

Refining Randomness

Thesis submitted for the degree
Doctor of Philosophy

by

Amnon Ta-Shma

Submitted to the Senate of the Hebrew University
June 1996

This work was carried out under the supervision of

Professor Noam Nisan

To my beloved parents,

Dvora and Israel

Acknowledgments

I will start with my parents who have done so much to bring me up. I don’t
know how much I fit your plans, Mum and Dad, but that’s me. I love you so very

much. This thesis is mainly for you.

The thesis itself, however, was made possible because of you, Noam. I still
remember the complexity course you gave while I was still in the army, and the
excitement it arose in me. I already knew then that I wanted you to be my advisor,
and 1 was never disappointed. The excitement vanished somewhere (www?), but
it was fully compensated by your striking understanding of things. All I know - is

yours.
And Noam - thanks for being so nice.

Studying complexity at the Hebrew University was a great pleasure (well, most
of the time) and I want to thank Michael Ben-Or, Shafi Goldwasser, Dror Lapidot,
Nati Linial, Muli Safra, Robert Szelepcsenyi, Avi Wigderson and David Zuckerman
for the classes I took and the discussions we had. | want to specially thank Shafi
for her course on Interactive Proofs, and Avi for his beautiful classes on complexity
theory. They had a great influence on me. I also want to thank Oded Goldreich for
carefully reading the thesis, and for his many excellent comments that significantly
improved the thesis. Finally, I want to thank Oded Goldreich and Avi Wigderson

for encouraging me. It really helped!

It is a great pleasure to thank Ilan Kremer, Shlomo Huri, Avner Magen, Dorit
Aharonov and Roy Armoni for being friends and mates. Dorit - Good luck with

the Qworld. Above all, I want to thank Roy for so many exciting discussions, that

helped clarify so many things. No one can deny we succeeded with Gal.

I want to conclude with my family. 1 will never forget the love and support I
received from my brother and sisters even when we deeply disagreed. Nothing will

divide us!

Many warm wishes to you Deanna and Harry. I appreciate your letting us go
our way. Many times when I look at Gal I appreciate the sacrifice you have made.

We love you very much. We wish our small world was smaller.

Finally, to the one who brought light into my lonely life. To the one with whom
I share my life, happy or sad. Dear Paula and lovely Gal, my soul and blood - I love

you.

Contents

1 Introduction 1
1.1 Randomness Has Lots of Structure 1
1.2 An Example: Random Walks 3
1.3 Is Randomness Feasible? L. 4

1.3.1 Chaos, Quantum Mechanics and Crude Randomness 5
1.3.2 Refining Crude Randommness 6
1.4 Derandomization 8
1.4.1 Derandomizing algorithms 9
1.4.2 Pseudo-Randommness 10
1.5 Our Work0 o 13
1.5.1 New Explicit Extractors and Applications 13
1.5.2 SLand RL. 19

2 Explicit Extractors 23

2.1 Preliminaries 24

2.2

2.3

2.4

2.5

2.1.1 Notation 24

2.1.2 Definitionso L 25
Previous Worko 27
2.2.1 The Mother of All Extractors 27
2.2.2 Extracting Randomness From Block-wise Sources 30

2.2.3 Converting an Arbitrary Random Source to a Block-wise Source 34

224 SUMMAary 38
An Extractor For Any Min-Entropy! 39
2.3.1 An Informal Description 39
2.3.2 Composing Two Extractors 43
2.3.3 Composing Many Extractors 48
2.3.4 Assuming Explicit Somewhere Random Mergers 50
2.3.5 Explicit Somewhere Random Mergers 52
2.3.6 Putting It Together oL %)
An Extractor Using Less Truly Random Bits 60

2.4.1 A Better Extractor For Sources Having n'/?*Y Min-entropy . . 61

2.4.2 An Extractor For n” Min-entropy. 63
Applicationso 70
2.5.1 a-Expanding Graphso 70
2.5.2 Superconcentrators of Small Depth 72

2.5.3 Deterministic Amplification 73

2.5.4 The Hardness of Approximating The Iterated Log of Max Clique. 75

2.5.5 Simulating BPP Using Weak Random Sources

3 SL=coSL
3.1 An Informal Solution
3.2 SL=coSL.
3.2.1 Projections to USTCON.
3.2.2 Finding a Spanning Forest.
3.2.3 Putting It Together. oL

3.3 Extensionso

Bibliography

A Explicit Extractors
A.1 A Somewhere Random Source Has Large Min-Entropy
A2 A Lemma For d-Block Mergers
A.3 Lemmas For Composing Two Extractors
A.4 More Bits Using The Same Extractor
A.5 Lemmas For The Second Extractor

A.6 The Hardness of Approximating The Iterated Log of Max Clique.

79

79

81

81

84

86

88

90

99

99

102

103

106

108

. 110

Chapter 1

Introduction

1.1 Randomness Has Lots of Structure

When people say something behaves randomly, they usually mean they can not rec-
ognize any pattern in its behavior. Thus, gender and lottery are random. However,
random things do have many patterns after all, and everyone knows that it is very
rare to see a large family with only female children, or to see the same number

winning two different lotteries.

In fact, it turns out that certain properties of random structures are very useful,
and very hard to achieve deterministically. Take for example the following problem:
A company wants to set up a telephone network between two groups of people. The
network should be dynamic, i.e. no matter who currently uses the network, if some
person A wants to speak to some person B, and A and B are not in the middle of
some other conversation, then the network should supply the link. The company

also wants the network to be small (i.e. with few wires) and shallow (i.e. with few

interchanges between any two people speaking). A somewhat surprising fact is that
it is very hard to explicitly build such a network. Even more surprising is that a
random network (with the right degree and depth) will almost certainly be almost
as good as the best network possible. Thus, the best way for the company to find a

good network is to randomly choose one!

This brings to light an important phenomenon: Many explicit structures will al-
most always occur in a randomly chosen object. In fact, Erdos and many others after
him, used this phenomenon to develop a method, “The probabilistic method”, for
proving the existence of combinatorial objects with certain properties. The method
has been very successful, and the interested reader is referred to [AES92]. A similar
very successful rule of thumb says that for many reasonable combinatorial problems,
if the “natural” randomized construction does not have the required property, this
property can not be achieved at all. In fact, this phenomenon is so widespread that
it is commonplace to use it as the only test for the existence of non-explicit con-
structions. It is as if almost all structures with simple description have the property

that if they exist, it is easy to randomly find an object with that structure * .

In light of all of the above, it must be clear that randomness does not mean
disorder. There are rules behind our choices and even probabilistic rules are still
rules 2. Moreover, it seems that using these probabilistic rules, we can do many
things more easily or more efficiently than what can be done using “conservative”

deterministic rules. As a consequence two natural questions arise:

e Can we build probabilistic computers? Is randomness a feasible resource? and,

Tt might be instructive to compare the strong belief in this rule of thumb to the strong disbelief

that NP C BPP.

20ur world is a good example of that, as quantum theory states that things behave according

to certain probabilistic rules and still quantum theory has a lot of structure and order.

e Do we really need randomness. Or, in other words, is there a way to simulate

probabilistic algorithms deterministically?

In the next section we give an important example of a randomized algorithm.
Then in section 1.3 we address the feasibility question, and in section 1.4 we dis-
cuss derandomization. Finally, in section 1.5 we present our new constructions and

results.

1.2 An Example: Random Walks

It was already stated before that many problems have simple and efficient random-
ized algorithms solving them. As we know that random constructions easily achieve
certain combinatorial properties, it might be suspected that the role of randomness
in the solutions is to achieve an object with a certain required combinatorial prop-
erty. However, it turns out that in many randomized algorithms you can not isolate
any simple property that suffices to solve the problem. Thus, the solution benefits
from the randomness in the deepest sense possible. Randomness is not just a tool
to achieve certain constructions, randomness is the thing itself and it is too big to
be described only by some simple properties. To demonstrate this, I want to give
an important example that we will later study in Chapter 3. The problem is called

the undirected s,t connectivity problem, but I prefer to present it here by a story:

Imagine that you wake up in a dark night at the middle of a deserted street of
a strange city. In your desperate condition you decide to go to a police station and
ask for help. The only problem is you have no knowledge where you are and where
the police station is, and anyway you have no map of the city. Suppose you decide

to wander around, at each intersection randomly choosing where you go next (you

might even go back to the street where you came from). At this point the reader
probably joins me in thinking “you poor thing, walking aimlessly in a strange city.
What chance do you have to reach the police station?” So, let us face the question:

what chance do you have?

At first glance, this random wandering looks like a pretty bad idea. In fact it
might even be suspected that the way the city is built will cause you (with high prob-
ability) to stay within your current neighborhood and never go out of it. However,
if you know the [AKL*79] theorem you know that no matter what the topology of
the city is, with overwhelming probability it will not take too long until this random
walk will take you to the police station. Thus wandering around randomly, is indeed
a very good way to reach a destination! If you lack the knowledge - take a random

action!

Notice how simple and elegant the random walk algorithm is. Notice also that
the algorithm is local, taking into account only local data, and yet, it works for any
city (and even cities in higher dimensions). Finally, though the theorem has a nice
and simple proof, the proof does not reveal any combinatorial property that suffices
to solve the problem. The random walk algorithm makes a direct use of randomness

live and unabridged.

1.3 Is Randomness Feasible?

By now we should be quite convinced that randomness is a very nice tool. Let us
first check whether randomness is a feasible resource. We first discuss the possi-
ble physical devices outputting “random” bits (section 1.3.1), and then we discuss

whether these devices can be used to generate truly random bits (section 1.3.2).

4

1.3.1 Chaos, Quantum Mechanics and Crude Randomness

At first glance it seems we are surrounded with random phenomena, and so we
can throw dice, for example, to get the required randomness. However, most things
around us are not random but chaotic. Take dice for example. If you have knowledge
of all relevant data prior to the dice throw, and if you have enough computational
power, you can know the result in advance. And the same applies to lottery. Thus,
chaotic systems are not truly random but instead only “look random” to a limited
observer. Therefore, using a chaotic mechanism to output “seemingly random” bits
might end up in bits that are strangely correlated, causing the generated distribution

to be very far from uniform.

