.5 The Spectral Bound

In this section we show how to prove inside VTC0 the desired spectral inequality,
used in the proof of the key theorem (Theorem A.49; specifically, it was used in
Lemma A.55 in Section A.4.2).
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Since the original matrix associated to a 3CNF is a real symmetric matrix, and
its eigenvectors and eigenvalues also might be real, and thus cannot be represented
in our theory VTC0, we shall need to work with rational approximations of real
numbers. We will work with polynomially small approximations. Specifically,
a real number r in the real interval [−1, 1] is represented with precision 1/nc,
where n is the number of variables in the 3CNF and c is a constant natural
number independent of n (that is, if r̃ is the approximation of r, we shall have
|r − r̃| ≤ 1/nc). Recall that we will assume that all rational numbers have
in fact the same denominator n2c for some specific global constant c (see the
Preliminaries, Section A.2.1 on this).

A.5.1 Notations

Here we collect the notation we use in this section. We denote by e1, . . . , en

the standard basis vectors spanning Qn. That is, for any 1 ≤ i ≤ n the vector
ei ∈ Qn is 1 in the ith coordinate and all other coordinates are 0. For a vector
v we denote by v(j) the jth entry in v. Given a real symmetric matrix M we
denote by u1, . . . ,un ∈ Rn the normalized eigenvectors of M . It is known that the
collection of normalized eigenvectors of a symmetric n× n real matrix M forms
an orthonormal basis for Rn, called the eigenvector basis of M (cf. [53]). The
(rational) approximation of the eigenvectors will be denoted v1, . . . ,vn ∈ Qn and
we define vij := vi(j). Recall that for a real or rational vector v = (v1, . . . , vn)
we denote by ‖v‖2 the squared Euclidean norm of v, that is, ‖v‖2 = v2

1 + . . .+ v2
n.

We also define ‖v‖∞ := max{vi : 1 ≤ i ≤ n}.

A.5.2 Rational approximations of Reals, vectors and ma-
trices

Definition A.62 (Rational ε-approximation of a real number). For r ∈ R, we
say that q ∈ Q is a rational ε-approximation of r (or just ε-approximation), if
|r − q| ≤ ε.

Claim A.63. For any real number r ∈ [−1, 1] and any natural number m there
exists a 1/m-approximation of r whose numerator and denominator have values
linearly bounded in m.

Proof of claim: By assumption, there exists an integer 0 ≤ k < 2m, such that
r ∈

[
−1 + k

m
,−1 + k+1

m

]
. Then −1 + k

m
is a rational 1/m-approximation of r.

Claim

In a similar fashion we have:

Definition A.64 (Rational ε-approximation of (sets of) real vectors). Let 0 <
ε < 1. For u ∈ Rn, we say that v ∈ Qn is an ε-approximation of u, if
v(i) is an ε-approximation of u(i), for all i = 1, . . . , n. Accordingly, for a set
U = {u1, . . . ,uk} ⊆ Rn, we say that V = {v1, . . . ,vk} ⊆ Qn is a (rational)
ε-approximation of U if every vi ∈ Qn is an ε-approximation of the vector ui,
i = 1, . . . , n.
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A.5.3 The predicate EigValBound

We define the predicate EigValBound(M,~λ, V ) which is meant to express the

properties needed for the main proof. Basically, EigValBound(M,~λ, V ) ex-
presses the fact that V is a rational 1/nc-approximation (Definition A.64) of the
eigenvector basis of M , whose 1/nc-approximate eigenvalues (in decreasing order

with respect to value) are ~λ, for a sufficiently large constant c ∈ N.

Note: For a number or a number term in the language, we sometimes use |t| to
denote the absolute value of t. This should not be confused with the length |T |
of a string term T .

Definition A.65 (EigValBound). The predicate EigValBound(M,~λ, V ) is
a ΣB

0 -definable relation in VTC0 that holds (in the standard two-sorted model)
iff all the following properties hold (where c ∈ N is a sufficiently large global
constant):

1. V is a sequence of n vectors v1, . . . ,vn ∈ Qn with polynomially small entries.
That is, for any 1 ≤ i, j ≤ n, the rational number

vij := vi(j) ∈ Q

is polynomial in n (meaning that both its denominator and numerator are
polynomially bounded in n).

2. For any 1 ≤ i, j ≤ n it holds that the absolute value |vij| ≤ 2.

3. For any 1 ≤ i ≤ n, define:

ẽi :=
n∑

j=1

vij · vj .

Then, there exists ri ∈ Qn for which

ẽi = ei + ri and ‖ri‖∞ = O(1/nc−1).

To formalize the existence of such an ri we do not use an existential second-
sort quantifier here; instead, we simply assert that for any ℓ = 1, . . . , n:

|ẽi(ℓ)− ei(ℓ)| = O(1/nc−1).

4. The vectors in V are “almost” orthonormal, in the following sense:

〈vi,vj〉 = O(1/nc−1) , for all 1 ≤ i 6= j ≤ n,

〈vi,vi〉 = 1 +O(1/nc−1) , for all 1 ≤ i ≤ n .

5. The parameter ~λ is a sequence λ1 ≥ λ2 ≥ . . . ≥ λn of rational numbers
such that for every 1 ≤ i ≤ n, there exists a vector ti ∈ Qn for which
‖ti‖∞ = O(1/nc−3), and

Mvi = λivi + ti .

(Similar to Item 3 above, we do not use an existential second-sort quantifier
for ti here.)
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It should be easy to check that EigValBound(M,~λ, V ) is a ΣB
0 -definable

relation in VTC0.
Now we show that there exist objects M,~λ, V that satisfy the predicate

EigValBound(M,~λ, V ).

Proposition A.66 (Suitable approximations of eigenvector bases exist). Let M
be an n × n real symmetric matrix whose entries are quadratic in n. Let U =
{u1, . . . ,un} ⊆ Rn be the orthonormal basis consisting of the eigenvectors of M ,
let c ∈ N be positive and constant (independent of n). If V = {v1, . . . ,vn} ⊆ Qn

is an 1/nc-approximation of U (Definition A.64), ~λ = {λ1, . . . , λn} is the collection
of rational 1/nc-approximations of the real eigenvalues of M such that λ1 ≥ λ2 ≥
. . . ≥ λn, then EigValBound(M,~λ, V ) holds (as before, the predicate holds in
the standard two-sorted model, for the appropriate encodings of its parameters).7

Proof. Let uij be an abbreviation of ui(j), that is, the jth element in the vector ui,
and similarly for vij. We proceed by checking each of the conditions in Definition
A.65.

Condition (1): Holds by the definition of an approximation of a real vector
and by Claim A.63, stating that the ε-approximation of a real number in [−1, 1]
is a rational number whose both denominator and numerator are of value O(nc).

Condition (2): Since vij is a rational 1/nc-approximation of uij, and |uij| ≤ 1
(because ‖ui‖ = 1) for any 1 ≤ i, j ≤ n, we have |vij| ≤ 2 .

Condition (3): By orthonormality of the real matrix U , we have that U t =
U−1, that is:

n∑

i=1

uijui = ej , for any j = 1, . . . , n . (A.49)

By assumption, for any 1 ≤ i ≤ n there exists si = (si1, . . . , sin) ∈ Rn such that
‖si‖∞ ≤ 1/nc and vi = ui + si. Therefore, for any 1 ≤ j ≤ n, we have:

ẽj :=
n∑

i=1

vijvi =
n∑

i=1

(uij + sij) · (ui + si)

=
n∑

i=1

uijui

︸ ︷︷ ︸
=ej by (A.49)

+
n∑

i=1

uijsi +
n∑

i=1

sij · (ui + si) . (A.50)

We define

rj :=
n∑

i=1

uijsi +
n∑

i=1

sij · (ui + si) ,

which gives us
ẽj = ej + rj .

7This is an existence statement. We do not claim that the statement of the proposition is
provable in the theory (nevertheless, some of the computations can be carried out inside the
theory).
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Note that since
∑n

i=1 vijvi = ẽj is a rational vector then rj is also a rational
vector.

It remains to show that ‖rj‖∞ = O(1/nc−1). Since 1 = ‖ui‖2 =
∑n

j=1 u
2
ij, we

have |uij| ≤ 1. By this, and by the fact that ‖si‖∞ ≤ 1/nc, we get ‖∑n
i=1uijsi‖∞ =

O(1/nc−1) , and ‖∑n
i=1 sij · (ui + si)‖∞ = O(1/nc−1). This means that ‖rj‖∞ =

O(1/nc−1).

Condition (4): This is similar to the proof of Condition (3). By assumption,
for any 1 ≤ i ≤ n there exists si = (si1, . . . , sin) ∈ Rn such that ‖si‖∞ ≤ 1/nc,
and vi = ui + si. Thus, we have

〈vi,vj〉 = 〈ui + si,uj + sj〉
= 〈ui,uj〉+ 〈si,uj + sj〉+ 〈ui, sj〉 . (A.51)

The first term in (A.51) is 0 since U is an orthonormal basis, and the second and
third terms in (A.51) are both O(1/nc−1) (by calculations similar to that in the
proof of Condition (3)).

The proof of 〈vi,vi〉 = 1 +O(1/nc−1) , for all 1 ≤ i ≤ n , is similar.

Condition (5): Similar to the proof of previous conditions, we define si =
(si1, . . . , sin) ∈ Rn such that ‖si‖∞ ≤ 1/nc, and vi = ui + si, for any 1 ≤ i ≤ n.
We have

Mvi = M(ui + si)

= Mui +Msi. (A.52)

Since ui ∈ Rn is the eigenvector of M and λi is a 1/nc-approximation of the
eigenvalue of ui, we have that (A.52) equals

(λi + ǫ)ui +Msi (A.53)

for some |ǫ| ≤ 1/nc,

= λiui + ǫui +Msi

= λi(vi − si) + ǫui +Msi

= λivi − λisi + ǫui +Msi .

We put
ti := −λisi + ǫui +Msi.

It remains to show that ‖ti‖∞ = O(1/nc−3).

Claim A.67. For every 1 ≤ i ≤ n, λi = O(n3).

Proof of claim: Since ‖ui‖∞ = 1 and, by assumption, every entry in M is
O(n2), we have:

‖Mui‖∞ = O(n3). (A.54)

Observe that
Mui = (λi + ǫ)ui = λiui + ǫui. (A.55)
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Because |ǫ| ≤ 1/nc and ‖ui‖∞ = 1, we have ‖ǫui‖∞ = O(1/nc). Therefore, by
(A.54) and (A.55) we have λi = O(n3). Claim

We have ‖si‖∞ ≤ 1/nc, and so by Claim A.67 we get that ‖ − λisi‖∞ =
O(1/nc−3). Now, ‖ǫui‖∞ = O(1/nc) and since M has entries which are O(n2) we
have ‖Msi‖∞ = O(1/nc−3). We conclude that

‖ti‖∞ = ‖ − λisi + ǫui +Msi‖∞
≤ ‖−λisi‖∞ + ‖ǫui‖∞ + ‖Msi‖∞
= O(1/nc−3).

A.5.4 Certifying the spectral inequality

In this section we show that the theory VTC0 can prove that,
if EigValBound(M,~λ, V ) holds, then the desired spectral inequality also holds.

Note on coding and formalizing the proof in VTC0: In what follows we
will write freely terms such as matrices, vectors, inner products, products of a
matrix by a vector (of the appropriate dimensions), addition of vectors, and big
sums. We also use freely basic properties of these objects; like transitivity of
inequalities, distributivity of a product over big sums, associativity of addition
and product, etc. We showed how to formalize these objects, and how to prove
their basic properties within VTC0 in Sections A.2.2 and A.2.2 (see Proposition
A.39).

For an assignment A ∈ {0, 1}n we define its associated vector a ∈ {−1, 1}n
such that a(i) = 1 if A(i) = 1 and a(i) = −1 if A(i) = 0. In other words we
define a(i) = 2A(i)− 1. Note that

a =
n∑

i=1

a(i) · ei .

We define

ã :=
n∑

i=1

a(i) · ẽi , (A.56)

and recall that ẽi :=
∑n

j=1 vij · vj is a rational approximation of ei (Definition

A.65). We let atMa abbreviate 〈a,Ma〉 (which is ΣB
1 -definable in VTC0, by

Section A.2.2).

Lemma A.68 (Main spectral bound). The theory VTC0 proves that if A is an
assignment to n variables (that is, A is a string variable of length n + 1) and

EigValBound(M,~λ, V ) holds, then

atMa ≤ λn+ o(1) . (A.57)

This is a corollary of Lemma A.69 and Lemma A.72 that follow.
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Lemma A.69. The theory VTC0 proves that for any assignment A to n vari-
ables, EigValBound(M,~λ, V ) implies:

atMa ≤ ãtM ã +O(1/nc−5),

where c is the constant from the EigValBound(MK , ~λ, V ) predicate.

Proof. First note that A is a string variable of length n. By Definition A.65 for
any 1 ≤ j ≤ n there exists a vector rj ∈ Qn such that ẽj = ej + rj, and where
‖rj‖∞ = O(1/nc−1). Therefore, by (A.56):

ã =
n∑

i=1

a(i)ẽi =
n∑

i=1

a(i)(ei + ri) =
n∑

i=1

a(i)ei +
n∑

i=1

a(i)ri .

Note that
∑n

i=1 a(i)ei = a, and let

r :=
n∑

i=1

a(i)ri .