However, there is one significant exception to this. In a tremendous earthquake
in the way we view our world, Quantum Theory introduced non-determinism into
our world. Certain things can not be determined, not because we do not have the
power or wits to analyze them, but because they behave non-deterministically. This
startling understanding is so provocative that Einstein refused to accept it saying
that “God does not play dice” (and here dice means random (not chaotic) behavior).
Yet, it seems that Quantum Theory is correct, and accepting that, our world does

have a source containing real randomness >.

Indeed, circuits exploiting quantum mechanics can be built (e.g. using Zener
diodes) and their output is, indeed, far from deterministic. Unfortunately, it turns

out that the generated distribution is also very far from uniform. Thus, using

3As to God, I believe it must be very boring to run a deterministic world that can be fully
predicted. What is the point in playing a game whose moves and results are known in advance. A
probabilistic world sounds like a great improvement, and the quantum world with its simple and
sophisticated mechanism seems to be an even better one. It might even be interesting to run and

watch such a system!

such circuits we get a distribution that is truly unpredictable (i.e. it contains some
randomness), yet is not uniform (i.e., there are many correlations among the different
output bits). In fact, many times it is very hard to know what the generated
distribution is and the only thing that can be said is that there is some randomness
in it. In short, using quantum mechanics we can produce “crude” randomness.
What we investigate next is whether we can transform this crude randomness into

a nice uniform distribution.

1.3.2 Refining Crude Randomness

Let us have another look at the problem we have at hand. Assume our Zener diodes
output three bits by, by, b3, by uniformly choosing a string out of a set of four possible
strings, and further assume that we do not know what these four strings are. In
figure 1.3.2 we illustrate three such distributions. In Distribution A, b, is fixed on
0 and the two other bits are randomly chosen. In distribution B each pair of bits
is random (i.e. all four possible combinations appear with equal probability) and
each pair determines what is the remaining bit. In distribution ', no bit is uniform
(every bit is “1” with only probability 1/4). The common property shared by all
these distributions is that a string is uniformly chosen out of four possible strings,
and thus in a very basic sense there are two bits of randomness in each of these

distributions.

Can we extract even a single random bit, from such a distribution? And formally:

We look for a function f: {0,1}" +— {0,1} s.t. for any distribution X
on {0, 1}" that is uniformly distributed over m strings, the distribution

f(X) is random.

000 001 000

001 010 001

010 100 010

011 111 100
Distribution A Distribution B Distribution C

Figure 1.1: Three distributions over 3 bits with 2-randomness

Taking f(b1,...,b,) = by, i.e. f returns the first bit, is no good as X can fix the
first bit (as happens in distribution A). Taking f(by,...,b,) = by B bz...EH b, is also
not good as this sum can also be a constant (as happens in distribution B). In fact,
it is not hard to show that for any f : {0,1}" — {0, 1} there is a distribution X that
is uniform over a set of size 2~ s.t. f(X) is fixed ([SV86]). That is, not a single bit
can be extracted if the only thing we know is that the given distribution contains a

large amount of randomness, without knowing explicitly what this distribution is.

Let us restate the core of our problem: whenever we choose a function f :
{0,1}" +— {0, 1}, there is a distribution X that is bad for f, and thus no f works
well for any distribution X. We can think of it as a game against an adversary: we

pick a function f, and our adversary picks the worst distribution X for this f.

So the reason we fail is that our malicious adversary makes his choice X after
seeing our function f. But what happens if our function f uses some small amount
of truly random bits y? Notice that in this case it is possible that the adversary
will not be able to choose a distribution X that is bad for f, simply because the

adversary does not know y and therefore does not have complete knowledge of f.

7

Indeed this amounts to a novel idea: keep some coins in your pocket and let
the adversary make his choice without having complete knowledge. Such techniques
have been found very successtul in fooling adversaries in interactive proofs and in
many other places. Can they be useful here? Let us be more formal. In our case
the extracting function takes the following form:

We look for a function f : {0,1}" x {0,1}' — {0,1} s.t. for any

n

distribution X on {0,1}" that is uniformly distributed over m < 2-
strings, the distribution of f(x,y) when x is chosen according to the
distribution X, and y is chosen uniformly from {0, 1}, is very close to

uniform.

We call such a function an “extractor”. In chapter 2 we will see that using
few random bits (i.e. a very small t) we can extract almost all of the randomness
present in the source X, no matter what X is. Thus, extractors extract almost all of
the randomness (energy) from any source (fuel tank) by using few truly random bits
(some little energy). Looking at it differently, extractors take crude randomness, and

by investing a little amount of extra energy refine it to pure uniform randomness.

In particular, extractors can take the crude randomness created by Zener diodes
and extract an almost uniform distribution from it - making randomness a feasible

resource.

1.4 Derandomization

Now we turn into the second question: “Do we really need to use randomness?”.
L.e. is there a natural problem easily solvable by a randomized algorithm that has

no efficient deterministic solution? Alternatively, can we find a simple criterion

such that any probabilistic algorithm satistying this criterion can be derandomized,

yielding a matching deterministic algorithm?

In the next sections we first discuss derandomization of algorithms (section 1.4.1)

and then derandomization of whole complexity classes (1.4.2).

1.4.1 Derandomizing algorithms

In the current state of the art, algorithms can be derandomized if they do not use
randomness to its full extent, but instead only take advantage of certain properties
that can be (more) easily achieved. Let us take, for example, an algorithm that
uses a distribution over £ that need only be pair-wise independent , i.e. any two
elements are mutually independent (F' is some field). One possible distribution is
the uniform distribution over F'”', and its size (the number of possible values) is | F'|".
It turns out that we can build much smaller distributions (of size |F'|*) that have
the same property. Thus, we can reduce our sample space from |F'|" to |F|*. Once
our sample space has a smaller size, we can try all the elements in the sample space,

and deterministically find out the result.

Two explicit constructions are extremely useful when derandomizing algorithms:

e k-wise independence

— A small sample space that is k-wise independent (any k elements are

mutually independent) [CG89)].

— An even smaller sample space that is almost k-wise independent (any k

elements are almost mutually independent) [NN93, AGHP92].

e Expanders - explicit graphs with constant degree and strong expansion prop-

erties [Mar75, LPS86].

The interested reader is referred to [Wig94] for a survey of pair-wise indepen-

dence, and [MR95] for a reading on probabilistic algorithms and derandomization.

We can also view extractors as explicit graphs with strong random properties.
As such, they can serve as a derandomization tool. Indeed, during the last few years,
many derandomization results were found using extractors (see [Nis96] for a list of
applications, or section 2.5 for those applications improved by our new extractors).

In particular, extractors provide the best deterministic amplification known today

(see [Nis96]).

Thus, extractors are important not only because they allow us to use randomness
in our real world computations, but also as a tool in studying the connection between

randomized and deterministic computations.

1.4.2 Pseudo-Randomness

Wouldn’t it be nice if we could derandomize all probabilistic algorithms belonging to
a certain class C'7 l.e., show that if a problem is solvable by a probabilistic algorithm
running in the class €', then it can also be solved in €' without using random bits.
Wouldn’t it even be nicer if we could do that in a uniform way? Le. if we could
find a function outputting a distribution that looks random to all tests that can be

done in the class C'.

10

Definition 1.4.1 G : {0,1}" — {0,1}" is a pseudo random generator that fools the
class C, if for every function f:{0,1}" — {0,1} computable in C,

|Pr(f(u") =1) = Pr(f(G(u') =1)| <

(=20

when u™ is chosen uniformly from {0,1}" and u' is chosen uniformly from {0,1}".

It is clear that if we have a pseudo random generator G : {0,1}* — {0,1}" that
fools €', then we can replace the random string given to any probabilistic algorithm
in ' with the output of the generator G. Thus, any probabilistic algorithm taking
time 7' can be simulated by a deterministic algorithm taking time 7" - 2! (ignoring

the time needed for the generator).

In a series of brilliant papers, a tight connection between pseudo-random gener-
ators for C' and finding functions that are “hard” for ' was made. On the intuitive
level, if we have a “C—hard” function we can use it to generate bits that look random
to any algorithm in €', and on the other hand if we have a pseudo-random generator

for ' then the function identifying all strings generated by the generator is hard for
C.

Building on the pioneering work of Blum and Micali [BM82] and Yao [Yao82],
Impagliazzo, Levin and Luby [Lev87, ILL89, HILLI1] showed that pseudo-random
generators that run in polynomial time (in the seed length) and fool polynomial-
size circuits, exist, iff one-way functions exist (functions that are easy to compute
but hard to invert). Nisan and Wigderson [NW88, BFNWO93] studied the possible
existence of pseudo-random generators that run in exponential time (in the seed
length) and fool polynomial-size circuits, and showed that such functions exist iff
there exists a function solvable in exponential time that is hard for any polynomial

size circuit.

11

These results show that the problem of finding pseudo-random generators for
small circuits is closely related to that of finding explicit functions that are hard for
the class we want to derandomize. This later question has a long and very frustrating
history. In fact, except for a single stunning success (for the class AC?) almost no
progress was made on this famous problem. Thus, the existence of pseudo-random
generators has far reaching implications which currently seem to be beyond our

reach.

However, space limited classes with a read-once random tape are a major ex-
ception to the above rule. The tests such a machine can perform to check whether
a given string is truly random or not are limited not only by the class limitations
(i.e. limited memory space), but also by a severe read-once limitation on accessing
the tested string itself. The point is that since the machine can read each random
bit only once, and since the machine’s memory is limited, many different random

strings will bring the machine to exactly the same configuration.