Then,
ã = a + r ,

and since a(i) ∈ {−1, 1}, we have ‖r‖∞ = O(1/nc−2). Now, proceed as follows:

atMa = (ã− r)tM(ã− r)

= ãtM ã− ãtMr− rtM ã + rtMr . (A.58)

We now claim that (provably in VTC0) the three right terms in (A.58) are o(1):

Claim A.70. The theory VTC0 proves that for any assignment A to n variables,
EigValBound(M,~λ, V ) implies:

−ãtMr− rtM ã + rtMr = O
(
1/nc−5

)
.

Proof of claim: Consider −ãtMr. Since ‖ã‖∞ ≤ 2 and since (by construc-
tion) each entry in M is at most O(n2), we have ‖ãtM‖∞ = O(n3) . There-
fore, since ‖r‖∞ ≤ 1/nc−2, we get −ãtMr = O

(
1

nc−5

)
. Similarly, we have

−rtM ã = O
(

1
nc−5

)
.

Considering rtMr, we have ‖rtM‖∞ = O(1/nc−4) and so rtMr = O(1/nc−5 ·
1/nc−2 · n) = O(1/n2c−8) = O(1/nc−5). Claim

Claim A.70 concludes the proof of Lemma A.69.

Claim A.71. There is a constant c′ such that the theory VTC0 proves that
EigValBound(M,~λ, V ) implies that:

〈ẽi, ẽi〉 = 1 +O(1/nc′), for any 1 ≤ i ≤ n, and

〈ẽi, ẽj〉 = O(1/nc′), for any 1 ≤ i 6= j ≤ n.

54



Proof of claim: By assumption for any 1 ≤ i ≤ n, ẽi = ei + ri for some
‖ri‖∞ = O(1/nc−1). Thus

〈ẽi, ẽi〉 = 〈ei + ri, ei + ri〉
= ‖ei‖2 + 2〈ei, ri〉+ ‖ri‖2 (A.59)

= 1 + o(1), (A.60)

where the last equation holds since 2〈ei, ri〉 and ‖ri‖2 can be easily proved to be
o(1) in VTC0.

Proving 〈ẽi, ẽj〉 = O(1/c′) for any 1 ≤ i 6= j ≤ n, is similar. Claim

Lemma A.72. The theory VTC0 proves that for any assignment A to n vari-
ables, EigValBound(M,~λ, V ) implies:

ãtM ã ≤ λn+ o(1) . (A.61)

Proof. We have:

ãtM ã = ãtM

(
n∑

i=1

a(i)ẽi

)
(by definition of ã)

= ãtM

(
n∑

i=1

(
a(i) ·

n∑

j=1

vjivj

))
(by definition of ẽi)

= ãt

n∑

i=1

(
a(i) ·

n∑

j=1

vjiMvj

)
(rearranging)

= ãt

n∑

i=1

(
a(i) ·

n∑

j=1

vji(λjvj + rj)

)
(by Definition A.65)

= ãt

n∑

i=1

(
a(i) ·

n∑

j=1

λjvjivj

)
+ ãt

n∑

i=1

(
a(i) ·

n∑

j=1

vjirj

)

︸ ︷︷ ︸
Term 1

(rearranging)

(A.62)

We claim (inside VTC0) that the Term 1 above is of size o(1):

Claim A.73. The theory VTC0 proves that for any assignment A to n variables,
EigValBound(M,~λ, V ) implies

ãt

n∑

i=1

(
a(i) ·

n∑

j=1

vjirj

)
= O(1/nc−6) .

Proof of claim: The proof is similar to the proof of Claim A.70. Specifically,
by Definition A.65, for any 1 ≤ j ≤ n, we have ‖rj‖∞ ≤ 1/nc−1, and for any
1 ≤ i, j ≤ n, we have |vji| ≤ 2. Thus, VTC0 proves that ‖∑n

j=1 vjirj‖∞ =

O(1/nc−2) , for any 1 ≤ i ≤ n. Since a(i) ∈ {−1, 1}, for any 1 ≤ i ≤ n, the
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theory VTC0 proves ‖a(i) ·∑n
j=1 vjirj‖∞ = O(1/nc−2), for any 1 ≤ i ≤ n, and

therefore also proves
∥∥∥∥∥

n∑

i=1

(
a(i) ·

n∑

j=1

vjirj

)∥∥∥∥∥
∞

= O(1/nc−3). (A.63)

Now consider ã =
∑n

i=1 a(i)ẽi =
∑n

i=1

(
a(i) ·∑n

j=1 vjivj

)
. Since, for any 1 ≤

i, j ≤ n we have |vji| ≤ 2 we have ‖∑n
j=1 vjivj‖∞ = O(n). Thus, since a(i) ∈

{−1, 1}, VTC0 can prove that ã = O(n2), and so by (A.63) the theory can finally
prove

ãt

n∑

i=1

(
a(i) ·

n∑

j=1

vijrj

)
= O(1/nc−6).

Claim

It remains to bound the first term in (A.62):

ãt ·
(

n∑

i=1

a(i)
n∑

j=1

λjvjivj

)
. (A.64)

By the definition of ã in (A.56) and the definition of the ẽi’s, we get that (A.64)
equals: (

n∑

i=1

a(i)
n∑

j=1

vjiv
t
j

)
·
(

n∑

i=1

a(i)
n∑

j=1

λjvjivj

)
. (A.65)

We can prove in VTC0 that for any vectors b1, . . . ,bℓ ∈ Qn and any rational
numbers c1, . . . , cℓ and ζ1, . . . , ζℓ, such that ζ = max{ζi : 1 ≤ i ≤ ℓ}, we have

〈
ℓ∑

i=1

cibi,

ℓ∑

i=1

ζicibi

〉
≤ ζ ·

〈
ℓ∑

i=1

cibi,

ℓ∑

i=1

cibi

〉
.

Therefore, we can prove in VTC0 that (A.65) is at most:

λ ·
(

n∑

i=1

a(i)
n∑

j=1

vjiv
t
j

)
·
(

n∑

i=1

a(i)
n∑

j=1

vjivj

)

= λ ·
(

n∑

i=1

a(i)ẽt
i

)
·
(

n∑

i=1

a(i)ẽi

)
(by definition of ẽi)

= λ ·
〈

n∑

i=1

a(i)ẽi ,

n∑

i=1

a(i)ẽi

〉

= λ ·
n∑

i=1

〈a(i)ẽi , a(i)ẽi〉+ λ ·
n∑

1≤i6=j≤n

〈a(i)ẽi, a(i)ẽj〉 (by rearranging)

= λ ·
n∑

i=1

a(i)2〈ẽi , ẽi〉+ λ ·
n∑

1≤i6=j≤n

a(i)a(j)〈ẽi, ẽj〉 (by rearranging again)

= λ ·
n∑

i=1

1 · (1 + o(1)) + λ ·
n∑

1≤i6=j≤n

a(i)a(j)o(1) (by Claim A.71)

= λn+ o(1) (for sufficiently large constant c).8

(A.66)
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This concludes the proof of Lemma A.72.

A.6 Wrapping-up the Proof: TC
0-Frege Refuta-

tions of Random 3CNF

In this section we establish the main result of this paper, namely, polynomial-size
TC0-Frege refutations for random 3CNF formulas with Ω(n1.4) clauses.

A.6.1 Converting the main formula into a ∀ΣB
0 formula

Note that the main formula (Definition A.48) is a ΣB
0 (L) formula, where the

language L contains function symbols not in L2
A, and in particular it contains the

numones function. Since Theorem A.42 relates VTC0 proofs of ΣB
0 formulas to

polynomial-size TC0-Frege proofs, in order to use this theorem we need to convert
the main formula into a ΣB

0 formula (in the language L2
A). It suffices to show

that VTC0 proves that the main formula is equivalent to a ∀ΣB
0 formula, since

if VTC0 proves a ∀ΣB
0 formula ∀Φ, it also proves the ΣB

0 formula Φ obtained by
discarding all the universal quantifiers in ∀Φ.

Lemma A.74. The theory VTC0 proves that the main formula is equivalent to
a ∀ΣB

0 formula ∀Φ where the universal quantifiers in the front of the formula all
quantify over string variables that serve as counting sequences. Specifically,

∀Φ := ∀Z1 ≤ t1 . . . ∀Zr ≤ tr Φ(Z1, . . . , Zr), (A.67)

where t1, . . . , tr are number terms and Φ(Z1, . . . , Zr) has also free variables oth-
er then the Zi’s, and every occurrence of every Zi appears in Φ in the form
(δNUM(|T | , T, Zi) ∧ Zi[t] = s), for some string term T and number terms t, s,
and where δNUM(|T | , T, Zi) states that Zi is a counting sequence that counts the
number of ones in T until position |T | (see Definition A.29).

Proof. The following steps convert the main formula into a ∀ΣB
0 formula which

is equivalent (provably in VTC0) to the main formula:

1. All the functions in the main formula are AC0-reducible to L2
A∪{numones}

(see Section A.2.2). Thus, the defining axioms of all the function symbols
in the main formula can be assumed to be ΣB

0 (numones) formulas. Now, it
is a standard procedure to substitute in the main formula all the function
symbols by their ΣB

0 (numones)-defining axioms.9 The resulting formula is
ΣB

0 (numones), and provably in VTC0 is equivalent to the original main
formula.

8The constant c here is the global constant power of n (appearing in the 1/nc-approximation
in Definition A.65).

9When the defining axiom of a string function F (~x, ~X) is a bit-definition i < r(~x, ~X) ∧
ψ(i, ~x, ~X), we substitute an atomic formula like F (~x, ~X)(z), by z < r(~x, ~X) ∧ ψ(z, ~x, ~X) (cf.
Lemma V.4.15 in [29]).
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2. We now substitute all the numones function symbols by their ΣB
1 -defining

axioms. Specifically, every occurrence of numones(t, T ) in the formula,
for t, T number and string terms, respectively, occurs inside some atomic
formula Ψ := Ψ(. . . numones(t, T ) . . . ). And so we substitute Ψ by the
existential formula

∃Z ≤ 1 + 〈|T | , |T |〉 (δNUM(|T | , T, Z) ∧ Z[t] = z ∧Ψ(. . . z . . . )) .

3. Note that all the numones function symbols appear in the premise of the
implication in the main formula, so we can take all these existential quanti-
fiers out of the premise of the implication and obtain a universally quanti-
fied formula, where the universal quantifiers in the front of the formula all
quantify over string variables that serve as counting sequences (as in Item
2 above).

A.6.2 Propositional proofs

We need to restate the main probabilistic theorem in [37]:

Theorem A.75 ([37], Theorem 3.1). Let C be a random 3CNF with n variables
and m = β · n clauses (β = c · n0.4, c some fixed large constant). Then, with
probability converging to 1, the following holds:

• The imbalance of C is at most O(n
√
β) = O(n1.2).

• The largest eigenvalue λ satisfies λ = O(
√
β) = O(n0.2).

• There are k = O( n
β2 ) = O(n0.2), t = Ω(nβ) = Ω(n1.4), d = O(k) = O(n0.2)

and C with |C| = t such that Coll(t, k, d, n,m,C, C) holds.

We need to rephrase the theorem in a manner that suites our needs, as follows:

Corollary A.76. Let C be random 3CNF with n variables and m = c · n1.4

clauses where c is sufficiently large constant. Then, with probability converging
to 1, the following holds:10

1. There exists an I = O(n1.2) such that Imb(C, I).

2. There exists an 1/nc′-rational approximation V of the eigenvector matrix

of M and 1/nc′-rational approximations ~λ of the eigenvalues of M , for some

constant c′ > 6; in other words, EigValBound(M,~λ, V ) and Mat(M,C)
hold. And the 1/nc′-rational approximation λ of the largest eigenvalue of
M satisfies λ = O(n0.2).

10Formally speaking, we mean that the following three items hold in the standard two-sorted
model N2, when all the second-sort objects (like C and D) are in fact finite sets of numbers
(encoding C and D), natural numbers are treated as natural numbers in the standard two-
sorted model and rational numbers are the corresponding natural numbers that encode them
as pairs of natural numbers (as described in Section A.2.1).
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3. There are natural numbers k = O(n0.2), t = Ω(n1.4), d = O(k) = O(n0.2)
and a sequence D of t inconsistent k-tuples such that Coll(t, k, d, n,m,C,D)
holds, and such that:

t >
d(I + λn)

2
+ o(1) .

Proof. The corollary stems directly from Theorem A.75. Note only that the
last inequality concerning t stems from direct computations, using the bounds in
Theorem A.75 with β = n0.4, and that Item 2 follows from Proposition A.66.

Recall the premise in the implication in the main formula:

3CNF(C, n,m)∧Coll(t, k, d, n,m,C,D) ∧ Imb(C, I) ∧Mat(M,C)∧

EigValBound(M,~λ, V ) ∧ λ = max{~λ} ∧ t >
d · (I + λn)

2
+ o(1).

(A.68)

Let PREM(C, n,m, t, k, d,D , I, ~λ, V,M, λ, ~Z) be the formula obtained from (A.68)

after transforming the main formula into a ∀ΣB
0 formula, where ~Z is a sequence

of strings variables for counting sequences added after the transformation (as
described in Lemma A.74).

The following is a simple claim about the propositional translation (given
without a proof):

Claim A.77. If a ΣB
0 formula ϕ(~x, ~X) can be evaluated to a true sentence in

N2 by assigning numbers ~x and sets ~X to the appropriate variables, then the
translation JϕK

~x, ~|X|
is satisfiable.

Lemma A.78. For every m,n ∈ N and every unsatisfiable 3CNF formula C
with m clauses and n variables such that PREM(C, n,m, . . . ) is true for some
assignment to the remaining variables (i.e. to the unspecified variables denoted
by “. . . ”; this also implies that JPREM(C, n,m, . . . )K is satisfiable), there exists
a polynomially bounded TC0-Frege proof of ¬C (i.e. the sequent −→ ¬C can be
derived).