At this point it is worthwhile to mention that even such limited machines can
use randomness in a highly non-trivial manner. In particular the random walk
example given in section 1.2 can be solved by a machine using logarithmic space
and a polynomially long read-once random tape. Thus, finding a pseudo-random
generator for RL, Random Logspace, would yield the first deterministic Logspace

solution to the undirected s,? connectivity problem, and many others.

Indeed, several pseudo-random generators for the class RL exist. These pseudo-
random generators use the derandomization tools listed in the previous sections:
[Nis92] uses hash functions, [INW94] use expanders and [NZ93, Arm, Zuc96] use
extractors. Still, none of these constructions is optimal, and it is a major open

problem to show that pseudo-random generators for RL exist in L (or even in P).

12

1.5 Our Work

In this section we state the new results we achieved. In section 1.5.1 we describe
the new constructions of explicit extractors and some of their applications, and in
section 1.5.2 we show that 5L, the class of problems reducible to the undirected s, ¢

connectivity problem, is closed under complement.

The results of section 1.5.1 were published in [TS96]. The results of section 1.5.2

are joint work with my advisor Noam Nisan, and have appeared in [NTS95, NT95].

1.5.1 New Explicit Extractors and Applications

This section is more technical. We will give formal definitions of (explicit) extractors.
Then we will state the lower bound and size of best non-explicit construction. Finally
we state what explicit extractors were known, and the new extractors we constructed,
along with some new applications. In our construction we use a new general tool,
called “a merger”, which seems to be a useful tool for dealing with random sources.

However, since it requires a lot of background, we defer its presentation to Chapter

2.

Formal definitions

First we define how we measure randomness. We say a distribution D contains m
“randomness” if no string has probability greater than 27™. This measure is closely
related to the Renyi entropy [Ren70], and was suggested by Chor and Goldreich
[CG88] as the right measure for this problem.

13

Definition 1.5.1 [Ren70, CG88] The min-entropy of a distribution D is H.,(D) =

min,(—log(D(x)).

It is not hard to see that for any distribution X, H(X) > H.(X), where H(-)
C {0,1}" then

is the entropy function. Also, if X is uniform over some set A

H(X) = 1..(X) = loga(|A]).

Next we define what an extractor is:

Definition 1.5.2 £ = {F, : {0,1}" x {0,1}=(s {0,1}™=""} is an (m =
m(n),c = e(n)) extractor if for every n € N, and every distribution X on {0,1}"
with Hoo(X) > m, the distribution of E,(x,y) when choosing x € X and y randomly

from {0,1Y0%) s ¢ close to uniform.

REMARK 1.5.1 This definition is slightly different from the one in [NZ93, SZ94]. In
[NZ93, S794] E is an extractor if Y o E(X,Y) is close to uniform, while we only
demand that E(X,Y) is close to uniform.

NOTATION 1.5.1 Instead of saying that E = {E, : {0,1}" x {0,1}=()
{0,137 =" is an (m = m(n),e = ¢(n)) extractor, we will say that E :
{0,1}" x {0,1} + {0,1}™ is an (m, €) extractor.

Lower bound and non-explicit constructions

Nisan and Zuckerman showed a lower bound on the number of truly random bits
needed for an extractor to extract even one additional random bit. As mentioned be-
fore, Nisan and Zuckerman use a slightly different definition of extractors. However,

slight adaptations to their proof yields the following lower bound:

14

Fact 1.5.1 [NZ93] For any m = m(n) and ¢ = €(n), any (m,€)-extractor £ :
{0,1}" x {0,1}" — {0,1}*", must have t = Q(log(n —m) + log(L)).

This lower bound matches (up to a constant factor) the non-explicit construction:

Fact 1.5.2 For every m = m(m) and ¢ = €(n), there are (non-explicit) (m,e€)

extractors £ : {0,1}" x {0,1}* — {0,1}™, with t = O(log(n) + log(%)).

Previous explicit extractors

We would like to have an explicit construction:

Definition 1.5.3 We say F is an explicit (m,¢) —extractor I : {0,1}" x {0,1}' —
{0, 1}, if it is an extractor and for any = € {0,1}" and y € {0,1}!, E(z,y) can be

computed in polynomial time in n 4+ 1.

The following table summarizes the explicit extractors that were previously

known:
m min-entropy | ¢ truly random bits | m’ extracted randomness | reference
Q(n) Ollogn - log(L) | 2m) N793)
Q(n) O(log(n) + log(L)) | Q(m) [Zuc96]
Q(n'/?) O(log*n - log(1)) n’, 6 <~ [S7.94]
Q(n) O(logn) n’, 6 <y [SSZ95]

Disperser?

any m m cm , constant ¢ > 1 [S794, GW94]

1A disperser is a weak extractor. See definition 2.1.4 or [Nis96].

15

We see that all constructions require at least n” min-entropy for some constant

v > 0. Also, all constructions extract much less bits than the min-entropy that

exists in the given source.

We devise two new explicit constructions that are summarized in the following

table, and shortly discussed in the next two subsections:

m min-entropy | ¢ truly random bits m' extracted randomness | reference
any m polylog(n) - log(L) m
n” O(log(n) loglog . ..log n) | n® e=1,9>86>0
k
any constant k
any m O(logn + log(L)) m Lower bound

Extractor for any min-entropy!

We devise a new tool for building extractors, which we call “somewhere random
mergers”. We use this tool to achieve two new extractors. The first extractor we

achieve is:

Theorem: For every € = ¢(n) and m = m(n) < n, there is an explicit (m,e)-

extractor F : {0,1}" x {0, 1}t=poly(log(n) — {0, 1}m/:m.

That is, this extractor works for any min-entropy, small or large, and extracts
all the randomness present in the given source. These properties turn out to be very

important for some applications, most notably the following two corollaries:

Corollary: (improving [WZ93]) For any N and 1 < a < N there is an

explicitly constructible a—expanding graph with N vertices, and mazximum degree

16

O(ﬁonlyloglog(N)) 5]

Another important corollary, that solves a problem similar to the network prob-

lem presented in section 1.1, is:

Corollary: (improving [WZ93]) For any N there is an explicitly constructible

superconcentrator over N vertices, with linear size and polyloglog(N) depth ©.

See section 2.5 for more details on these and other applications.

Simulating random classes with sources having high min-entropy

Our second extractor is motivated by the problem of simulating BP P using only

defective sources having high min-entropy.

In section 1.3.2 we discussed whether randomized algorithms are indeed feasible.
We saw that crude randomness does exist in nature, and we looked for extractors to
extract truly random bits from it. Let us formalize the problem. For every n € N,
we are given a source X over {0,1}" with high min-entropy H. (X). We want to
simulate any algorithm in RP (probabilistic polynomial-time, one sided error) or
BPP (two sided error) using the source X as our only source of randomness. We
also want it to be a black-box simulation, i.e., it is done by calling the original
algorithm (possibly several times) and replacing the required random strings with

new strings we compute from X.

Fact 1.5.3 [CW89] Any polynomial time, black-box simulation of RP or BPP,

must use a source X with Hoo(X) > n" for some v > 0.

5See section 2.5 for the definition of a—expanding graphs. The obvious lower bound is % The
previous upper bound [WZ93, SZ94] was O(% glog(N)/2ett)).
This improves the current upper bound of O(log(N)'/?+°(1)) due to [WZ93, SZ94].

17

If we have an explicit (m, ¢) extractor £ : {0,1}" x {0,1}* — {0,1}™, than by
investing ¢ truly random bits, we can extract from sources X with m min-entropy, m’
almost truly random bits, which we can use as an input to the original randomized
algorithm. It is true that we still need to invest ¢ truly random bits, and we do
not have a source outputting truly random bits. However, instead of using ¢ truly
random bits we can try all 2 possibilities and decide according to the majority.

Thus, by using the [SZ94] extractor (see the table above), we get:

Corollary 1.5.1 [S794] For any v > 0, BPP can be simulated using sources with
H. (X)> n' /27 in nOUes() time.

[SSZ95] showed that for RP, n" min-entropy suffices, and the simulation can be

done in polynomial time:

Corollary 1.5.2 [S5795] For any v > 0, RP can be simulated in polynomial time,

using sources with H.,(X) > n".

The second extractor we build, works for sources with high min-entropy (n” for
any constant v > 0), and invests only slightly more than O(log(n)) truly random
bits:

Theorem: For every constants k and v > 0 there is some constant 6 > 0 and

an (n7, L) extractor E : {0,1}"™ x {0, 1}0Uoa(miog™n) £ 1320 where log®n =

loglog .. .log n.
—_——
k

Corollary: For any 6 > 0 and k > 0, BPP can be simulated in time pOleg™n)

using a weak random source X with min-entropy at least n® .

18

1.5.2 SL and RL

We conclude with the s-t connectivity problem we presented in section 1.2.

A natural complexity measure is the amount of memory required to solve a
problem. When modeling computations with Turing machines, this amounts to the
space complexity - the size of the memory a Turing machine needs in order to solve
the problem. Let us define L as the class of log-space languages, RL its one-sided
analog and NL its non-deterministic analog. Next we give exact definitions of these

classes:

Definition 1.5.4 (L) A language A C {0,1}* is in L iff there is a deterministic
Turing machine M s.t. :

o M can access a read-only tape whose content is the input x.

o M has a read/write tape of length O(log(n)).

and ¥ € A — M(x) accepts.

That is, the machine has an input tape (which is read-only) of length n, and
“working” tape of length only O(log(n)). Now, let us strengthen this class by

allowing it to use randomness:

Definition 1.5.5 (RL) A language A C {0,1}* is in RL, iff there is a deterministic
Turing machine M s.t. :

o M can access a read-only tape whose content is the input x.

o M has a polynomially long read-once tape having a random content y.

19

e M has a (read/write) working tape of length O(log(n)).
and

e v € A— Pry [M(x,y) accepts] > 1/2.

o : ¢ A— Pry, [M(z,y) accepts] = 0.

There are several things to notice about this definition. First, notice that the
machine can use a new random bit at any time it wishes. Second, notice that the
machine can not remember much of these random bits, since the random tape is read-
once, and the working space is limited. Thus, algorithms that utilize the random
bits must do that in a “use and throw” way. An example for such an algorithm is

the algorithm of section 1.2.

For completeness, we add the definition of the class NL, non-deterministic

Logspace:

Definition 1.5.6 (NL) A language A C {0,1}* is in NL, iff there is a deterministic
Turing machine M running in Logspace s.t. there is a polynomial p(n) and for any

x € {0,1}" there is a “witness” y € {0, 13" such that x € A < 3, M(x,y) accepts.

We can compare RL and NL in terms of the required size of the “witness set”.
We say y is a “witness” if M(x,y) computes the right answer. Both in RL and NL,
if x is not in the language then all y’s are good witnesses. The situation is different
when z does not belong to the language: in NL we require that there is at least one

good witness, while in RL we require that at least half of the y’s are good witnesses.

It is easy to see that L C RL C NL. It is also not hard to see that the directed
s,t connectivity problem STCON, the problem whether two vertices s and t are

connected in a given directed graph G, is complete for NL.

20

A special case of the connectivity problem for general graphs, is the connectivity

problem for undirected graph, USTCON.

Definition 1.5.7 (USTCON)

Input : an undirected graph G = (V, E), and two vertices s,t € V.

Output : whether s is connected to t in G.

In a beautiful paper, Aleliunas, Karp, Lipton, Lovasz and Rackoff [AKL*79]
showed that, with a high probability, a random walk over an undirected graph
covers all the graph nodes in polynomial time, thus showing that USTCON can be

solved in RL - a result we already mentioned in section 1.2.

So STCON is as hard as NL, while USTCON is not harder than RL which looks
easier than NL. That’s the time for a name for a new Class! Indeed Lewis and

Papadimitriou [LP82] defined a class SL, Symmetric Logspace:

Definition 1.5.8 (SL) [LP82] A language A C {0,1}* is in SL, iff there is a log-
space reduction from A to USTCON.

In fact Lewis and Papadimitriou showed that the following definitions to SL are

equivalent:

1. Languages which can be reduced in Logspace via a many-one reduction to

USTCON, the undirected st-connectivity problem.

2. Languages which can be recognized by symmetric nondeterministic Turing

Machines that run within logarithmic space. See [LP82].

21

3. Languages that can be accepted by a uniform family of polynomial size contact

schemes (also sometimes called switching networks.) See [Raz91].

In particular, the Aleliunas et al. result shows that SL. C RL. Adding this to
the former inclusions we get: L C SL C RL C NL. If we have to guess if these
containments are tight what would be our first (or second) guess? I guess “NO”.
and as usually happens in complexity theory (and in life in general), pessimism rules

until someone shows the contrary 7.

Thus, the proofs by Immerman and Szelepcseny [Imm88, Sze88] that NL is closed
under complement, came as a great surprise to the scientific community. The same
technique, inductive counting, was used by Borodin et al [BCD%89] to show that
SL C coRL. However, this technique failed to solve the more general problem
whether the class SL is closed under complement. As a consequence, an SL hierarchy
was built [Rei82, BCD*89], and turned out to contain many interesting problems,

such as 2-colorability [Rei82].

In a result co-authored with my advisor Noam Nisan, we develop a new technique

and show that SL = coSL, collapsing, in particular, the SL hierarchy.

“But, in fact, what do we have to base our guess on? Do we have the slightest indication that
L # NL? If we have any indications at all, they show that RL is very close to L, which turns the
L # NL question into RL # NL, which looks wide open.

22

Chapter 2

Explicit Extractors

In this chapter we present the currently known techniques for building explicit ex-
tractors. In section 2.2 we present the main ideas used in previous constructions,
including the tiny hash function extractor (section 2.2.1), block-wise sources (sec-
tion 2.2.2) and two techniques for converting arbitrary random sources to block-wise
sources (section 2.2.3). In section 2.3 we present our new technique for building ex-
plicit extractors. We use it to build a new extractor working for any min-entropy
and extracting all the randomness present in a random source. In section 2.4 we
use these ideas to construct another new extractor, which uses less random bits.
Finally, in section 2.5 we state some applications that were improved by our new
constructions. We start the chapter with a short preliminary section (section 2.1),

containing notation, definitions and some well known facts.

23

2.1 Preliminaries

2.1.1 Notation

We use standard notation for random variables and distributions. If X is a distri-
bution, * € X denotes picking = according to the distribution X. If A is a random
variable we denote by A the distribution A induces. If A and B are (possibly corre-
lated) random variables then (A | B = b) is the conditional distribution of A given
that B = b. We denote by U, the uniform distribution over {0,1}!. For a random
variable X = Xj 0...0 X, over {0,1}" we write X[; ;; as an abbreviation for the
random variable X; o X;y;...0 X}, and the same applies to instances zy; ;.
We define the variation distance between two distributions X and Y as:

-Vl s X0 -7

a

We say X is e-close to Y if d(X,Y’) < e. We say two random variables A and B are

c—close, if d(A, B) < e. We say X is ¢ quasi-random, if it is e-close to uniform.

We list some well known properties of the variation distance:

Fact 2.1.1 Let Dy, Dy be two distributions on Ay, and let f : Ay — Ay be any
function, then d(f(Dy), f(Dsy)) < d(Dy,Ds). Le., distance between distributions

cannot be created out of nowhere.

Fact 2.1.2 Let A, B,C and D be any random wvariables, then d(A,B)
d(AoC,BoD).

IA

Fact 2.1.3 Let A, B and C be any random wvariables, then d(AoB,AoC) =
Swer, Pr(A=a)-d((B| A=a),(C| A=a)).

24

Finally, for integers ¢ and 7', (t) denotes {0, 1} while [T] denotes [1,...,T].

2.1.2 Definitions

We restate the definitions given in section 1.5:

Definition 2.1.1 [Ren70, CG88] The min-entropy of a distribution D is H.,(D) =
min,(—log(D(z)).

Definition 2.1.2 £ : (n) x (t) — (m’) is an (m, €)-extractor if for any distribution
X on {0,1}" with H(X) > m, the distribution of E(x,y) when choosing v € X
and y € Uy, is € close to Uy,

When, again, we remind the reader that (k) denotes {0,1}*.

REMARK 2.1.1 This definition is different from the one in [NZ93, SZ94]. In [NZ93,
S794] E is an extractor if Y o E(X,Y) is close to uniform, while we only demand
that E(X,Y) is close to uniform.

Definition 2.1.3 We say E : (n) x (t) — (m') is an explicit (m,¢)-extractor, if it
is an extractor and for any x € {0,1}" and y € {0,1}", E(x,y) can be computed in

polynomial time in n + 1.

Now we give a graph interpretation of definition 2.1.2. We can view a function
FE :(n) x (1) — (m') as a regular bipartite graph G' = ([N = 2"],[M' = 27|, F),
with 2" vertices at the left hand side, 2™ vertices at the right hand side, and edges
(x,z) € FE iff there is some y such that F(z,y) = z (i.e. the graph degree is
21). Clearly, if E is an (m, ¢)-extractor then for any X C [N] that is large enough

25

(|X] >2™), and any Y C [M'], (X)) = {z € [M'] | Jz,y z = F(x,y)} hits Y with

Y]
|M|)

about the right probability (i.e. about

The above definition is very strong and requires that we hit any large enough
subset with about the right probability. A weaker requirement is that we just hit
any large enough subset. This is captured by the definition of a “disperser”, given

by Sipser:

Definition 2.1.4 [Sip88] A (multi-)graph G = ([N],[M'], E) is a (M, €)-disperser if
for any AC [N],|A| = M, [I'(A)[= (1 —)M,

It is clear from the above discussion that an explicit (m,€) extractor £ : (n) x

(t) — (m') gives an explicit construction for a regular bipartite graph G' = ([N =

2"],[M" = 2™'], E) that is an (M = 2™, ¢) disperser, and has degree 2¢.

26

2.2 Previous Work

2.2.1 The Mother of All Extractors

Hashing is a very well known technique in computer science. Many times, in theory
and practice, one needs to hash a small set residing in a huge domain to a much
smaller domain, with as few collisions as possible. Notice that by definition extrac-
tors are good hash functions. The converse is stated in the leftover hash lemma

[1LL89]:

Definition 2.2.1

def

o Let X be a distribution. Define Col(X) = Probl,hmey(xl = x3).

o H ={h:[N]w— [D]} is a family of hash functions with collision error é, if
for any x1 # x5 € [N], Probrep(h(x1) = h(az)) < I;ﬁl (1 +9).

The following lemma is a variant of the leftover hash lemma [ILL89]:

Lemma 2.2.1 Let H be a family of hash functions from [N] to [D] with collision
error §. For any distribution X with Col(X) < |%|, (h,h(x)) is quasi-random to
within € = \/8.

Corollary 2.2.2 [fthere exists an explicit family H of hash functions from [N = 2]
to [D = 2%, with €* collision error, then there exists an explicit (m = d+2-log(1), €)-

extractor F : (n) X (t =log(|H|)) — (m' =1+ d).

Proof: If H.(X) > m then Col(X) < 27" = % - €2, Since H has € collision

error, by lemma 2.2.1 (h, h(x)) is quasi-random to within e.]

27

Let’s look for small families of hash functions with small collision error. Let us

start with families of hash function with no collision error.

Definition 2.2.2 [CW89] H = {h : [N] — [D]} is called a universal family of hash
functions, if for any x1 # x2 € [N], and for any y1,y2 € [D], Probyeg (h(x1) =
yi A () =y2) = ﬁ-

It is clear that a universal family of hash functions has in particular 0 collision
error. Also, it is not hard to see that there exists a universal family of hash functions
|H| of size poly(|N|,|D|) = poly(|N|). Using this family we need to invest n truly

random bits. Can we do any better?