Proof. Recall that for given m,n ∈ N, 3CNF formula C = (C[α])α<m and assign-
ment A, the formula ∃α ≤ mNotSAT(C[i], A) (which is the consequence of the
implication in the main formula A.48) is the statement:

∃α < m∃i, j, k ≤ n
(
〈C[α]〉51 = i ∧ (A(i)↔ 〈〈C[α]〉54〉31 = 0)

∧ 〈C[α]〉52 = j ∧ (A(j)↔ 〈〈C[α]〉54〉32 = 0)

∧ 〈C[α]〉53 = k ∧ (A(k)↔ 〈〈C[α]〉54〉33 = 0)
)
.

The propositional translation of this formula (Definition A.40) contains the
variables pC〈i,j,k,ℓ,α〉 with i, j, k ≤ n, α < m. Additionally it contains variables

pA
i for i ≤ n stemming from the assignment A. It is not necessary to show the

full translation of the formula, since we intend to plug-in propositional constants
(⊤,⊥) for some of the variables. In other words, parts of the formula will consist
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of only constants and so it is unnecessary to give these parts in full detail. Having
this in mind, the translation J∃α < mNotSAT(C[α], A)Km,n is

m−1∨

α=0

n∨

i,j,k=1

( (J〈C[α]〉51 = iKm,n ∧ (pA
i ↔ J〈〈C[α]〉54〉31 = 0Km,n))

∧ (〈J〈C[α]〉52 = jKm,n ∧ (pA
j ↔ J〈〈C[α]〉54〉32 = 0Km,n))

∧ (〈J〈C[α]〉53 = kKm,n ∧ (pA
k ↔ J〈〈C[α]〉54〉33 = 0Km,n))).

(A.69)

Here, the variables pC〈i,j,k,ℓ,α〉 all implicitly appear in the parts inside J·K.
Now assume we have a fixed 3CNF C with n variables andm clauses. Then for

every α < m there exists 1 ≤ i, j, k ≤ n such that the formulas J〈C[α]〉51 = iKm,n

and J〈C[α]〉52 = jKm,n and J〈C[α]〉53 = kKm,n are all satisfied (in fact they are
polynomial-size in n propositional tautologies consisting of only constants ⊤,⊥).
From now on we will only concentrate on the disjuncts where this is the case
(as the other disjuncts are falsified, or in other words they are propositional
contradictions consisting of only constants).

By plugging C into J〈〈C[α]〉54〉31 = 0Km,n and J〈〈C[α]〉54〉32 = 0Km,n and J〈〈C[α]〉54〉33 =
0Km,n we get that J∃α < mNotSAT(C[α], A)Km,n is evaluated to

∨

α<m

(
(pA

i )ℓα
1 ∧ (pA

j )ℓα
2 ∧ (pA

k )ℓα
3
)
, (A.70)

where ℓαr is an abbreviation of J〈〈C[α]〉54〉3r = 0Km,n, and thus we can observe that

(A.70) gets evaluated to ¬C(pA
1 /x1, . . . , p

A
n/xn), where pA

i /xi means substitution
of xi by pA

i .

By Theorem A.49 the theory VTC0 proves the main formula and so by Lem-
ma A.74 there is a VTC0 proof of

PREM(C, n,m, t, k, d,D , I, ~λ, V,M, λ, ~Z)→ ∃i < mNotSAT(C[i], A).

Thus, by Theorem A.42 we can derive a polynomially bounded TC0-proof of the
formula

JPREM(C, . . . )Km,n → J∃α < mNotSAT(C[α], A)Km,n

and thus also of the sequent

JPREM(C, . . . )Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.

By Claim A.77 and the assumption that PREM(C, n,m, . . . ) is true in N2 for
an assignment to the remaining variables we know that JPREM(C, . . . )Km,n is
satisfiable. Plugging-in such a satisfying assignment ~a into JPREM(C, . . . )Km,n,
Lemma A.17 yields a polynomially bounded TC0-Frege proof of

JPREM(C,~a)Km,n

and of the sequent

JPREM(C,~a)Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.
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Using the Cut rule (Definition A.14) we get a polynomially bounded TC0-Frege
proof of the formula

J∃α < mNotSAT(C[α], A)Km,n.

As we showed before, this gets evaluated to

¬C(pA
1 /x1, . . . , p

A
n/xn)

as desired. Because of Claim A.17, this proof is only polynomially longer than
the one of the translation of the main formula. Since that proof was polynomially
bounded, the above proof of ¬C(pA

i /xi) also is.

We can now conclude:

Corollary A.79. With probability converging to 1, a random 3CNF C with
n variables and m ≥ c · n1.4 clauses, c a sufficiently large constant, ¬C has
polynomially bounded TC0-Frege proofs, while C has no sub-exponential size
resolution refutations (as long as m = O(n1.5−ǫ), for 0 < ǫ < 1/2).

Proof. By Corollary A.76, with probability converging to 1 there exists an as-
signment of numbers and strings ~α (including also the appropriate counting se-
quences assigned to the Zi string variables introduced in Lemma A.74) such that
PREM(C, ~α) holds (in the standard two-sorted model). Therefore, with prob-
ability converging to 1 we can apply Lemma A.78 to establish that ¬C has a
short TC0-Frege proof. That with probability converging to 1 there are no sub-
exponential size resolution refutations of C follows from [25, 10, 15].
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B. Polylogarithmic Cuts of
Models of V0

B.1 Introduction

This article is on the one hand on models of weak arithmetics and on the other
on proof complexity, i.e. the question of how long formal proofs of tautologies
have to be in given proof systems. Therefore the introduction will consist of two
parts, one for each subject.

Models of weak arithmetics, like I∆0, have been extensively studied for several
reasons, possibly being the simplest objects whose theories bear enough strength
to do a good part of mathematics in and still are weak enough to allow for a certain
kind of constructiveness. The latter has been demonstrated over and over again
by various results connecting weak arithmetic theories with complexity classes
and computability. We are interested in the strength of the theory obtained by
restricting our objects of reasoning to a small initial part of a given model. Since
a two-sorted theory, such as V0, is much stronger on its number part than on
its set part, it is likely that such a cut is a model of a supposedly much stronger
theory. Indeed we will see in Section B.3 that certain cuts of models of V0 are
models of the provably stronger theory VNC1. This strengthens a result by Paris
and Wilkie [75][74], who show that such cuts are models of VTC0. In fact they
work in a more general setting and, following our argumentation, their result
readily implies the sub exponential simulation of TC0-Frege by AC0-Frege from
Bonet, Domingo, Gavaldà, Maciel, and Pitassi [17].

Proof Complexity, on the other hand, more or less began when Cook and
Reckhow [30] discovered the close connection between the lengths of formal proofs
in propositional proof systems and standard complexity classes. This connection
yields a possibility of dealing with the coNP/NP question by asking, whether
there exists a propositional proof system that is polynomially bounded. We will
not directly address this question here, but rather explore the relative strengths of
two major proof systems, Frege and bounded depth Frege. These proof systems
have been extensively studied, due to their natural appearance as classical calculi,
such as Gentzen’s PK, and it is well known that Frege systems are stronger than
bounded depth Frege systems, as the former system has polynomial size proofs
for the Pigeonhole Principle (see [21]), while the latter does not (see [62] and
[78]). Lately, Filmus, Pitassi and Santhanam [39] have proved a sub exponential
simulation of Frege by bounded depth Frege using a combinatoric argument. In
Section B.4 we will obtain the same result by an application of our result about
cuts to the provability of the Reflection Principle for Frege in bounded depth
Frege. Currently Cook, Ghasemloo and Nguyen [28] are working on a purely
syntactical proof that gives a slightly better result with respect to the strength
of the simulated proof system.

The paper is built-up as follows. In section B.2 we briefly recapture some
basics about Complexity Theory, Bounded Arithmetic, Proof Complexity and the
various connections between them. As this is only expository it might be helpful
to consult some of the references for a more detailed introduction (see [5], [29]
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and [57]). After that, in Section B.3 we prove a formalization of Nepomnjascij’s
Theorem in the polylogarithmic cut of a model of V0. Using a standard algorithm
for evaluating circuits and then applying the formalized version of Nepomnjascij’s
Theorem we can conclude that this cut is indeed a model of VNC1. Finally, in
Section B.4, we apply this result to prove that a version of the Bounded Reflection
Principle of Frege is provable in V0. This, together with a standard argument
linking the provability of Reflection Principles with simulation results, yields the
sub exponential simulation of Frege by bounded depth Frege.

B.2 Preliminaries

We assume familiarity with Turing machines, circuits and standard complexity
classes such as P, NP, TimeSpace(f, g), NCi, ACi and so on. See for example [5]
for an introduction. We will not work a lot within these classes, but rather apply
known relations between such classes and weak arithmetic theories.

We will work in a two-sorted arithmetic setting, having one sort of variables
representing numbers and the second sort representing bounded sets of numbers.
We identify such bounded subsets with strings. See [29] for a thorough introduc-
tion. The underlying language, denoted L2

A, consists of the following relation,
function and constant symbols:

{+, ·,≤, 0, 1, |·| ,=1,=2,∈} .

An L2
A-structure M consists of a first-sort universe UM

1 of numbers and a
second-sort universe UM

2 of bounded subsets of numbers. If M is a model of the
two-sorted theory V0 (see B.2.2), then the functions + and · are the addition
and multiplication on the universe of numbers. 0 and 1 are interpreted as the
appropriate elements zero and one with respect to addition and multiplication.
The relation ≤ is an ordering relation on the first-sort universe. The function |·|
maps an element of the set sort to its largest element plus one (i.e. to an element
of the number sort). The relation =1 is interpreted as equality between numbers,
=2 is interpreted as equality between bounded sets of numbers. The relation ∈
holds for a number n and a set of numbers N if and only if n is an element of N .
The standard model of two-sorted Peano Arithmetic will be denoted as N2. It
consists of a first-sort universe U1 = N and a second-sort universe U2 of all finite
subsets of N. The symbols are interpreted in the usual way.

We denote the first-sort (number) variables by lower-case letters x, y, z, ...,
and the second-sort (set) variables by capital letters X,Y, Z, .... We can build
formulas in the usual way, using two sorts of quantifiers, number quantifiers and
string quantifiers. A number quantifier ∃x (∀x) is bounded if it is of the form
∃x(x ≤ f ∧ . . . ) (∀x(x ≤ f → . . . )) for some number term f . A string quantifier
∃X (∀X) is bounded if it is of the form ∃X(|X| ≤ f ∧ . . . ) (∀X(|X| ≤ f → . . . ))
for some number term f . A formula is bounded iff all its quantifiers are. All
formulas in this paper will be bounded. A formula ϕ is in ΣB

0 (or ΠB
0 ) if it uses

no string quantifiers and all number quantifiers are bounded. A formula ϕ is
a ΣB

i+1 (or ΠB
i+1) if it is of the form ∃X1 ≤ p(n) . . . ∃Xm ≤ p(n)ψ (or ∀X1 ≤

p(n) . . . ∀Xm ≤ p(n)ψ), where ψ ∈ ΠB
i (or ψ ∈ ΣB

i , respectively). If a relation
or predicate can be defined by both a ΣB

i and a ΠB
i formula, then we call it ∆B

i
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definable. The depth of a formula is the maximal number of alternations of its
logical connectives and quantifiers.

As mentioned before we will represent a bounded set of numbers N by a finite
string SN = S0

N . . . S
|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse
notation and identify bounded sets and strings, i.e. N and SN .

Further, we will encode monotone propositional formulas inductively as bi-
nary trees in the standard way, giving a node the value 1 if it corresponds to a
conjunction and the value 0, if it corresponds to a disjunction. Binary trees are
encoded as strings as follows. If position x contains the value of a node nx, then
the value of its left successor is contained in position 2x, while the value of its
right successor is in 2x+ 1.

B.2.1 Elements of Proof Complexity

We restate some basic definitions introduced in [30].

Definition B.1. A propositional proof system (pps) is a surjective polynomial-
time function P : {0, 1}∗ −→ TAUT, where TAUT is the set of propositional
tautologies (in some natural encoding). A string π with P (π) = τ is called a
P -proof of τ .

We can define a quasi ordering on the class of all pps as follows.

Definition B.2. Let P,Q be propositional proof systems.

• P simulates Q (in symbols P ≥ Q), iff there is a polynomial p, such that
for all τ ∈ TAUT there is a πP with P (πP ) = τ , such that for all πQ with
Q(πQ) = τ , |πP | ≤ p(|πQ|).

• If there is a polynomial time machine that takes Q-proofs and produces
P -proofs for the same formula we say that P p-simulates Q (in symbols
P ≥p Q).

• If P and Q mutually (p-)simulate each other, we say that they are (p-
)equivalent (in symbols P ≡ Q and P ≡p Q, respectively).

In this article we will be mainly interested in bounded depth Frege systems
and some of their extensions. A Frege system is a typical textbook proof system,
such as Gentzen’s propositional calculus PK. We will only sketch a single rule
of such a system as an example and refer the interested reader to standard logic
textbooks.

Γ −→ A,∆ Γ, A −→ ∆
(Cut)

Γ −→ ∆

Here, ∆ and Γ are sets of formulas while A is a formula. Γ −→ ∆ is read as
”The conjunction of all formulas in Γ implies the disjunction of all formulas in
∆”. The Cut Rule therefore says that, if Γ implies A or ∆, and Γ and A imply
∆, then Γ already implies ∆. The formula A is called the Cut Formula.

In a bounded depth Frege system the depths of all formulas in a derivation are
bounded by some global constant. This is equivalent to being representable by an
AC0 circuit. Thus we also call bounded depth Frege AC0-Frege. If the formulas
are unbounded, we speak of NC1-Frege or simply of Frege. We readily get
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Fact 2. AC0-Frege ≤p Frege.

A pps P is polynomially bounded iff there is a polynomial p such that every
tautology τ has a P -proof π with |π| ≤ p(|τ |).

We are interested in the existence of polynomially bounded pps. This is, at
least in part, due to the following theorem.

Fact 3 ([30]). NP = coNP⇔ There exists a polynomially bounded pps.

An easier task than searching for a polynomially bounded pps might be to find
some pps with sub exponential bounds to the lengths of proofs. This corresponds
to the question, whether sub exponential time nondeterministic Turing machines
can compute coNP-complete languages. To explore the existence of such systems
we generalize Definition B.2.

Definition B.3. Let P,Q be propositional proof systems and F a family of
increasing functions on N.

• P F -simulates Q (in symbols P ≥F Q), iff there is a function f ∈ F , such
that for all τ ∈ TAUT there is a πP with P (πP ) = τ , such that for all πQ

with Q(πQ) = τ , |πP | ≤ f(|πQ|).

• If there is an Time(F )-machine that that takes Q-proofs and produces P -
proofs for the same formula we say that we say that P F -computably sim-
ulates Q (in symbols P ≥F

p Q).

• If P and Q mutually F -(computably) simulate each other, we say that
they are F -(computably) equivalent (in symbols P ≡F Q and P ≡F

p Q,
respectively).

We say a pps P sub exponentially simulates a pps Q iff the above F can be
chosen as a class of 2no(1)

functions.

B.2.2 The theory V0

The base theory we will be working with is V0. It consists of the following axioms:

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1→ x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x)→ x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0→ ∃y ≤ x(y + 1 = x)

L1. X(y)→ y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i)↔ Y (i)))→ X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y(X(z)↔ ϕ(z)) , for all ϕ ∈ ΣB

0 .
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Here, the Axioms Basic 1 through Basic 12 are the usual axioms used to define
Peano Arithmetic without induction (PA−), which settle the basic properties of
Addition, Multiplication, Ordering, and of the constants 0 and 1. The Axiom L1
says that the length of a string coding a finite set is an upper bound to the size
of its elements. L2 says that |X| gives the largest element of X plus 1. SE is the
extensionality axiom for strings which states that two strings are equal if they
code the same sets. Finally, ΣB

0 -COMP is the comprehension axiom schema for
ΣB

0 -formulas (it is an axiom for each such formula) and implies the existence of
all sets, which contain exactly the elements that fulfill any given ΣB

0 property.

Fact 4. The theory V0 proves the Induction Axiom schema for ΣB
0 formulas Φ:

(Φ(0) ∧ ∀x(Φ(x)→ Φ(x+ 1)))→ ∀zΦ(z).

When speaking about theories we will always assume that the theories are
two-sorted theories as in [29]).

The following is a basic notion:

Definition B.4 (Two-sorted definability). Let T be a theory over the language
L ⊇ L2

A and let Φ be a set of formulas in the language L. A number function

f is Φ-definable in a theory T iff there is a formula ϕ(~x, y, ~X) in Φ such that T
proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that
y = f(~x, ~X)↔ ϕ(~x, y, ~X). (B.1)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y )
in Φ such that T proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y )

and it holds that
Y = F (~x, ~X)↔ ϕ(~x, ~X, Y ). (B.2)

Finally, a relation R(~x, ~X) is Φ-definable iff there is a formula ϕ(~x, ~X) in Φ such
that it holds that

R(~x, ~X)↔ ϕ(~x, ~X). (B.3)

Moreover we wish to talk about sequences coded by strings or numbers. For a
string X we let X[i] be the ith bit of X. Assuming a tupling function 〈·, . . . , ·〉 we
can also talk of k-ary relations in the obvious way by referring to X[〈i0, . . . , ik〉].
For the sake of simplicity we also refer to X[〈i0, . . . , ik〉] by X[i0, . . . , ik].

Using k-ary relations we can also encode sequences of bounded numbers
x0, . . . , xm by xi = X[〈i, 0〉]X[〈i, 1〉] . . . X[〈i, k〉] in binary. Matrices and so on
can obviously be formalized in the same way.

Given a string X[〈x1, . . . , xk〉] representing a k-ary relation, we denote the k−
ℓ-ary substring with parameters ai1 , . . . , aiℓ by X[〈·, . . . , ·, ai1 , ·, . . . , aiℓ , ·, . . . , ·〉].
For example we refer to the element aij of a given matrix A[〈x1, x2, x3〉] as
A[〈i, j, ·〉], a string representing aij in binary. Observe that this substring can
be ΣB

0 defined in V0.
Given a number x we denote by 〈x〉j the jth number in the sequence encoded

by x. To do this we assume a fixed ΣB
0 definable encoding of numbers that is 1-1.
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The sequence itself will be addressed as 〈x〉. We can also talk about matrices,
etc. in the way presented above.

We want to identify strings of short length with sequences of numbers. Thus,
given a string X of length O(n) we can ΣB

0 -define (in V0) a number x ≤ 2O(n)

that codes a sequence 〈x〉, such that X[i] = 〈x〉i for all i < |X| and vice versa.
We will use 〈x〉 ≈ X and 〈x〉i ≈ X[i] to denote the above identification. Observe
that n has to be very small in order to be able to do the above in V0.

Computations in models of V0

Given a polynomially bounded Turing machine A in a binary encoding, we can
ΣB

1 define a predicate ACCA(X), that states that X is accepted by A. This can
readily be observed, since, provided some machine A, there is a constant number
of states σ1, . . . , σk and the whole computation can be written into a matrix W
of polynomial size. That W is indeed a correct computation can then be easily
checked, because the computations are only local.

More precisely let A = 〈σ1, . . . , σk; δ〉 be given, where the σi are different
states, with σ1 being the initial state and σk being the accepting state and δ is the
transition function with domain {σ1, . . . , σk} × {0, 1} and range {σ1, . . . , σk} ×
{0, 1} × {←, ↓,→}, which describes what the machine does. I.e. if δ(a, b) =
(c, d, e), then if the machine is in state a and reads b, it replaces b by d, goes into
state c and moves one position on the tape in the direction e. For our formalization
we will assume a function δ : N2 → N and interpret it in the following way,
δ(σa, b) = (σ〈δ(a,b)〉1 , 〈δ(a, b)〉2, 〈δ(a, b)〉3), where we identify ↓= 0,←= 1,→= 2.

Let the polynomial p bound the running time of A, then we can formalize
ACCA(X) as follows

∃W ≤ (p(|X|)2 · log(k)2)∀i, i′ ≤ p(|X|)∀0 < α < k(

i < |X| → (〈W [〈0, i, ·〉]〉1 = X[i] ∧ i > 0→
〈W [〈0, i, ·〉]〉2 = 0 ∧ 〈W [〈0, 0, ·〉]〉2 = 1)∧

i ≥ |X| → (〈W [〈0, i, ·〉]〉1 = 0 ∧ 〈W [〈0, i, ·〉]〉2 = 0)∧
〈〈W [〈j, i, ·〉]〉2 = 0→ (〈W [〈j + 1, i, ·〉]〉1 = 〈W [〈j, i, ·〉]〉1)∧
〈W [〈j, i, ·〉]〉2 = α→ (〈W [〈j + 1, i, ·〉]〉1 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉2∧
(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 0→

〈W [〈j + 1, i, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1)∧
(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 1→

〈W [〈j + 1, i ·− 1, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1)∧
(〈δ(α, 〈W [〈j, i, ·〉]〉1)〉3 = 2→

〈W [〈j + 1, i+ 1, ·〉]〉2 = 〈δ(α, 〈W [〈j, i, ·〉]〉1)〉1))∧
i 6= i′ → (〈W [〈j, i, ·〉]〉2 > 0→ 〈W [〈j, i′, ·〉]〉2 = 0)).

(B.4)

Thus, in plain English, ACCA(X) says that there exists a matrix W of pairs
of numbers that witnesses an accepting computation of A. Here, 〈W [〈i, j, ·〉]〉
is supposed to code the jth cell on the Turing machine’s tape after i steps of
computations on input X. As noted above, 〈W [〈i, j, ·〉]〉1 is a binary number,
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which is the value of the cell, 〈W [〈i, j, ·〉]〉2 is a number coding the state, the
machine is in iff the pointer is on that cell.

The second and third line of the definition say that the tape in the initial step
contains X padded with zeroes in the end to get the proper length (p(|X|)). The
fourth line says that if the read/write head is not on cell i, then nothing happens
to the content of cell i. The fourth line says that the content of the cell, where
the read/write head is in step j, is changed according to δ. The next three lines
tell us where the read/write head moves and the last line says that there is at
most one position on the tape where the read/write head may be at any step.

We also define a ΣB
1 -predicate REACHA(X,Y ) that says that A reaches con-

figuration Y from configuration X in at most p(|X|) steps. This is essentially the
same predicate as ACC, with the constraints on the initial and accepting state
lifted and instead a constraint added that the first line of computation is X and
the last is Y . We omit the details as it does not severely differ from the above
definition of ACC.

B.2.3 Extensions of V0

The Theory V0 serves as our base theory to describe complexity classes by arith-
metical means.

The problem, whether a given monotone formula ϕ of size ℓ and depth ⌈log(ℓ)⌉
is satisfiable under a given assignment I is AC0-complete for NC1. Therefore
Cook and Nguyen ([29]) define the class VNC1 as V0 augmented by the axiom
MFV ≡ ∃Y ≤ 2a+ 1.δMFV (a,G, I, Y ), where

δMFV (a,G, I, Y ) ≡ ∀x < a((Y (x+ a)↔ I(x)) ∧ Y (0)∧
0 < x→ (Y (x)↔ ((G(x) ∧ Y (2x) ∧ Y (2x+ 1))∨

(¬G(x) ∧ (Y (2x) ∨ Y (2x+ 1)))))).

So, MFV states that there is an evaluation Y of the monotone formula rep-
resented by G under the assignment given by I of length at most 2a + 1. More
specifically, G is a tree-encoding of the formula, where G(x) is true, if node x is
∧ and false, if x is ∨. The evaluation Y takes the value of the variables given by
I and then evaluates the formula in a bottom-up fashion using a standard tree
encoding. Thus, the value of the formula can be read at Y (1).

It is interesting to observe that MFV does not hold in V0, as, by the Wit-
nessing Theorem for V0, a ΣB

0 definition of the satisfaction relation would be
sufficient to prove that NC1 ⊆ AC0, at least for monotone functions, which is
known to be false.

B.2.4 Relation between Arithmetic Theories and Proof
Systems

In this section we will remind the reader of a connection between the Theory
V0 and some of its extensions and certain propositional proof systems (see also
[29][57]).

Definition B.5. The following predicates will be subsequently used. They are
definable with respect to V0 (see [57]).
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• Fla(X) is a ΣB
0 formula that says that the the string X codes a formula.

• Z |= X is the ∆B
1 definable property that the truth assignment Z satisfies

the formula X.

• Taut(X) is the ΠB
1 formula Fla(X) ∧ ∀Z ≤ t(|X|)Z |= X, where t is a

number term.

• PrfFd
(Π, A) is a ΣB

0 definable predicate meaning Π is a depth d Frege proof
for A.

• PrfF (Π, A) is a ΣB
0 definable predicate meaning Π is a Frege proof for A.

Observe that in V0 we cannot prove that every formula has an evaluation.
The following holds

Fact 5 (see [29]). The Theory V0 proves that AC0-Frege is sound, i.e. for every
d

∀A∀ΠPrfFd
(Π, A)→ Taut(A).

Fact 6 (see [29]). The Theory VNC1 proves that Frege is sound, i.e.

∀A∀ΠPrfF (Π, A)→ Taut(A).

On the other hand, provability of the universal closure of ΣB
0 formulas in V0

and VNC1 implies the existence of polynomial size proofs of their propositional
translations in AC0-Frege and Frege, respectively.

The propositional translation Jϕ(x̄, X̄)Km̄,n̄ of a ΣB
0 formula ϕ(x̄, X̄) is a family

of propositional formulas built up inductively (on the logical depth) as follows. If
ϕ is atomic, then we evaluate ϕ in N2, if it contains second sort variables, we have
to introduce propositional variables. If ϕ is a boolean combination of formulas
ψi of lower depth, the translation is simply the same boolean combination of the
translations of the ψi. If ϕ is ∃ψ or ∀ψ we translate it to the disjunction or
conjunction of the translations, respectively. For a proper definition see [29].

Fact 7. There exists a polynomial p such that for all ΣB
0 formulas ϕ(x̄, X̄) the

following holds

• If V0 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist bounded depth Frege proofs of all
JϕKm̄,n̄ of length at most p(max(m̄, n̄)), for any m̄, n̄.

• If VNC1 ⊢ ∀X̄∀x̄ϕ(x̄, X̄), then there exist Frege proofs of all JϕKm̄,n̄ of
length at most p(max(m̄, n̄)), for any m̄, n̄.

Facts 5 and 6 are examples of general principles, the so called Reflection
Principles, which are defined as follows.