In [CGH*85] it was shown that if we want pairwise independence, and allow no
error, we cannot do much better. However, remember that we don’t really need 0
collision error, and we can afford some small collision error. In other words, we only
need almost pairwise independence. Amazingly, Naor and Naor [NN93] showed that

in this case we can do much better.

Definition 2.2.3 [NN93] A set S of n-bit vectors is "d wise p biased”, if for any d
indices I (i.e. 1 CH{l,...,n}, |I| =d), and for any d values by,... by € {0,1}:

| [Probl,es (/\iell'i = bz)] - 2_|I|| < P

Theorem: [NN93] (see also [AGHP92]) For every integer q, d < ¢ and every

p > 0, there is an explicit set S of q-bits vectors that is d-wise, p biased, and of
o 12

cardinality O((d - log(q) - ;)).

Srinivasan and Zuckerman used this in a very simple way to show:

28

Lemma 2.2.3 ([S79/] and independently [GWI]]) There exists an explicit family
H of hash functions from [N] to [D], with ¢ collision error, and poly(log(|N|),L,|D|)

Siz€.

Proof: Any function A : [N] — [D] can be represented by writing all its values
on [N]. This representation takes ¢ = |N| - log(|D|) bits. Take S to be a set
of ¢-bit vectors that is d = 2log(|D|) wise p = (liﬁ)z—biased, and of cardinality
O((d -log(q) - %)2) = poly(log(|N]),L,|D]). Let H be the set of hash functions

corresponding to the elements in S. For any vy # x5 € [N]:

1

|PTObhEH [h(xl) = h(xZ)] |D|

1
| <> |Probrer(h(xy) = b A h(xy) = b)—w| < |Dlp

beD

Therefore,

2

1
< —(1+6)

1 1 €
Prob h =h < — 4 |Dlp< —+1|D
robien(h(n) = he2)) € T+ Dl < o+ 1Dl < o

D] D]

Thus, combining this with lemma 2.2.1 we get:

Lemma 2.2.4 ([S79/] and independently [GWI94]) There is some constant ¢ > 1
s.t. for any m = Qlog(n)) there is an explicit (m,e = 27™/%) extractor A,, :

(n) X (t =m) — (m' =cm).
DEFINITION 2.2.1 Denote the constant ¢ in lemma 2.2.4 by ciiny.-

Notice that this extractor is optimal up to a constant factor when m = 0(log(n)),

L.e., it operates best on the hardest random sources!

29

2.2.2 Extracting Randomness From Block-wise Sources

The extractor presented in the previous section invests m truly random bits to
extract 2(m) additional random bits. This is fine for sources with m = ©(log(n))

min-entropy, but is far too much when m is much larger.

Next we present a novel idea initiated by Zuckerman: using the randomness in

the defective source to further extract more and more randomness.

Imagine that you sit in your parked car and you want to start the engine. There
is a lot of fuel and energy down there, if only you could use it. So, what do you do?
You use a battery that starts the engine which then supplies the energy not only to
keep the engine running, but also to get moving. As the process goes on, the fuel
that is burnt supplies a larger and larger amount of energy, yet the whole process

was triggered by the feeble powers of a battery!

Unfortunately, this nice idea does not work directly for arbitrary random sources.
In fact, that is the reason for most of our work. However, for a special class of random

sources, which we call block-wise sources, it does work in a very elegant way.

Let us demonstrate the idea on two blocks:

Definition 2.2.4 A random variable X = Xy 0 Xy is a (2,(mq,ma),€) block-wise

source, if

o X, isc close to some W with HOO(W) > my

o Call x; “good” if (Xy | X1 = 21) is ¢ close to some W with H.,(W) > ms.
Then, Prob,, cx,(x1is not “good”) < e.

Informally, for most x1, Ho (X2 | X1 = x1) > ma.

30

Now, we present the algorithm extracting randomness from such sources, when

my1 = CynyMMa:

ALGORITHM 2.2.1 Let A, , A, be the extractors from lemma 2.2.4. Define the
extractor E to be F(xq 0 22,y) def A (21, Ay (22,9)).

We start with my truly random bits. We expect the second block to contain m,
min-entropy, and therefore by using the extractor A,,, we expect to be left with
Ctiny - M2 = My quasi-random bits. Then we use the randomness just extracted to

further extract randomness from Xj.
Lemma 2.2.5 [NZ93, S794] E is an extractor.

Proof:

For the proof we need the following basic lemma:

Lemma 2.2.6 [NZ93] Let X and Y be two correlated random variables. Let B
be a distribution, and call an v “bad” if (Y | X = z) is not ¢ close to B. If
Prob, x(x is bad) <1 then X oY is e+ 1 close to X x B.

Now, since X is a block-wise source, for most prefixes x1, Hoo(X2 | X1 = 1) >

my. Therefore, for most prefixes 1, the distribution of (A, (x2,y) | X1 = 21) is ¢

close to uniform. Thus, it must be the case that Xy x A, (22, y) is € close to the

distribution X; x U.

Hence, applying A,,, on x; with the random string A,,,(x2,y) is only ¢ far from
applying A,,, on a1 with a truly random string. Therefore, A, (1, A, (22,y)) is

€1 + €, close to uniform. U]

Obviously, if we have more blocks we can continue the process.

31

Definition 2.2.5 Let X = X; 0 X,...0 X}, We say xpy,,-1] s a “good” prefix if
(Xi | Xpyicy) = 2p—n) s € close to some distribution W with Hyo(W) > m;.
We say X is a (k,(mq,...,mg),€) block-wise source, if for any 1 < ¢ < k,

Prob,, ., (xpi—1) is not good) < e. Ifmy =...=my =m we say X is a (k,m,¢)

block-wise source.

Lemma 2.2.7 [S79/] Let X = X1 0X5...0 X}, be a (k,(m1,...,myg),€) block-wise
source, where my = Q(log(n)) and m;—1 = cynymi. Then there is an explicit (block-
wise) extractor BE(X,U), using my truly random bits and extracting Q(XE_ m;)
quasi-random bits with O(Z_Q(mk) + ke) error.

Finally, we give a short discussion of the historical development of these results.
Santha and Vazirani [SV86] considered a source over n bits with the property that
each bit, even conditioned on the history, has “enough” randomness in it. This was
generalized by Chor and Goldreich [CG88] to a source with [blocks, each containing,
even conditioned on the history, enough randomness. This is almost the same as

definition 2.2.5, with the following changes:

o We allow the blocks to have different lengths.
e We allow the blocks to have different amount of randomness, m;.

o Instead of requiring that each block has m; randomness, we only require that

each block is close to a distribution with that amount of randomness.
However, all these changes are minor and almost every technique that works for
“Chor-Goldreich” sources, will also work for block-wise sources.

Chor and Goldreich presented an extractor for (their) block-wise sources, that

used one random string y to extract randomness from all the different blocks. This

32

technique was later improved by Nisan and Zuckerman [NZ93], where the extracted
randomness was used to further extract more randomness, as is done in algorithm
2.2.1. Finally, Srinivasan and Zuckerman plugged the improved basic extractor of

lemma 2.2.4 into algorithm 2.2.1 to get an almost optimal block-wise extractor.

33

2.2.3 Converting an Arbitrary Random Source to a Block-

wise Source

In the previous section we saw how to extract randomness from block-wise sources.
Now we check whether given a source, we can partition it into blocks that form a
block-wise source. Suppose X is a distribution over {0, 1}" and that H, (X) > m =
mi+mq+s. Is there a partition of « into two blocks X = X;0X, s.t. Hoo(yl) > my,

and for most strings a1, Hoo(Xs | X1 = 21) > my?

Unfortunately, the answer is no. Take for example the following distribution X

which chooses a string uniformly from the set

{00{0,1}" 00" 100" 0 {0,1}" }

and assume n >> m. Assume there is a good splitting point at location 2. Then, to
guarantee that H.,(X;) > my, it must be the case that 1 > n — my — s. But then
for half of the strings @1, Hoo(X2 | X1 = 21) = 0.

This example illustrates both the difficulty and the way to overcome it. Although
there is no one good splitting point, each string has a good splitting point. In the
next sections we explain this, and show two methods using this idea to convert an

arbitrary source to a block-wise source.

Block Extraction

In [NZ93] Nisan and Zuckerman showed how to get a block-wise source from a
general random source. Let us say a bit is “surprising” if we expected it to be
different. For example, if given the history we have probability of 0.6 to see “1”7 and

of 0.4 to see “0”, then when we see a “0” we are surprised. The main idea is that

34

if X has high min-entropy, then for most strings x, there are many bits in = that
surprised us (conditioned on their prefix). Of course, we do not know which bits are
surprising and which are not, but by choosing bits pairwise independently we can,
with high probability, get a block with many ”surprising” bits, and this block, with
high probability, has high min-entropy.

Next, we state the Nisan and Zuckerman lemma somewhat more formally. We
do not prove the lemma, and the interested reader is referred to the original paper
[NZ93]. Let X be a random source over {0,1}". Nisan and Zuckerman construct a
function Bj(x,y) which gets € X and a short random string y, and returns [bits,
s.t.:

Lemma 2.2.8 [NZ93, S794] If H..(X) > én, then B(X,U) is (61)%V close to a
distribution W with H.,(W) > Q(L) > Q(L)

log(6—1) log(n)

Now we use the above lemma to convert any random source into a block-wise
source. Let us start with a general random source X with m min-entropy. We
can extract, pairwise independently, a block By of length [<< m (and therefore
with high probability it has Q(Z#g(n)) min-entropy). For most values b; of By,
Hoo(X | By =b) > Ho(X) — O(|B1]) = m — O(l), hence we can extract one more
block By, which has high min-entropy even conditioned on the history ;. Actually,
as long as |By| + ...+ |Br| << m, we can extract another block, which also has

high min-entropy even conditioned on the history. Certainly we can do that log(n)

times.