Definition B.6 (Reflection Principle). Let P be a pps. Then the Reflection
Principle for P , RefP , is the ∀∆B

1 -formula (w.r.t. V0)

∀Π∀X∀Z((Fla(X) ∧ PrfP (Π, X))→ (Z � X)),

where PrfP is a ∆B
1 -predicate formalizing P -proofs.
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Reflection Principles condense the strength of propositional proof systems.
In what follows we will summarize some such results for the proof systems and
theories used here. A detailed exposition can be found in [29], chapter X, or in
[57], chapter 9.3.

Theorem B.7. If V0 ⊢ RefF then bounded depth Frege p-simulates Frege.

We will only give a brief sketch of the proof here and leave out the technical
details.

Sketch. Let ϕ be a formula and πϕ a Frege proof of ϕ. Since V0 proves RefF ,
by Facts 5 and 7 we have polynomial size proofs of its translations JRefF K in
bounded depth Frege. Bounded depth Frege itself, however, is strong enough to
verify that a proper encoding of the computation of the Turing machine verifying
the Frege proof πϕ is correct. Thus it can verify that πϕ is a Frege-proof and, using
the translation of the Reflection Principle and the Cut rule, conclude JTaut(ϕ)K.
From this ϕ follows, cf. [57] Lemma 9.3.7.

Given a term t and a variable x, we can also introduce the t-bounded version
of the Reflection Principle for some given pps P , RefP (t(x)) that claims soundness
only for t-bounded proofs.

Definition B.8 (Bounded Reflection). Let t be a L2
Ar-term, x a first-sort variable

and P a pps. Then the Bounded Reflection Principle RefP (t(x)) is the formula

∀Π ≤ t(x)∀X ≤ t(x)∀Z ≤ t(x)((Fla(X) ∧ PrfP (Π, X))→ (Z � X)).

We can now generalize Theorem B.7 in the following way.

Theorem B.9. Let t be a L2
A-term and x a number variable. If t(x) < x for

x large enough and if V0 ⊢ ∀xRefF (t(x)) then for every propositional formula
ϕ with a Frege proof of length t(x) there is a bounded depth Frege proof of ϕ of
length xO(1).

Proof. The proof is the same as that of Theorem B.7. Using the Bounded Reflec-
tion Principle we can encode Frege proofs of length t(x) as bounded depth Frege
proofs of length xO(1).

As a corollary we get

Corollary B.10. If V0 ⊢ RefF (|x|k) for all k ∈ N, then bounded depth Frege sub
exponentially simulates Frege: For all D > 1, δ > 0 exists d ≥ D, such that the
existence of a Frege proof of length m of a depth D formula implies the existence
of a depth d Frege proof of length at most 2mδ

.

B.3 Polylogarithmic Cuts of Models of V0 are

Models of VNC1.

We will first introduce the notion of a cut I of a given two-sorted arithmetic
model M. This model theoretic approach provides a very good insight on what
actually happens semantically with the small elements of arithmetical models.
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Definition B.11 (Cut). Let T be a two-sorted arithmetic theory and

N = {N1, N2,+
N , ·N ,≤N , 0N , 1N , |·|N ,=N

1 ,=
N
2 ,∈N}

a model of T . A cut

M = {M1,M2,+
M , ·M ,≤M , 0M , 1M , |·|M ,=M

1 ,=
M
2 ,∈M}

of N is any substructure such that

• M1 ⊆ N1, M2 ⊆ N2,

• 0M = 0N , 1M = 1N ,

• M1 is closed under +N , ·N and downwards with respect to ≤N ,

• M2 = {X ∈ N2 | X ⊆M1}, and

• ◦M is the restriction of ◦N to M1 and M2 for all relation and function
symbols ◦ ∈ L2

A.

We call this cut the Polylogarithmic Cut iff

x ∈M1 ⇔ ∃a ∈ N1, k ∈ N x ≤ |a|k .

To examine the strength of the theory of such cuts of models of V0, we will
show that a formal connection between efficient computability and ΣB

0 -definability
holds. This stands in contrast to general bounded subsets, where the connection is
presumably only with respect to ΣB

1 -definability via the predicate ACC (see (B.4)
on page 67). The intended theorem is a formalization of Nepomnjascij’s Theorem
[68] (see also [57] pg.20). We will sketch the original proof before starting the
formalization.

Theorem B.12 (Nepomnjascij [68]). Let c ∈ N and 0 < ǫ < 1 be constants.
Then if the language L ∈ TimeSpace(nc, nǫ), the relation x ∈ L is definable by
a ΣB

0 -formula over N.

Proof. We will prove the theorem by induction on k for L ∈ TimeSpace(nk·(1−ǫ), nǫ).
Let k = 1 and L ∈ TimeSpace(nk·(1−ǫ), nǫ). For any x ≤ 2n the whole

computation can be coded by a number y of size 2O(n).
For k > 1 we write a sequence y0, y1, . . . , yn1−ǫ of intermediate results cod-

ing the computation, where y0 codes the starting configuration on input x, such
that we can verify that yi+1 is computable from yi in TimeSpace(n(k−1)·(1−ǫ), nǫ).
Therefore by assumption there exists a ΣB

0 -formula reachk−1 such that reachk−1(yi, yi+1)
holds iff yi+1 is computed from yi. Additionally, the whole sequence has length
O(n) and so we can write the sequence of intermediate results yi as a number y
of length O(n). Now, the ΣB

0 -definition of x ∈ L is simply

∃y ≤ 2O(n)∀i ≤ n1−ǫreachk−1(〈y〉i, 〈y〉i+1)

∧ 〈y〉0 encodes the starting configuration of A on input x

∧ 〈y〉n1−ǫ is in an accepting state.
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We will now formalize this result in V0 as follows

Theorem B.13. Let N � V0. Let m = |a| for some a ∈ N1 and let c, k ∈ N and
ǫ < 1. If L ∈ TimeSpace(mc,mǫ) is computed by Turing machine A, then there
exists a ΣB

0 definition in N of the ΣB
1 -predicate ACCA on the interval [0,mk].

I.e. any Y ∈ L, bounded by mk is ΣB
0 -definable in N and therefore exists in the

polylogarithmic cut of N .

The following version of the proof stems from a discussion with Stephen Cook
and Neil Thapen during the SAS programme in Cambridge. It is more explicit
than the original one and clarifies the argument.

Proof. We will inductively on d define a ΣB
0 relation reachd

A(I, p1, p2, cell, comp)
that states that the p2th cell of the work tape of A, starting on configuration
I and computing for p1 · md 1−ǫ

k steps via the computation comp is cell. As d
depends only on A and k we will be doing this induction outside of the theory to
construct d many formulas. We will then prove the above mentioned properties
of reachA by ΣB

0 induction on p1.
Keep in mind that a cell is given as a pair 〈bit, state〉, where bit is the actual

value of the cell and state is a constant binary number > 0 coding the state the
Turing machine is in iff the pointer is on that cell and 0 otherwise. As before the
transition function is denoted by δ. We let |I| = mk.

To this end let reach0
A(I, p1, p2, cell, comp) ≡

(∀j′ < ⌈|I|ǫ⌉, j′′ < |A| 〈comp〉〈1,j′,j′′〉 ↔ 〈I〉〈j′,j′′〉)∧
(∀j < ⌈|I| 1−ǫ

k ⌉, j′ < ⌈|I|ǫ⌉, α < |A|
(〈comp〉〈j,j′,·〉 = 0→ (〈comp〉〈j,j′,0〉 ↔ 〈comp〉〈j+1,j′,0〉))∧
(〈comp〉〈j,j′,·〉 = α→ (

(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 0→ (〈comp〉〈j+1,j′,·〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧
〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))∧
(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 1→ (〈comp〉〈j+1,j′

·−1,·〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧
〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))∧
(〈δ(α, 〈comp〉〈j,j′,0〉)〉3 = 2→ (〈comp〉〈j+1,j′+1,·〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉1∧
〈comp〉〈j+1,j′,0〉 = 〈δ(α, 〈comp〉〈j,j′,0〉)〉2))))∧
∀ℓ, ℓ′ < ⌈|I|ǫ⌉(〈comp〉〈j,ℓ,·〉 > 0→ 〈comp〉〈j,ℓ′,·〉 = 0))∧
(〈cell〉1 ↔ 〈comp〉〈p1,p2,0〉) ∧ (〈cell〉2 = 〈comp〉〈p1,p2,·〉).

Observe that above we abused notation by writing 〈comp〉〈j,j′,·〉 = α, when
we actually meant that the sequence of bits 〈comp〉〈j,j′,1〉, . . . , 〈comp〉〈j,j′,|A|〉 is the
binary representation of α. We have left out 〈comp〉〈j,j′,0〉 as this is the actual
value of the cell.

It is straightforward to prove by induction on the number of lines in comp

that comp is uniquely defined by reach0
A. We let

Reach0
A(I, p1, p2, cell) =def ∃comp < q(|I|) reach0

A(I, p1, p2, cell, comp),

where q is some polynomial depending on the encoding.
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We will now proceed by inductively defining reachd
A and Reachd

A. Assume that

reachd
·−1

A has already been defined. We then let
reachd

A(I, p1, p2, cell, comp) ≡

(∀j′ < ⌈|I|ǫ⌉, j′′ < |A| 〈comp〉〈1,j′,j′′〉 ↔ 〈I〉〈j′,j′′〉)∧
(∀j < ⌈|I| 1−ǫ

k ⌉∃comp′ < q(|I|)∀j′ < ⌈|I|ǫ⌉∃cell′ < |A| ∀j′′ < |A|
(〈comp〉〈j+1,j′,j′′〉 ↔ 〈cell′〉j′′)∧
reachd

·−1
A (〈comp〉〈j,·,·〉,m

1−ǫ
k , j′, cell′, comp′))∧

(〈cell〉1 ↔ 〈comp〉〈p1,p2,0〉) ∧ (〈cell〉2 = 〈comp〉〈p1,p2,·〉).

Again, we can prove uniqueness of the computation by induction on the num-
ber of its lines and let

Reachd
A(i, p1, p2, cell) =def ∃comp < q(|I|) reachd

A(i, p1, p2, cell, comp).

We now can give a ΣB
0 definition of the predicate W [〈i, j, ·〉] coding the compu-

tation as in ACCA on input X of length mk. We let

W [〈i, j, ·〉] = cell ≡ ∃r0, . . . , rd < |X|
1−ǫ

k , con1, . . . , cond < p(|X|ǫ)
∀z1, . . . , zd < |X|ǫ ∃cell1, . . . , celld < |A|

(i =
d∑

ℓ=0

rℓ · |X|ℓ
1−ǫ

k

∧ Reachd
A(X̃, rd, zd, celld) ∧ 〈cond〉zd

= celld

∧ Reachd−1
A (cond, rd−1, zd−1, celld) ∧ 〈cond−1〉zd−1

= celld−1

...

∧ Reach0
A(con1, r0, j, cell)),

where p is a polynomial depending on the encoding and X̃ is the starting config-
uration of A on input X.

Informally the above formula says that we compute the configurations of A
by using the predicates Reachd

A through Reach0
A. That is, after the application of

Reachd
A (i.e. after making the biggest steps) we have reached configuration cond,

which we plug into Reachd−1
A to get configuration cond−1 and so on. It remains

to show that this definition of W [〈i, j, ·〉] coincides with the real one, i.e. that
W [〈i + 1, ·, ·〉] follows from an application of the transition function of A from
W [〈i, ·, ·〉].

We will prove this inductively, depending on i. Again let rℓ be such that

i =
∑

ℓ rℓ · |X|ℓ
1−ǫ

k . If i < |X| 1−ǫ
k the assumption follows straightforwardly from

the definition of Reach0
A. Now for bigger i. If the r0, given as above, is bigger

then 0 then again the assumption follows from the definition of reach0
A. Now let

ℓ > 0 be the first index with rℓ > 0. We the have to argue that reachℓ′−1
A has

the desired property. This, however, follows straightforward if we can verify this
assertion for reachℓ′−1

A . Observe that d is a constant depending only on A and
k, so we need to make this argument only a constant number of steps to reach
reach0

A, where we know that the assertion holds. This concludes the proof.
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We can now prove our main result.

Theorem B.14. Let N � V0 and M ⊆ N be the polylogarithmic cut. Then
M � VNC1.

Proof. We have to prove that for all strings Gϕ ∈M2, representing a formula ϕ as
a tree and assignments I ∈M2 to its variables (i.e. leafs in the tree representation)
a string Y exists in M2 that contains all values of ϕ’s subformulas as in the
definition ofMFV in Section B.2.3 and satisfies the inductive conditions ofMFV .

However, by ΣB
0 -comprehension and the formalized Nepomnjascij’s Theorem

it suffices to describe an algorithm that computes whether i ∈ Y from Gϕ and I

in TimeSpace(|Gϕ|k , |Gϕ|ǫ) for some k ∈ N and ǫ < 1. To this end let Gϕ and I
be given.

The following is a recursive algorithm computing the value of Y [i], given
G := Gϕ, I and i.

NodeValue(G,I,i)

• boolean left; boolean right;

• If i>2·|G|

– Output (0); End;

• Else If i>|G|

– Output (I[i-|G|]); End;

• Else If G[i]=1

– left := NodeVal(G,I,2i);

– right := NodeVal(G,I,2i+1);

– Output (left AND right); End;

• Else If G[i]=0

– left := NodeVal(G,I,2i);

– right := NodeVal(G,I,2i+1);

– Output (left OR right); End;

• Else

– Output (0); End;

Observe that the algorithm at any given point only stores a constant amount of
data per level of the treeG and therefore uses onlyO(log(|G|)) space. The number
steps the algorithm makes is clearly polynomial in the size of G. Therefore by
Theorem B.13, for every monotone formula ϕ, representable as a tree inM , we get
a ΣB

0 formula evalϕ, such that evalϕ(i, I) ≡ Y [i]. Applying the Comprehension
Schema in V0, i.e. in N , this verifies the existence of a Y as in MFV for all
formulas represented by trees in M .Therefore MFV holds in M and so M �

VNC1.
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B.4 Implications for Proof Complexity

We now wish to apply the above results to propositional proof systems. More
precisely we wish to show that theories of small cuts of a model of a given theory
T correspond to stronger proof systems than T does. An elegant way of showing
such a statement is via the Reflection Principles of the given proof systems, i.e.
the statement that the proof system is correct, as explained in Section B.2.4.
With their help we can conclude the following recent result of Filmus, Pitassi
and Santhanam [39].

Theorem B.15 ([39]). Every Frege system is sub exponentially simulated by
AC0-Frege systems.

Proof. By Theorem B.9 we have to prove the polylogarithmically bounded Re-
flection Principle for Frege in V0. This, by Theorem B.14 however, corresponds
to proving the Reflection Principle for Frege in VNC1, which holds by Fact 6.

Another, related, application is in the separation of propositional proof sys-
tems. In [67] we proved the following.

Proposition B.16. For almost every random 3CNF A with n variables and
m = c · n1,4 clauses, where c is a large constant, ¬A has polynomially bounded
TC0-Frege proofs.

On the other hand it is well known (see for example [25]) that such formulas
have no subexponential refutation in Resolution. Thus, this yields an average case
separation between Resolution and TC0-Frege. We can now extend this result to
an average case separation between Resolution and AC0-Frege as follows.

Theorem B.17. For almost every random 3CNF A with n variables and m =
c · n1,4 clauses, where c is a large constant, ¬A has subexponentially bounded
AC0-Frege proofs.

Proof. By Theorem B.14 the polylogarithmic Cut of any V0-model is a model of
VNC1, therefore also of VTC0. This yields, as in our proof of Theorem B.15,
that AC0-Frege subexponentially simulates TC0-Frege. The result now follows
from Proposition B.16.

B.5 Conclusion and Discussion

As we have seen cuts of models of weak arithmetics constitute an appropriate
way for reasoning about super-polynomial simulations between proof systems.
An advantage in comparison to syntactic arguments is the possible applicability
of results in Model Theory and a more uniform treatment. This can readily
be observed as with our argument, e.g. the work of Paris and Wilkie [74][75]
immediately imply the simulation results from Bonet et al. [17].

This leads to interesting possibilities for further research, especially towards
the weak automatizability of weak propositional proof systems such as Reso-
lution. The underlying theory, which was V0 in our argument, must be sig-
nificantly weakened, however. If we could take T 2

1 (α) as our base theory, we
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could reason about whether Res(log) has the feasible interpolation property in
the same way as Kraj́ıček and Pudlák [61], Bonet, Pitassi and Raz [18] or Bonet,
Domingo, Gavaldà, Maciel, and Pitassi [17]. Now, if Res(log) does not have quasi-
polynomial feasible interpolation we know by a result from Atserias and Bonet [6]
that Resolution is not weakly automatizable, so we would be finished. Whether
we can actually do it depends on the strength of the theory the polylogarithmic
cut of T 2

1 (α) models and if we can formalize some sort of iterated multiplication
(such as in [51]) in that theory. Also, the security of Diffie-Hellman seems to be
a more appropriate assumption than that of RSA, as the computational power
needed to verify the correctness of Diffie-Hellman seems to be lower.
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C. Necessary Background

Here we will summarize and briefly explain the logical and complexity theoretic
concepts we need.

C.1 Logical Preliminaries

Historically, logic started to become more influential in mathematics with the
advent of methods which are not ”obviously true”. At latest from the 19th
century on mathematical arguments became more abstract and in many cases
used objects which were not rigorously constructed. A famous early example is
Dirichlet’s definition of a function that is 1 on the rational and 0 on the irrational
numbers. This was revolutionary at its time as its definition did not provide a
clear means of computing the image. Aside from leading to various new results,
use of such methods also bore a great risk of inconsistency. This let to various
criticisms of such arguments as to whether these results should be acceptable at
all. David Hilbert, one of the strongest proponents of the use of such non-finitary
techniques, tried to counter such criticism in his famous Conservation Program:
To eliminate the above problem, can we give an explicit collection of feasible true
statements and a system of rules, which allows us to manipulate sentences in a
way that does not alter the truth value of true sentences, such that all statements
about finitary objects proved in an abstract way can be reproved using that
system? Hilbert himself believed that a fragment of elementary number theory
exists that would be appropriate as a base for an axiomatization. This fragment
should be consisting of ”gewisse außerlogische diskrete Objekte, die anschaulich
als unmittelbares Erlebnis vor allem Denken da sind. Soll das logische Schließen
sicher sein, so müssen sich diese Objekte vollkommen in allen Teilen überblicken
lassen und ihre Aufweisung, ihre Unterscheidung, ihr Aufeinanderfolgen ist mit
den Objekten zugleich unmittelbar anschaulich für uns da als etwas, das sich
nicht noch auf etwas anderes reduzieren läßt.”1 [52]. That this view is not correct
was shown shortly after by Kurt Gödel as we will see in a moment.

Hilbert’s program became the driving force of introducing a rigorous logical
framework into mathematics. Although its original goal proved to be impossible
to achieve, it became extremely successful in analyzing and structuring mathe-
matics.

For now, we will call such a system of deduction a calculus and such an explicit
collection of statements a theory. To treat the above question we need to talk
about objects that live in a mathematical world, e.g. the elements of the set of
natural numbers. We will, however, start with easier objects to cope with. That
is, we will start with statements as primitives and ways to reason about them.
An excellent and more extensive survey can be found in [22] or with a different
focus in [35].

1”extra-logical discrete objects, which exist intuitively as immediate experience before all
thought. If logical inference is to be certain, then these objects must be capable of being
completely surveyed in all their parts, and their presentation, their difference, their succession
(like the objects themselves) must exist for us immediately, intuitively, as something which
cannot be reduced to something else.”
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C.1.1 Propositional Logic

We will briefly sketch propositional or sentential logic. In such a logic our primitive
objects of concern are propositions. We will make certain assumptions about
how we want to evaluate these propositions and their interconnectivity. The first
principle we want to adhere to is the principle of bivalence, that is, every statement
is either true or false. The other principle is the principle of extensionality. That
is, the truth value of any statement is determined by its propositional variables.
We will soon formalize these principles in various calculi. But to do so, we first
have to formalize our language.

We choose a very simply language to reason about. That is, we allow the
propositions only to be connected by the connectives and, or and not and have
a symbol for true and false. Formally, we will consider the symbols ∧, ∨ and
¬, standing for conjunction, disjunction and negation, as logical connectives and
let ⊤ and ⊥ be constant symbols representing true and false, respectively. We
denote propositional variables by lower case letters p, q, r, . . . , possibly indexed.

A propositional formula is precisely any object that can be constructed in
finitely many steps using the following rules.

• Propositional variables are propositional formulas.

• ⊤ and ⊥ are propositional formulas.

• If ϕ, ψ are propositional formulas, then so are (ϕ ∧ ψ), (ϕ ∨ ψ) and (¬ϕ) .

We will omit unnecessary brackets and will agree on that ¬ binds stronger than
∨ and ∧.

To incorporate the principle of extensionality we evaluate a formula by as-
signing a value to each of its variables and then successively evaluate the whole
statement by applying boolean functions corresponding to the connectives to the
values of the subformulas. We let

AND : {⊥,⊤} × {⊥,⊤} −→ {⊥,⊤}
(⊥,⊥) 7→ ⊥
(⊤,⊥) 7→ ⊥
(⊥,⊤) 7→ ⊥
(⊤,⊤) 7→ ⊤

OR : {⊥,⊤} × {⊥,⊤} −→ {⊥,⊤}
(⊥,⊥) 7→ ⊥
(⊤,⊥) 7→ ⊤
(⊥,⊤) 7→ ⊤
(⊤,⊤) 7→ ⊤

NOT : {⊥,⊤} −→ {⊥,⊤}
⊥ 7→ ⊤
⊤ 7→ ⊥
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If the outcome of the above process for some assignment w to α is ⊤ we say
that w satisfies α and denote that symbolically as w � α. Two formulas α, β
are equivalent (in symbols α ≡ β) iff they have the same truth values under all
assignments, i.e. iff for all assignments w to the variables of α and β it holds that
w � α ⇔ w � β. We will write � α if a formula is satisfied by every assignment
and call such a formula a tautology. Let Φ be a set of formulas and ϕ be a
formula. We say Φ entails ϕ, iff every assignment that satisfies all formulas in Φ
also satisfies ϕ.

We can now prove the following rules via application of the above boolean
functions inductively on the nesting of the connectives in each formula.

Associativity. α ∧ (β ∧ γ) ≡ α ∧ β ∧ γ and

α ∨ (β ∨ γ) ≡ α ∨ β ∨ γ
Commutativity. α ∧ β ≡ β ∧ α and

α ∨ β ≡ β ∨ α
Idempotency. α ∧ α ≡ α and

α ∨ α ≡ α

Absorption. α ∧ (α ∨ β) ≡ α and

α ∨ (α ∧ β) ≡ α

Distributivity. α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) and

α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)
De Morgan Rules. ¬(α ∧ γ) ≡ ¬α ∨ ¬γ and

¬(α ∨ γ) ≡ ¬α ∧ ¬γ

From now on we will use abbreviations, such as p → q for ¬p ∨ q, freely in
our formulas. As is standard, we will identify 0 with ⊥ and 1 with ⊤.

We proceed by turning the above semantic discussion of propositional logic
into a syntactical one. I.e. we will give calculi that allow to derive tautologies
without having to evaluate them. We call such a calculus C sound, iff every
formula, derivable in C, is a tautology. We call it implicationally complete, iff,
whenever Φ entails ϕ, there is a derivation of ϕ in C, from formulas in Φ. We will
now give examples of such calculi and specify what we mean with derivability in
such systems.

Hilbert- or Frege Calculi

A Hilbert- or Frege calculus consists of rules and axioms. We will stick to the
name Frege system for such calculi now. This name was coined by Cook and
Reckhow in [30].

A Frege rule is written as

A1 . . . Ak (Frege Rule)
A0
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and consists of proposition formulas A0 . . . Ak. A1 . . . Ak are the premisses of the
rule, A0 the conclusion. An axiom is simply a rule with k = 0. A formula ϕ0

is inferred from formulas ϕ1 . . . ϕk iff each ϕi is a substitution instance of Ai,
obtained by the same substitution.

A derivation of a formula ϕ in such a system is a sequence S0, . . . , Sk, where
ϕ is a substitution instance of Sk, such that each Si is an axiom or inferred from
previous elements. A derivation from Φ of a formula ϕ is a derivation where we
additionally allow the appearance of formulas from Φ. We call k the length of the
derivation and each Si a proof line. We use the symbol ⊢F ϕ to denote that ϕ is
derivable in a Frege system and Φ ⊢F ϕ to denote derivability from Φ.

Such a system F is a Frege system iff

• F is sound and

• F is implicationally closed.

It is noteworthy that it suffices to have Modus Ponens as the only inference
rule.

The following is Frege’s Propositional Calculus PC.
It consists of the rule of Modus Ponens

B B → A (MP)
A

and the axioms

Frege 1. A→ ¬¬A
Frege 2. ¬¬A→ A

Frege 3. (A→ B)→ (¬B → ¬A)

Frege 4. A→ (B → A)

Frege 5. (A→ (B → C))→ (B → (A→ C))

Frege 6. (A→ (B → C))→ ((A→ B)→ (A→ C))

The Frege calculus satisfies a completeness theorem.

Theorem C.1. The Frege calculus is complete, i.e. for all propositional formulas
ϕ we have that

� ϕ ⇔ ⊢F ϕ.

Gentzen’s Sequent Calculus

A from a proof theoretic perspective very important calculus is Gentzen’s propo-
sitional calculus PK developed in [43, 44]. It is a very elegant calculus allowing
for deep proof-theoretic analysis and we refer to [57] for a more thorough intro-
duction. PK is defined from sequents Γ −→ ∆, where Γ and ∆ are sequences
of formulas. Semantically a sequent is true iff, whenever all formulas from Γ are
true under some assignment, so is one formula from ∆, i.e.

∧
Γ → ∨

∆. This
especially implies that ∅ −→ ∅ does not hold.
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A PK-proof is a sequence of sequents in which every sequent is an initial
sequent

A −→ A, ⊥ −→, −→ ⊤,
where A is atomic, or is derived from previous sequents by application of the
following rules:

Γ −→ ∆ (Weaken Left)
Γ, A −→ ∆

Γ −→ ∆ (Weaken Right)
Γ −→ A,∆

Γ1, A1, A2,Γ2 −→ ∆
(Exchange Left)

Γ1, A2, A1,Γ2 −→ ∆

Γ −→ ∆1, A1, A2,∆2 (Exchange Right)
Γ −→ ∆1, A2, A1,∆2

Γ, A,A −→ ∆
(Contract Left)

Γ, A −→ ∆

Γ −→ A,A,∆
(Contract Right)

Γ −→ A,∆

Γ −→ A,∆
(¬ Left)

Γ,¬A −→ ∆

Γ, A −→ ∆
(¬ Right)

Γ −→ ¬A,∆

A1,Γ −→ ∆
(∧ Left 1)

A1 ∧A2,Γ −→ ∆

Γ −→ A1,∆ Γ −→ A2,∆ (∧ Right 1)
Γ −→ A1 ∧A2,∆

A1,Γ −→ ∆
(∧ Left 2)

A2 ∧A1,Γ −→ ∆

A1,Γ −→ ∆ A2,Γ −→ ∆
(∨ Left 1)

A1 ∨A2Γ −→ ∆

Γ −→ A1,∆ (∨ Right 1)
Γ −→ A1 ∨A2∆

Γ −→ A1,∆ (∨ Right 2)
Γ −→ A2 ∨A1∆

Γ −→ A,∆ Γ, A −→ ∆
(Cut)

Γ −→ ∆

The new formula introduced in a rule is the principal formula, the formulas it
is inferred from are the minor formulas. All other formulas are referred to side
formulas.