Thus we get:

Lemma 2.2.9 [NZ93, S794] Let X be a distribution on {0,1}" with H.(X) >
n'?t2 for some v > 0. Define b; = Bi(x,y;) where | = nt/2 and 1 < i < k =

35

O(log(n)). Then, B = Byo...o By is an (k,n",n=%W) block-wise source.

Notice also the inherent limitation of this method. If we start with less than

/2 min-entropy, we need the first block length to be at least n'/2, or else we do

n
not expect even a single random bit. But then it may happen that the first block
“stole” all the randomness present in X, and so the second block, given the history,
has no randomness at all. Thus, this method seems to work only for sources having

at least n'/? min-entropy. In section 2.4 we will use new tools to strengthen this

method.

The SSZ dispersers

Srinivasan, Saks and Zhou [SSZ95] showed that randomness can be extracted, in a
weak sense, from random sources having n” min-entropy, for any constant v > 0.
Thus, the SSZ method breaks the n'/? bound imposed by the block extraction
method. Here we are not interested in the result itself, but rather in the method.
Next, we are going to present a simplified version of the SS7 method, in a rather

informal way.

Following an idea in [NZ93], Srinivasan, Saks and Zhou look at specific strings.
They show that for most strings x, there is a good partition of @ to log(n) blocks, s.t.
for all 7 the distribution of X; given the history xp; ;_4) contains a lot of randomness.
Let us say that = “likes” the partition =, if 7 is good for x. Then, Srinivasan, Saks
and Zhou show that there exists a family of partitions, whose size k is polynomial

in n, s.t. most strings like some partition from the family.

This, they claim, can be used as follows: partition the universe {0,1}" to k + 1

classes, each class containing only strings that like the ¢’th partition (and one class

36

containing all strings that like no partition). All the small classes can be ignored,
since they are small. All the large classes are block-wise sources, when we add the
condition that we look only at strings that belong to them. We already know how to
deal with block-wise sources. Thus, when we look at the blocks extracted from each
class, with high probability one of the blocks is uniform, given the right conditioning.

Saks, Srinivasan and Zhou use this property to achieve some weak randomness.

In the following sections we are going to study and develop these ideas. By
this, we will achieve new and more general results, and we will also be able to put
the Srinivasan, Saks and Zhou result in a new context, shedding new light on the

method.

37

2.2.4 Summary

We saw the fundamental “hash” extractor, using m truly random bits to extract
some additional (m) random bits out of m min-entropy. We saw the basic idea of
using extracted randomness to further extract more randomness, and saw this work
on a special class of random random sources which we called block-wise sources.

Finally, we saw two methods to convert an arbitrary source to a block-wise source.

This results in the following extractors:

Lemma 2.2.10 [SZ9/] ' Let m(n) > n***7 for some constant v > 0. For any e
there is an explicit (m(n),€) extractor E : (n) x (O(log*n - log(L))) — (MZ&Z)
Lemma 2.2.11 [Zuc96] Let m(n) = O(n). For any € there is an explicit (m(n), €)
extractor I : (n) x (O(log(n) + log(1))) — (Q(n)).

Lemma 2.2.12 [S5795] Let m(n) > n" for some constant v > 0, then there is

some constant § > 0 and an explicit (n,m(n),O(log(n)),n’, 1) disperser. *

!The parameters here are simplified. The real parameters appearing in [SZ94] are somewhat
better.

?We did not define what a disperser is. The reader is referred to [Nis96] for a survey.

38

2.3 An Extractor For Any Min-Entropy!

2.3.1 An Informal Description

First we notice that for any source X and most strings * € X, there is some
splitting point 1 < ¢ < n that splits « into 2y o 23 s.t. both Pr(X; = 1) and
Pr(Xy =ay | X1 = 1) are small.

Lemma 2.3.1 Let X be a distribution over {0,1}" with H.o(X) > my + my + s.
Call an x € X “good”, if there is some i (dependent on x) s.t.

° PT(X[LZ'] = :1;[172»]) < 27™ gnd

o Pr(Xpti,n] = Tit1n] | Xpyg = opyg) <277

Then Pr .5 (x is not good) < 27°.

Proof: Let z € X. Let ¢ be the first location splitting « into two blocks T[0T [i41,n]
s.t.

PT(X[I,i] = 2}[172']) < 2—m1 (21)

Since ¢ is the first such location,

Pr(Xpi =2pig) 2 27™ (2.2)

Since Hoo(X) > my + my + s

PT(X[Ln]:x[l,n]) < 2_(m1+m2+5) (23)

39

Putting this together we get:

Pr(Xpm = 20,0)
Pr(Xpqg=2p)

Pr(Xpm = 20.0)

Pr(Xppin = 2lipin | Xpog = 2p,) =

PT(X[LZ'—I] = 51?[1,2'—1])) PT(XZ' =T | X[l,i—l] = 51?[1,2'—1])
9—(m1+mz+s)
2= Pr(X; = | X iz = 51?[1,2'—1])

<

Hence, for all strings = € X s.t. Pr(X; = z; | Xp,i—1] = #p,i-1]) = 277, it holds that
Pr(Xppin = g1 | Xpag = 2p,g) < 2772, and 2 is good. In particular
Pr(z is not good) < 27%.]

The crucial point is that there are only n possible splitting points. If we want to
split @y ,, into & blocks, there are only n* sets of splitting points, and most strings (all
but k-277) have a good splitting set. Therefore, we can split the universe {0,1}" to
n* 41 classes, each class containing strings that are good for one particular splitting

set, and one for all strings that do not have a good splitting set.

Suppose we are only given inputs that belong to a specific class S. Then, what
we actually see is an input from a block-wise distribution, with the known partition
S. Therefore, we know how to extract randomness from it. It is true that given a
string @, we have no idea what is the right class (or partition set) for it, but since
there are so few classes, we can try all of them. This gives us n* output strings, one

of which is random.

Let us define more precisely the type of source we achieve. We have d = n*
distributions Xi,..., Xy, and we know there is some selector function ¥ = Y (x) (
that assigns each good string to a class with a right splitting set), s.t. (X; | ¥ =
i) = U. So let us define:

40

Definition 2.3.1 X = Xjo...0Xy is a d=block (m,e,n) somewhere random source, if
each X; is a random variable over {0,1}™, and there is a random variable Y = Y (X)

over [0..d] s.t.:

o Forany € [l..d]: d((X;|]Y =1),U,) <e.

o Prob(Y =0)<n.

We also say that Y is an (m,e,n) selector for X.

The following lemma (proved in appendix A.1) shows that any d-block (m,e€,n)

somewhere random source, is close to a source with m min-entropy.

Lemma 2.3.2 (1) Any (m,€,n) somewhere random source X is € +n close to an

(m,0,0)—somewhere random source X'. (2) For any (m,0,0) somewhere random

source X, Hoo(X) > m.

Thus, any extractor that extracts randomness from sources having m min-
entropy, also extracts randomness from d-block (m, €,7) somewhere random source.
However, d-block (m, €, n) somewhere random source, have an additional structure,
and we will see (section 2.3.5) that this nice and simple structure makes it much
easier to extract randomness from such sources. Let us call an extractor working

only on somewhere random sources, a somewhere random merger:

Definition 2.3.2 M : (m)? x (t) — (m’) is an epsilon-somewhere random merger,
if for any d=block (m,0,0) somewhere random source X, the distribution of M(x,y)
when choosing x € X and y € Uy, is € close to U,,.

41

Definition 2.3.3 We say M = {M,} : (m)?x(t) — (m') is an explicit ¢ ~somewhere
random merger, if there is a Turing machine that given x € {0,1}4™ and y € {0,1}!
outputs M, (x,y) in polynomial time in dm + 1.

We will see that it is not hard to build efficient somewhere random mergers.

Building on that, our extractor does the following:

1. Try all n* partitions of @ into k = ©(log(n)) blocks.

2. For each partition set 7, extract the randomness as from a block-wise source,

to get a random string B;.

3. The distributions By, ..., By form a somewhere random source. Use a merger
to merge the randomness in the somewhere random sourceinto a single almost

uniform distribution.

In the coming sections we rigorously develop the above ideas. The formal pre-
sentation differs from the informal ideas above in two ways: first, the formal con-
struction is done in polynomial time as opposed to time n®(99(") in the scheme
above. Second, in the formal description we will give full formal proofs, and thus
we will have to specify all the details and hard work needed to implement the ideas
above. To ease the reading, we advise the reader to keep this intuitive and informal

construction in mind.

42

2.3.2 Composing Two Extractors

We already know how to extract randomness from sources X that can be “broken”
into blocks X7 0 Xy, s.t. Xy and (X2 | X7 = 1) contain a lot of randomness. We
would like to use this for extracting randomness from arbitrary sources. We have
already seen that even though not all random sources have such a splitting point,
most strings do have such a splitting point. The algorithm we suggest tries all

possible n splitting points, and then merges the n results.

To be more precise, given an input string x:

1. split = into two consecutive strings x; o x5, s.t. the splitting point is good for

x
2. use F; to extract randomness from z4

3. use Ly with the extracted randomness to further extract randomness from z;

Obviously, given a string x, we do not know what is the right splitting point, so
we try all || = n possible ones. This gives us a somewhere random source with n
blocks, that can be merged into a single quasi-random string by a good somewhere

random merger.

ALGORITHM 2.3.1 Suppose Ey : (n)X(t1) — (t3) is an (mq, (1)-extractor, Fy : (n)x
(t2) — (t3) is an (mz, (o)—extractor, and M : (t3)" X (p1) +— (01) is a (3—somewhere
M
random merger. Define the function Ky © Ey as follows: Given a € {0,1}", choose

ry uniformly from {0,1}", and choose vy uniformly from {0,1}**.

1. Let g = Ey(ap), m) and 2z = Ey(ap -1, ¢), foro=1,...,n.

43

M
2. LetE26E1 = 210...02,, CLTLdEQ@El = M(EQ@El,TQ).