Theorem C.2. PK is complete. That is, whenever Γ −→ ∆ is true in the
semantic sense given above, there is a PK proof of that sequent.

Resolution

Another important calculus is Resolution. It was introduced by Blake [16] and
subsequently developed by Davis and Putnam [32] and Robinson [84]. It is es-
sentially a system for refuting formulas in conjunctive normal form, but can be
perceived as a propositional calculus, since there is a canonical way of turning any
given formula into an equivalent one in disjunctive normal form. Such a formula
is a tautology iff its negation (which can be transformed into a CNF) is refutable.
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A propositional formula ϕ is a k-CNF iff

ϕ =
∧

i

∨

j<k

ℓi,j,

where every ℓi,j is a literal, i.e. a variable or a constant, or their negation. A
propositional formula ϕ is a k-DNF iff

ϕ =
∨

i

∧

j<k

ℓi,j.

We say that a formula is in disjunctive or conjunctive normal form, iff, for some
k, it is a k-DNF or k-CNF, respectively. We call

∨
j<k ℓi,j a clause and represent

it as the set {ℓi,0, . . . , ℓi,k−1} of its literals.
Resolution consists of only one rule

C1 ∪ {x} C2 ∪ {x̄}
(Res)

C1 ∪ C2

where the Ci do not contain x or x̄.
A derivation of a clause C from a set of clauses C is a sequence A1, . . . , Ak = C,

where each Ai is a clause of C or derived by applying the resolution rule to Ak1

and Ak2 , for k1, k2 < i.
A CNF is refuted, iff the empty clause is derivable from its set of clauses.
When we talk about the length of a proof in Resolution we will usually only

be interested in proofs of formulas in DNF, as there is no efficient way of turning
an arbitrary formula into an equivalent DNF.

If a formula ϕ is derivable in Resolution we denote that by the symbol ⊢Res ϕ.

Theorem C.3. Resolution, if perceived as above, is a complete calculus.

C.1.2 First-Order Logic

While in the previous section we were concerned with the relation between state-
ments, we will now turn our focus to the very structure of these statements. That
is, we will explore how mathematical statements are built up and try to give a
calculus that allows to deduce true statements without referring to the actual
mathematical world for proof.

As before we build our formulas inductively from variables, connectives such
as ¬ and ∨ and brackets. Additionally we also allow quantifiers that range over
variables, ∃ standing for ”it exists” and ∀ denoting ”for all” and an equality
symbol =. We call these symbols the logical symbols and will now turn to the
non-logical ones. Since we want to talk about mathematical structures we also
have to add symbols depending on the class of objects we want to talk about.

A signature σ = is a set of symbols {c1, . . . , cm, f1, . . . , fn, R1, . . . , Rk} together
with a function arσ, that defines the arity of each symbol. A signature is relational
if m = n = 0, that is, if it only contains relation symbols. By convention, we will
always include = and interpret it as true identity.

Given a signature σ = ({c1, . . . , cm, f1, . . . , fn, R1, . . . , Rk}, ar), a σ-structure
is a set

M = {M, cM1 , . . . , c
M

m , f
M

1 , . . . , fM

n , RM

1 , . . . , R
M

k },
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whereM is the underlying non-empty set of the structure, called the universe, and
the cMi , f

M

i , RM

i are the interpretations of the constants, functions and relations
from the signature. I.e. they are actual objects in our realm of discourse and
have names in the signature.

A first-order term is defined inductively as follows.

• Constants and variables are terms.

• If f is am-ary function symbol and t1, . . . , tm are terms, then so is f(t1, . . . , tm).

A first-order formula is defined inductively as

• If t1, t2 are terms, then t1 = t2 is a formula.

• If R is a m-ary relation symbol and t1, . . . , tm are terms, then R(t1, . . . , tm)
is a formula.

• If ϕ1, ϕ2 are formulas, then so are (¬ϕ1), (ϕ1 ∨ ϕ2) and (ϕ1 ∧ ϕ2).

• If ϕ is a formula, so are (∃xϕ) and (∀xϕ).

Formulas of the first two types are called atomic. The set of all formulas
in a given signature is called a language. As before we use the → and ↔ as
abbreviations. A variable is free in a formula if it is not in the scope of a quantifier.
A formula is a sentence if it does not contain free variables. A theory is a set of
sentences in the same signature (i.e. a subset of the appropriate language). For
brevity we will often identify the notion of signature and language, as the latter is
a straight-forward construction of the former. As before we will omit unnecessary
brackets.

Given a σ-term t with variables x̄, a σ-structure M and a sequence of elements
ā of M , we let tM be the interpretation of the term t in M, where ai is substituted
for xi.

We can now give a definition of what it means that a sentence is true in a
mathematical structure. Let σ be a signature and M a σ-structure. Then we
say that a sentence ϕ holds in M (in symbols M � ϕ) according to the following
definition.

Definition C.4. Let σ be a signature and M a σ-structure. Let ϕ(x̄) be a
σ-formula with all free variables displayed. Let ā ∈M . Then M � ϕ(ā) iff

• If ϕ is t1 = t2, then M � ϕ(ā) iff tM1 (ā) = tM2 (ā).

• If ϕ is R(t1, . . . , tar(R)), then M � ϕ(ā) iff RM(t1M(ā), . . . , tMar(R)(ā)).

• If ϕ is ¬ψ, then M � ϕ(ā) iff M 6� ψ(ā).

• If ϕ is ψ1 ∨ ψ2, then M � ϕ(ā) iff M � ψ1(ā) or M � ψ2(ā).

• If ϕ is ψ1 ∧ ψ2, then M � ϕ(ā) iff M � ψ1(ā) and M � ψ2(ā).

• If ϕ is ∃xψ(x̄, x), then M � ϕ(ā) iff there exists a ∈M s.t. M � ψ(ā, a).

• If ϕ is ∀xψ(x̄, x), then M � ϕ(ā) iff for all a ∈M , M � ψ(ā, a).
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Given a theory T , we say that a structure M is a model of T , in symbols
M � T , iff every sentence from T holds in M. A theory is complete iff for every
sentence ϕ, either ϕ ∈ T or ¬ϕ ∈ T . We write T � ϕ iff ϕ holds in every model
of T . We write � ϕ iff ϕ is valid, that is, iff it is true in every σ-structure.

As in the previous section we can try to develop a calculus that captures
semantical reasoning with syntactical means. This time, however, we are bound
to fail if the underlying theory is consistent but too strong. We will see this in
Section C.1.2.

Before we come to what we cannot do syntactically we will see some positive
results. To this end we will extend the Frege calculus, given above, to a calculus
for first-order logic and briefly sketch some classical results.

Let PC be the Frege calculus above. We will extend PC by the following rules
of quantifier introduction:

ϕ→ ψ(x)
(∀ introduction)

ϕ→ ∀xψ(x)

ψ(x)→ ϕ
(∃ introduction)∃xψ(x)→ ϕ

where x may not occur freely in ϕ. We will also add the following two axiom
schemes

ϕ(t)→ ∃xϕ(x) and ∀xϕx→ ϕ(t)

and, for every function symbol f and relation symbol R (including =), the fol-
lowing axioms for equality

∀x.x = x

∀x̄∀ȳ((x1 = y1 ∧ · · · ∧ xar(f) = yar(f))→ f(x̄) = f(ȳ))

∀x̄∀ȳ((x1 = y1 ∧ · · · ∧ xar(R) = yar(R)) ∧R(x̄)→ R(ȳ)).

Additionally for = we add

a = b↔ b = a and a = b ∧ b = c→ a = c.

We will call this calculus FC and symbolize that a formula ϕ is derivable in FC

by writing ⊢FC ϕ.

Proposition C.5. The system FC is sound and complete. That is, for any set of
formulas T , if T � ϕ then T ⊢FC ϕ and for any set of sentences, if T ⊢FC ϕ then
T � ϕ.

A theory T is consistent w.r.t. a calculus iff there is a formula that is not
derivable from T . We will conclude this overview by giving a short overview of
some important properties of First-Order Logic.

Important Theorems for First-Order Logic

In this section we will sketch a few important theorems of first-order logic. This
list is by no means complete, but is meant to give a frame to First-Order Logic.

The Compactness Theorem incorporates the intended property that the calculi
we have designed are finitistic in the sense that every proof has a finite length.

Theorem C.6 (Compactness Theorem). A formula ϕ is provable in FC from a
set of formulas Φ iff there exists a finite subset Φfin ⊆ Φ, such that ϕ is already
provable from Φfin.

84



From a (first-order) logical perspective, the notion of size of an arbitrary
model is not well definable, when we take a look at infinite structures. This is
exemplified in the Löwenheim-Skolem Theorem.

Theorem C.7 (Löwenheim-Skolem). Let L be some first-order language and let
Φ be a set of L-formulas that is satisfiable over an infinite universe, with κ = |L|.
Then there is an L-structure M of cardinality max(κ,ℵ0) that satisfies Φ.

We now turn to the theorems that obliterated Hilbert’s vision of being able
to turn every ideal proof into a finitistic one. Gödel’s Incompleteness Theorems
[45] show that there is no formal system that admits on the one hand a decidable
notion of provability and on the other hand is complete in the sense that it can
prove every Π1 statement that holds in the natural numbers.

Numerous books have been written about the Incompleteness Theorems, so we
will only state the theorems. We refer a more interested reader to the literature,
for example [8], [22] or [80].

We will first give Gödel’s original version of his first theorem and then Rosser’s
version, which does not need the additional assumption of ω-consistency. A theory
T is called ω-consistent iff it is consistent in a way with the natural numbers.
That is, if an existential statement ∃ϕ(x) is provable from T , then there must be
a numeral n such that T does not prove ¬ϕ(n).

Theorem C.8 (Gödel’s First Incompleteness Theorem). Let T be a consistent,
recursive theory extending Robinson Arithmetic. Then there is a true sentence ϕ,
such that ϕ is not provable from T . Moreover, if T is ω consistent, then ¬ϕ is
also not provable from T .

Here, the formula ϕ is explicitly constructed from T and basically asserts its
own unprovability from T , i.e. it is an encoding of the statement ”I am not
provable in T”. Rosser [85] subsequently weakened the assumptions of Gödel’s
Theorem.

Theorem C.9 (Rosser’s Theorem). There is no consistent, recursive and com-
plete theory extending Robinson Arithmetic.

Soon after publishing his First Incompleteness Theorem, Gödel became aware
of the existence of another example example of a statement that is not provable
in T .

Theorem C.10 (Gödel’s Second Incompleteness Theorem). There is no con-
sistent, recursive theory extending Robinson Arithmetic that can prove its own
consistency.

The proof of Theorem C.10 actually shows that the consistency statement is
equivalent to the sentence from Theorem C.8 asserting its own unprovability.

C.2 Complexity Theory

Gödel’s Incompleteness Theorems imply that there are problems that cannot
be solved algorithmically. In Complexity Theory we are concerned with those
problems that can be. Even if problems are solvable they differ in various aspects,
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such as time and space needed for the computation. To make these notions precise
we first need to define what our model of computation should be. We will use a
Turing machine as our principal model of computation.

Definition C.11. A deterministic Turing machine is defined by a tuple (K,Σ, δ, s),
where K is a set of states containing the initial state s, Σ a set of symbols, con-
taining � (the ”first” symbol) and ⊔ (the ”blank” symbol), and δ : K × Σ −→
K ∪ {”halt”, ”yes”, ”no”} × Σ × {←,→, ↓} the transition function. The state
”halt” is called the halting state, the state ”yes” the accepting state and the state
”no” the rejecting state.

We view a Turing machine as a means of computation in the following sense.
The machine works on a to the right infinite work tape consisting of cells, each of
which can be filled with symbols from Σ. It has one read/write head which points
to a cell. Initially the tape contains only the input x ∈ Σ∗ on its leftmost cells and
⊔ on the others. The read/write head points to the leftmost cell and the machine
is in its initial state s. A Turing machine computation is a sequence of applications
of the transition function until the machine is in one of the states ”halt”, ”yes”
or ”no”. The transition function is applied as follows. If the read/write head
points to cell i, the machine is in state t and the cell contains symbol y ∈ Σ, then
the machine looks at δ(t, y) = (t′, y′, dir) and replaces y on cell i by y′, moves
in direction dir, that is if dir =← it points to cell i ·− 1, if dir =→ it points to
cell i + 1 and if dir =↓ it points to cell i, and then the machine goes into state
t′. If the state is not one of ”halt”, ”yes”, ”no” it continues to do so. We call the
number of applications of ∆ the number of steps. A configuration of a Turing
machine is a snapshot of its whole tape, state and position of the read/write head
during its computation. We can picture the computation of a Turing machine as
a sequence of its configurations.

A Turing machine M accepts an input x ∈ Σ∗, in symbols M(x) = ”yes”,
iff the last state of the computation on input x is ”yes”, it rejects x, in symbols
M(x) = ”no”, if the outcome is ”no”.