Theorem 1 Suppose Ey : (n) X (t1) +— (t2) is an (mq, (1)—extractor, Ey : (n) X
(t2) — (t3) is an (mz, (o)—extractor, and M : (t3)" X (p1) +— (01) is a (3—somewhere
random merger. Then for every safety parameter s > 0, F;]\(g Ey:(n)x(t+ p1) —
(o1) isan (my+ma+s,G+ G+ G+ 8n2_5/3)fe:1:tmct0r.

Proof: To prove this, assume H(X) > mq + mg + s.

We will show that £y & Fs is an (5, + (2, 8n2_5/3)fsomewhere random source.
Thus, by lemma 2.3.2 Ey © Fy is (i + (3, 8n27%/%)~close to a (13,0, 0)-somewhere
random source. Since M is a merger, by definition 2.3.2 we get that E(X,U) =
M(FE; & FE,) is quasi-random as required.

Denote by); and Z; the random variables with values ¢; and z; respectively.
Also, let ez = 2_5/3, € = 2¢3, and ¢; = 2¢5. We define a selector for Z#7 = Z; o
...0Z, = Fy© FE,in two phases: first we define a function f which is almost the

selector but has few “bad” values, then we correct f to obtain the selector Y.

DEFINITION 2.3.1 Define f(w) to be the last i s.t Prob(Xpi, = wpin | Xpi-1 =
w[l,i—l]) <(e3—e€3) 27,

DEFINITION 2.3.2 Define w to be “bad” if f(w) =1 and:

1. Probeex(f(z) =1) < e, or
2. PTObxeX(f(l') = | TNi-1] = w[1,¢—1]) < €, or,

3. PTObeX(Xi = wy | Ll1,i-1] = w[l,i—l]) <€

44

We denote by B the set of all bad w. We denote by B; (1 = 1,2,3) the set of all
w satisfying condition (i).

DEFINITION 2.3.3 Let Y be the random variable obtained by taking the input a and
letting Y =Y (a), where:

0 w is bad

Y(w) =
flw) otherwise

It holds that Prob(w is bad) < n(e; + €2+ €3) < 8n - 9-s/3 (the proof is easy, see
appendix A.3). We complete the proof by showing that (Z; | Y = 1) is (1 4+ (a—close

to uniform.

Claim 2.3.1 [f PTOb(Y = 1 | X[l,i—l] = w[l,i—l]) > 0 then HOO(X[Z,n] | Y =

@ and X[l,i—l] = w[l,i—l]) > my

Therefore, for any such wyy;_y), (Qi | Y =4 and Xp;_1) = wp,i—1y) is G—close
to random (since F; is an extractor). Hence by lemma 2.2.6, the distribution
(X | Y =) x(Qi | Y =1 and Xy ;1) = wp 1)) is (—close to the distri-
bution (Xp;—1 | Y =14) x U. But,

Claim 2.3.2 HOO(X[I,i—l] | Y = Z) Z mo.

Therefore, using the extractor Fy we get that (Z; | Y = ¢) is (1 + (3—close to

uniform.

O

Now we prove claims 2.3.1 and 2.3.2:

45

Proof: [of claim 2.3.1]

For any w s.t. Y(w) =

Prob(Xy) = wii | Xp,icy) = w1, Y(z) =14) <
Prob(Xpg mp=wiin) | X[1i—1=wp,i-1]) <
Prob(Y(e)=i | Xy i—1j=wp1i—1)) —
(62—63)~2_m1 <

Prob(Y(z)=i | Xpi—1j=w[1,i-1])

(e2=e2)27™ _ o—my
€ —€3

The first line is true since Prob(A | B) < 5 M the second line since f(w) =1,
and the third follows from Claim A.3.1. L]

Proof: [of claim 2.3.2]

Take any wp ;-1] that can be extended to some w with Y (w) = 1.

Prob(Xp i—1) = wpyi—1)) =

Prob(Xy) = wii)
Prob(Xm = Wi] |X12)=

w[l,i—l])

Prob(X[Ln] = w[lm])
Prob(X; = wi|X[17Z’_1])Prob(X[i+17n] = w[¢+1,n]|X[1,¢])

However,

Prob(Xji1,0) = Wit1,0]| X) = (62 — €3)27™
PTOb(Xz’ = w; | X[l,i—l] = w[l,i—l]) > €3
PTOb(X[Ln] = w[lm]) < 9= (mitmaz+s)

46

The first line is true because f(w) = i, the second because w ¢ Bs, and the third
because H.,(X) > my + mg + s. Thus,

9—m2—s
PTOb(X[LZ'_l] = w[l,i—l]) S (24)

€3 - (62 - 63)

Therefore,
Prob(X[M_l] = W[;-1) | Y(z)=1) <
Prob(X1 ;_1)=w[1,i—1])
Prob(Y (z)=1) =
2=m2 = <

e3-(e2—€3)-Prob(Y (z)=1)

2-m2—s — 2—7)’L2
e3 -(e2—e3)-(e1—e2—e€3)

The first line is true because Prob(A | B) < %%%. The second follows from

Eq. (2.4). The third follows from Claim (A.3.2). L]

47

2.3.3 Composing Many Extractors

Now we define composition of many extractors by:

Definition 2.3.4 Suppose E; : (n) x (t;) — (tig1 + siy1) is an (my, (;)—extractor, for
i=1,...,k, 8 >0 and s5 = 0. Suppose M; : (tizg + sip2)" X (i) = (tiy2) is a (;
—somewhere random merger, for any1 =1...k—1. We define the function Ey (kD_l

M2 M)) My M2 M
FEr1 © .. By & Ey by induction to equal B, & (Frx—1 © ...Ey © Eq).

Theorem 2 Suppose E;, M; are as above, then for any safety parameter s > 0,
My My _o M
E =E, & Eei & ... B B, E:(n)x (b4 S5006) — (tra) is an

(S5 mi + (B — 1)s, 35 G+ 351G + (B — Dn27/3%3) —eatractor. If F;, M; are
explicit, then so is I.

Proof:

Correctness :

By induction on k. For k = 2 this follows from theorem 1. For larger £’s this

is a straight forward combination of the induction hypothesis and Theorem 1.
Running time :
Mi_»

My_ M
We compute E}j 61 E.1 & ...F @1 FEy using a dynamic programming

procedure:

1. Given z € X, choose y uniformly from {0, 1} and y; uniformly from {0, 1},
forj=1,...,k.

48

2. Next, we compute the matrix M where

M;_q M;_s

. My
M[],Z]:(E] ® E]‘_l ® ...Eg@El)(:z;[m],yoylo...oyj)

forl<i:<mand1<j <k

The entries of the first row of M, M[1,:] can be filled by evaluating F1 (., y).
Suppose we know how to fill the j’th row of M. We show how to fill the j+1’th

Trow.

o Denote ¢ = M[j,l] for [=4,...,n, and let 2 = E; 1 (221, @1)-

o Set M[j+1,i]=M;(zi0...z2n,Y;).

By the definition of composition M|[j,] has the correct value, and clearly, the

computation takes polynomial time in n.

[

REMARK 2.3.1 It may appear that left associativity is more efficient in terms of the
number of truly random bits used. However, we know how to implement right asso-
ciativity composition in polynomial time (using a dynamic programming procedure)

and we do not know of such an algorithm for left associativity composition.

49

2.3.4 Assuming Explicit Somewhere Random Mergers

Assume for every m > m we have a good somewhere random merger M. Then we
can let £ = A, % o Apes % Apm % A, where A; is the extractor of lemma 2.2.4
and b is some constant, 1 < b < ¢yny, to get an extractor that extracts (m) bits
from sources having m min-entropy. Thus, good somewhere random mergers imply

good extractors.

Lemma 2.3.3 Suppose for any m < m < m there is an explicit ¢ somewhere
random mergerM,, : (m)" x (t) — (A-m), where A is a constant and ﬁ <
A < 1. Then, for any m < m < m there is an explicit (m,poly(n) - €) extractor
B (n) x (O(m - log(1) + log(n) - 1)) (m)).

Proof: Let b = cyiny - A. Clearly b is a constant, and 1 < b < ¢4y. Define
m; =0b-m- log(%), and let [be the first integer s.t. ¥!_ 2m; < .

Ml—l M1
Define K =FE, © E;_1... ® Fq, where:

o I :(n)x (m;) — (cuny - my) is the (mi,Z_m"/S)fextractor A, from lemma

2.24

o M; : (Ctiny - Miy1)" X (1) — (b-misq) is the €)-somewhere random merger given

in the hypothesis of the lemma.

Now we use Theorem 2 with ¢; = m; and s; = (¢yny — b)m;—1 (and therefore
Li48; = Cliny=mi—1), and we also take s = 2. By Theorem 2, E' : (n)x (t; + Zﬁ»;it) —
(trg1) is an (S mi4 (1 —1)s, XL, 27m0/5 4 ¥izle 4 (1—1)n27%/3+3) —extractor. Since
I = O(log(n)) and ¢ > 27%/3 (otherwise the result is trivial), £ is an extractor as

required. Since A;, M; are explicit, so is F. (]

30

Just to demonstrate the above, assume for every m there is an explicit
M., : (m)" x (polylog(n) - log(L)) — (A -m) poly(n) - € somewhere random merger.
Then notice that by lemma 2.3.3, this implies an explicit (m, poly(n) - €)—extractor
B (n) x (polylog(n) - log(¢)) = (Q(m)), for any m.

51

2.3.5 Explicit Somewhere Random Mergers

In this section we construct explicit somewhere random mergers. We observe that a
2-block merger can be obtained from the previously designed extractors of [NZ93,
S794]. Once such a merger is obtained, any number of blocks can be merged in a

binary-tree fashion.

A 2-block somewhere random merger

A d-block (m,e,n)—somewhere random source X, can be viewed intuitively as a
source composed of d strings of length m, with a selector function that, for all but
an 7 fraction of the inputs, can find a block that is € quasi-random. Indeed, by

lemma 2.3.2 we know that X is € + 7 close to a distribution with m min-entropy.