A Turing machine M decides or computes a language L ⊂ Σ∗, iff for all
x ∈ Σ∗, x ∈ L⇔ M(x) = ”yes” and x 6∈ L⇔ M(x) = ”no”. We call a function
computable if its bit graph is decidable.

Turing machines can be defined to effectively simulate other Turing machines.

Theorem C.12. There exists a universal Turing machine U . That is, on input
〈x, M̃〉, where M̃ is an encoding of the description of Turing machine M , U
simulates the computation of M in the sense that M(x) = ”yes”⇔ U(〈x, M̃〉) =
”yes”, M(x) = ”no” ⇔ U(〈x, M̃〉) = ”no” and M(x) = ”halt” ⇔ U(〈x, M̃〉) =
”halt”. Moreover there exists a polynomial p, such that the number of steps U
needs for these computations is bounded by p of the number of steps M needs.

A Turing machineM halts on input x, iff it reaches one of the states ”halt”, ”yes”
or ”no” in its computation. The famous halting problem asks, whether there is a
Turing machine that computes the language

HALT := {x ∈ {0, 1}∗ : x encodes a Turing machine that halts on every input}.

The following can be shown via a simple diagonal argument.
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Theorem C.13. There is no Turing machine computing HALT.

As we have observed so far, Turing machine constitute a robust means of
computation. That goes as far as the famous Church-Turing Thesis, which states
that every language that can be computed by any means can also be computed
by a Turing machine.

We will turn now to a more contemporary perception of computations. That
is, we will be interested in the number of steps a machine takes in a computation
and devise classes which take such things into account. We call the number of
steps a Turing machine needs to compute an input of length n its time, mea-
sured as a function f(n). The space needed is the maximal number of a cell the
read/write head points to during a computation. We say that a TM M has time
complexity f , if it uses at most f(n) many steps on inputs of length n. The same
goes for space complexity with respect to the number of cells needed.

When interested in size or time, suddenly new computing paradigms appear
which did not make a difference when one only focusses on computability. The
one we will be interested in the most is nondeterminism. To define this we
have to revisit the definition of a (deterministic) Turing machine given above.
Observe that the transition function above is what it is: a function. If we relax
the definition, we could also allow for the transition being given by a relation,
i.e. allowing more than one possible value. To still make sense of the notion of
computation, we have to give a way of deciding whether a Turing machine accepts
or rejects. To this end we take a look at the tree of all possible computations
on input x. We say that a nondeterministic Turing machine accepts an input x
if one branch of computations leads to ”yes” and it rejects if all leafs are ”no”.
The time needed for the computation is the smallest length of a branch leading
to ”yes”.

This definition is equivalent to the following heuristic. A decision problem is
decidable in nondeterministic time f , iff a witness exists that can be checked in
time f by a deterministic Turing machine. We let Time(f) be the class of all
languages that are decided by a deterministic Turing machine in f many steps.
Accordingly we call NTime(f) the class of all languages that are accepted by a
nondeterministic Turing machine in f many steps. We define the space classes
Space(f) and NSpace(f) and the classes with space and time bound TimeSpace(f)
and NTimeSpace(f, g) respectively. Obviously, for all f, g, Time(f) ⊆ NTime(f),
Space(f) ⊆ NSpace(f) and TimeSpace(f, g) ⊆ NTimeSpace(f, g). We generalize
these notions to families of functions in the obvious way. We call any class of
languages a complexity class. Arguably the most famous complexity classes are
P := Time(poly) and NP := NTime(poly), where poly is the set of all polynomials.
Another interesting class is FP, the class of all functions whose bit graph is in P.
The famous question, whether P = NP asks, whether there is an efficient way to
conduct nondeterministic computations on deterministic machines. Interestingly,
the question has been settled affirmatively with respect to space complexity by
Savitch in [86].

Theorem C.14 (Savitch). Let f be any eventually increasing function that grows
at least as strong as the logarithm, then NSpace(f(n)) ⊆ Space((f(n))2).

Another important family of complexity classes are those, whose complement
is one of the aforementioned classes. We denote these classes by a co written
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in front of them. For example the class of problems, whose complements have
polynomial size witnesses that can be verified in deterministic polynomial time is
the class coNP. This class is of high importance to us, as it contains an abundance
of interesting problems. Namely those, which have a feasible refutation.

A many-one reduction from a language L ⊂ {0, 1}∗ to a language L′ ⊂ {0, 1}∗
is a polynomial time computable function f : {0, 1}∗ −→ {0, 1}∗ such that x ∈
L ⇔ f(x) ∈ L′. Iff there is such a reduction from L to L′ we denote this by
L ≤m L′. If C is any complexity class and L ∈ C is a language computable
in this class, then L is complete for C iff for all L′ ∈ C, L′ ≤m L. Complete
problems form a very important subclass of a complexity class as we can relate
complexity classes to one another simply by relating complete problems. The
notions of reduction and completeness can straightforwardly be generalized to
functions from other classes than FP.

As a first example of a complete language we take 3SAT the set of all satisfi-
able 3CNF (in some fixed encoding). It is in NP, because a satisfying assignment
is a polynomial size witness that can be efficiently verified. On the other hand, by
carefully observing how computations on Turing machines are carried out, we can
also see that any such computation can be given as a 3CNF. This was famously
first proved by Cook in [26] and independently by Levin in [63].

Theorem C.15. [Cook-Levin] 3SAT is NP-complete.

As a straightforward application this implies that, to answer the P = NP ques-
tion, it is sufficient to decide, whether there is a polynomial-time algorithm for
deciding whether a 3CNF is satisfiable or not. Unfortunately, it turned out that
this question is not easy to answer at all.

Another example for a complete language is TAUT, the class of all propo-
sitional tautologies (in some arbitrary, but sensible, fixed encoding), which is
coNP-complete. This is an easy corollary from Theorem C.15, as a formula ϕ is
a propositional tautology if and only if its negation ¬ϕ is not satisfiable.

An oracle Turing machine is a Turing machine M that has an additional tape
assigned to some fixed oracle O (i.e. predicate), the query tape, and an additional
state, the query state. At any point when the machine is in the query state it
reads what is written on its query tape and, in one step, infers the solution of
that query from the oracle assigned to that tape. That is, if the query satisfies
the predicate, it will write 1 on the tape, otherwise 0. We denote this machine
by MO.

This notion gives rise to another version of reducibility. We say that a language
L Turing reducible to a language L′ (in symbols L ≤T L′) iff the there exists an
oracle Turing machine M with an oracle for L′ that decides L. We say that this
reduction is an f -time reduction, if M uses at most f(n) many steps for inputs
of size n (in symbols L ≤f

T L′). This notion of reducibility is weaker than the
notion of many-one reducibility introduced earlier as the following holds.

Proposition C.16. Let L,L′ ⊂ Σ∗ be two languages and let f be an eventually
not too slowly increasing function. Then L ≤f

m L′ ⇒ L ≤f
T L

′.

We say that a language L is in the class PNP iff there is a deterministic
polynomial-time Turing machine M and a many-one NP-complete oracle O, such
that MO decides L. Accordingly for NPNP and coNPNP. We also call these classes
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∆p
1, Σp

1 and Πp
1, respectively. We let ∆p

0 := P, Σp
0 := NP, Πp

0 := coNP and then
define

• ∆p
i+1 := PΣp

i ,

• Σp
i+1 := NPΣp

i and

• Πp
i+1 := coNPΣp

i .

The following relation holds.

Proposition C.17. For all i, ∆p
i ⊆ Σp

i , ∆p
i ⊆ Πp

i , Πp
i ⊆ ∆p

i+1 and Σp
i ⊆ ∆p

i+1.

We let the polynomial hierarchy PH :=
⋃

i Σ
p
i . Thus, the P = NP question

asks, whether the polynomial hierarchy collapses to its first level. There is a
nice correspondence between computability in various levels of the polynomial
hierarchy and provability in weak arithmetic, this is well explained in [20] and
[57].

C.2.1 Circuit Complexity

We will give an exposition of the circuit classes which are of relevance to us. For
a thorough introduction see [90]. Informally speaking a circuit is a very simple
means of computation defined by an underlying labeled graph. It is defined as
follows.

Definition C.18. A Boolean Circuit C is a labeled directed acyclic graph con-
taining sources (nodes with in-degree 0, the input nodes) and sinks (nodes with
out-degree 0, the output nodes). Each node that is not an input node is labeled
with either ∧, ∨ or ¬, where nodes which are labeled as ¬ have in-degree at most
1, while the others may have any in-degree. The input nodes and output nodes
are ordered, such that we can refer to the ith bit of the input or output. The size
|C| of a circuit C is the number of its nodes, the depth of a circuit is the length
of a longest path in C. A circuit is layered if, starting from every input node,
any node with the same distance to that node is of the same type (i.e. ∧, ∨ or
¬). A circuit is monotone iff it does not contain any negation. A formula can be
perceived as a circuit whose underlying structure is a tree.

When talking about circuits we usually refer to the nodes as gates and to the
in-degree as fan-in.

We can compute the value of a circuit as follows.

Definition C.19. Let C be a circuit and I an input of length n given in binary.
Then the value of its nodes is defined recursively as follows.

• The value of an input node is the value of the appropriate bit of I.

• If the node is labeled ¬, then its value is 1 minus the value of its predecessor.

• If the node is labeled ∨, then its value is the maximum of the values of the
predecessors.
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• If the node is labeled ∧, then its value is the minimum of the values of the
predecessors.

We denote the value of the output node(s) of C on input I as C(I).

We can now formally state what we understand as languages computed by
circuits.

Definition C.20. Let (Ci)i∈N be a family of circuits where Ci has exactly i input
bits. Then (Ci)i∈N computes L ⊆ {0, 1}∗ if and only if

X ∈ L⇔ C|X|(X) = 1.

(Ci)i∈N computes a function f : {0, 1}∗ −→ {0, 1}∗ if and only if

f(X) = Y ⇔ C|X|(X) = Y.

This quite simple model of computation is still very powerful. As we need a
different circuit for each input length, we can ”compute” non-recursive problems
using circuits.

Proposition C.21. Let L be a non-recursive language and let Ltall be a non-
recursive language defined by x ∈ Ltall iff |x| in binary is in L. Then there is a
circuit family Cn that computes Ltall.

Proof. For all i ∈ N let Ci be such that

Ci(X) =

{
1 if 1i ∈ L
0 else.

Obviously this circuit computes Ltall.

Thus, to make circuits a sensible model for computation we have to be able
to construct each circuit in a family from some finite description. This idea is
facilitated as follows.

Definition C.22. Let K be any complexity class. A family Ci of circuits is K-
uniform iff there exists a K-Turing machine M such that for all i, M computes
Ci on input 1i.

In the case of monotone circuits we can usually assume that they are layered.

Proposition C.23. If C is a monotone circuit, then there exists a layered mono-
tone circuit C ′ that computes the same and whose size and depth differ from C’s
by only a constant factor.

We will now define some important circuit classes.

Definition C.24. Let n denote the length of the input.

• AC0 is the class of all languages that can be computed by L-uniform circuits
with polynomial size and constant depth.

• ACk is the class of all languages that can be computed by L-uniform circuits
with polynomial size and depth O(log(n)k).
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• NC0 is the class of all languages that can be computed by L-uniform circuits
with polynomial size and constant depth, where the fan-in of any gate is at
most 2.

• NCk is the class of all languages that can be computed by L-uniform circuits
with polynomial size and depth O(log(n)k), where the fan-in of any gate is
at most 2.

We define AC =
⋃

k ACk and NC =
⋃

k NCk.

These classes relate to each other as follows.

Proposition C.25. For any k

NCk ⊆ ACk ⊆ NCk+1.

Therefore NC = AC.

One can, in principle, define the gates in a circuit by any boolean function.
This leads to various stronger circuit classes, the most important of which is
probably TC, which is defined using threshold gates.

Definition C.26. For any i the threshold function Thi : {0, 1}∗ −→ {0, 1} is
defined as

x 7→
{

1 if the number of 1 bits in x is at least i

0 else
.

Using this function we can define the circuit class TC.

Definition C.27. For any k let TCk be the class of all languages that can be com-
puted by L-uniform circuits using ∧,∨,¬ and Thi gates and having polynomial
size and depth O(log(n)k). We let TC :=

⋃
k TCk.

As we will prove now, threshold functions can be computed in AC1. Therefore
the class TC equals AC.

Proposition C.28. TCk ⊆ ACk+1.

Proof. The threshold function Thi(x1 . . . xm) can be computed inductively by

Thi(x1 . . . xm) =
i∨

k=0

(Thk(x1 . . . x⌊m
2
⌋) ∧ Thi−k(x1 . . . x⌊m

2
⌋)).

However, the classes differ provably on their lower levels. To see this we will
first introduce a boolean function and a corresponding circuit class.

Definition C.29. Let MODi(x1 . . . xm) ≡ ∑m

k=1 xk mod i = 0. For any k let
ACk[i] be the class of all languages that can be computed by L-uniform circuits
using ∧,∨,¬ and MODi gates and having polynomial size and depth O(log(n)k).

A famous result of Smolensky is the following theorem [88].

91



Theorem C.30 ([88]). Let gcd(p, r) = 1. Then MODr 6∈ AC0[p].

But for any i, MODi can be computed using O(i) many threshold gates by

MODi(x1 . . . xm) ≡
∨

k|i

(Thk(x1 . . . xm) ∧ ¬Thk+1(x1 . . . xm)).

Therefore we have
AC0 ( AC0[p] ( TC0 ⊆ NC1.
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