Thus, any (m,e)—extractor £ : (2m) x (t) — (m’), extracts randomness from
any source X with H(X) > m, and in particular it extracts randomness from
any (m,0,0) somewhere random source. Therefore, by definition, any such £ :

(m)? x (t) — (m’) is an e-somewhere random merger.

Corollary 2.3.4 Any (m,€)—extractor £ : (2m) x (1) — (m') (which can also be

viewed as E : (m)* x (t) — (m')) is an e-somewhere random merger.

A d-block somewhere random merger

Given a d-block somewhere random source, we merge the blocks in pairs in a tree
like fashion, resulting in a single block. We show that after each level of merges
we still have a somewhere random source, and thus the resulting single block is

necessarily quasi-random.

52

ALGORITHM 2.3.2 Assume we can build an e(m) somewhere random mergerE :
(m)? x (t(m)) — (m — k(m)). We build M, : (m)zl X ([-t(m)) — (m—1-k(m)), by

induction on [:

Input : 2’ =2l o...2}, where each z} € {0,1}™.

Output : Let t =t 0...1, where t; is chosen uniformly from {0,1}1™ If[=0

output x', otherwise:

1. Let 27' = B(al,_joak, 1)), fori=1,...,27",

2. Let the output be Ml_l(xll_l o.. .:1;121__11 , t1o. . tig).

Theorem 3 Assume for every m, E,, : (m)* x (t(m)) — (m — k(m)) is an explicit
e(m) somewhere random merger, for some monotone functions t,k and e=*. Then
M, : (m)?* x (Bh_yt(m)) — (m =1 k(m)) is an explicit 1-e(m —1-k(m)) somewhere

random merger.

Proof: TFor j = [,...,0 denote by Z/ the random variable whose value is 2/ =

J
279

that Z7 is the distribution X, and Z9 is the distribution of the output.

:1;{ o...xJ,, where the input is chosen according to X, and ¢ is uniform. Notice

The theorem follows immediately from the following claim:

Claim 2.3.3 Denote m; = m—(I—j)k(m). If X is an (m;,0,0) somewhere random
source, then for any 1 <1 < 27, d((ZZ] | Y e 27— 1)+ 1,24)) , U,) <

(l=7)-e(m)

Proof:

33

The proof is by downward induction on j. The basis 7 = [simply says that for
any ¢, d((X; | Y =), Uy,) =0, which is exactly the hypothesis. Suppose it is
true for j, we prove it for § — 1. By the induction hypothesis:

o d((Z3iy | Y €27 (20 =2) + 1,272 = 1)]) , U,) < (1= j)e(my)
o A (Zh |V €RRi— 1)+ 1,279%), Un)) < (1=) e(my)
In appendix A we prove:

Lemma 2.3.5 Let A, B and Y be any random variables. Suppose that d((A | Y €
S51),Up) <eand d((B | Y € 53),Uy) < € for some disjoint sets Sy and Sy. Then
(Ao B |Y € 51US,) is e—close to some X with H,,(X) > m.

Therefore:

o (Z§; yoZi | Y €25t (i — 1)+ 1,257%Y]) is (I — 5) - e(m;) close to some W

with Hoo (W) > m,;.

o Since Z/™' = E(Z};_ o Z} , t;), it follows that (Z/™' | Y € [279H1 (1 — 1) +
1,2=9%145)) is (I —7) - ¢(m) close to B, (x,1;) where © € X and H (X) > m;.

Therefore, it is (I — j) - €(m;) + €(m;) close to random, as required.
O]

REMARK 2.3.2 Notice that we use the same random string t; for all merges occurring
in the j°th layer, and that this is possible because in a somewhere random source we
do not care about dependencies between different blocks. Also notice that the error

is additive in the depth of the tree of merges (i.e. in 1), rather than in the size of
the tree (2').

o4

2.3.6 Putting It Together

What we need is good somewhere random mergers for any m. We are going to
achieve this by building good 2-block somewhere random mergers and using Theorem
3. Thus we need extractors working on sources with very high min-entropy, and
losing only a very small fraction of the min-entropy present in the random source.

Fortunately, a simple idea due to Wigderson and Zuckerman [WZ93] suffices.

More of The Same

Suppose we have an extractor E that extracts randomness from any source having
at least m min-entropy. How much randomness can we extract from sources having

M min-entropy when M >>m ?

The following algorithm is implicit in [WZ93]: use the same extractor £ many
times over the same string z, each time with a fresh truly random string r;, until you
get M — m output bits. The idea is that as long as |E(x,r1)0...0 E(x,ry)| is less
then M —m, with high probability (X | E(x,r1)o...0 E(x,rg)) still contains m min-
entropy, and therefore we can use the extractor £ to further extract randomness from

it. Thus, we have the following two lemmas, that are proven in detail in appendix

A 4:

Lemma 2.3.6 Suppose that for some m there is an explicit (m,€)—extractor E,, :
(n) x (t) — (m'). Then, for any M > m, and any safety parameter s > 0, there is
an explicit (M, k(e 4+ 27*%))—eatractor E : (n) X (kt) — (mun{km/, M —m — s}).

Lemma 2.3.7 Suppose that for any m > m there is an explicit (m, e(n))—extractor
Eyn i (n) x (Hn)) — (%) Then, for any m, there is an explicit (m,log(n)(e +
271 —extractor E : (n) x (O(f(n)log(n)t(n))) = (m —m).

)

Corollary 2.3.8 Suppose m = m(n) is a function s.t. for every m > m(n)

there is an explicit € somewhere random merger M : (m)" x (t) — (A-m),

where —— < A < 1. Then for any m there is an explicit (m,poly(n) - €)-

tiny

B : (n) x (O(im - log(n) - log(£) + log(n) - 1)) > (m).

Proof: The lemma follows from lemma 2.3.3 using lemma 2.3.7. L]

Mergers That Do Not Lose Much.

The [S794] extractor of lemma 2.2.10 works for any source with H.,(X) > n'/?*7.
Thus, using lemma 2.3.6 by repeatedly using the [SZ94] extractor, we can extract at
least & — n'/3*7 quasi-random bits from a source having H.,(X) > 2. Thus, we have
a 2-merger that does not lose much randomness in the merging process. Applying

Theorem 3 we get a good n—merger. Thus:

Lemma 2.3.9 Let b > 1 be a constant and suppose f = f(m) = f(m(n)) is a
function s.t. f(m) < 3/m and for every m > mg(n) : f(m) > b-log(n).
Then for every m > mq there is an explicit log(n) - poly(m) - € somewhere random

mergerM : (m)" x (log(n) - polylog(m) - f*(m) - log(L)) — (m — 2).

Proof:
e By lemma 2.2.10 there is an explicit (%,6) extractor FE; : (m) X
(O(log®m - log(L))) — (%) extractor.

e By lemma 2.3.6 there is an explicit (m, poly(m) - €) extractor Fy : (2m) x
(O(f(m) - togm - Tog(1))) = (0 — 7).

56

e By Theorem 3 there is an explicit log(n) - poly(m) - ¢ somewhere

random mergerM; : (m)" x (O(log(n) -polylog(m)-fz(m)-log(%)) —

(m — log(n) - %) Since % < b.lomm for any m > mg , we have that
log(n) - 5y < %

[

Corollary 2.3.10 For every m > 2V%") there is an e somewhere random merger
M = M,, : (m)" x (polylog(n) - log(L)) — (Q(m)).

Proof: Take f(m) = log®m for some constant d > 2. For any constant b,
m > 2VPI(") and n large enough, log?m > b - log(n), and the corollary follows
lemma 2.3.9.]

Notice that Theorem 3 and corollary 2.3.10 take advantage of the simple structure
of somewhere random sources, giving us an explicit somewhere random merger that
works even for sources with very small min-entropy to which the [SZ94] extractor of

lemma 2.2.10 does not apply.

Extractors That Work For High Min-Entropy

Corollary 2.3.10 asserts the existence of good mergers for m > 2V'@9(") "and therefore
plugging this into corollary 2.3.8 we get:

Corollary 2.3.11 For every m there is an (m,poly(n) - €) extractor B, : (n) X

(0(2‘”09(”) - polylog(n) - 109(%))) = (m).

The extractor B in corollary 2.3.11 uses O(2V') . polylog(n) - log(L)) truly
random bits to extract all the randomness in the given source. Although O(2V log(n).

57

polylog(n) - log(L)) is quite a large amount of truly random bits, we can use the
[SZ94] extractor to extract n'/? bits from n?/® min-entropy, and then use these
n'/? >> O(Zm-polylog(n) -log(1)) bits to further extract all the remaining min-
entropy. More precisely, if B is the extractor in corollary 2.3.11, E;, the extractor
from lemma 2.2.10 and M is the merger from corollary 2.3.10, then £ = B % F.
extracts Q(m) bits from sources having m > n?/® min-entropy, using only polylog(n)

truly random bits! That is, we get the following lemma:

Lemma 2.3.12 Let € > 27" for some constant v < 1. There is some constant

B < 1 st for every m > n? there is an explicit (m,poly(n) - €) extractor E :
(n) x (polylog(n) - log(%)) — ((m)).

M
Proof: Choose 6 = 1%” and g =1-— %. Let the extractor £ be £/ = B, ® F,.

where

o E,. : (n) x (O(log*n - log(L))) — (n?P=1) is the (n”, ¢) —extractor of lemma
2.2.10.

e B, is the extractor from corollary 2.3.11.

e M is the merger from corollary 2.3.10.

Since n?°~1 = nf . nY = Q(Q\/m . log(%)), E = B,]\(g E,, is well-defined.
By theorem 1, for every m, E : (n) x (polylog(n) - log(L)) — (€(m)) is an explicit
(m + n? + n", poly(n) - ¢)-extractor. In particular if H. (X) = Q(n”) we extract
Q(Hoo (X)) as required.]

38

The Final Result

Now that we know how to extract all the randomness from sources having Q(n”)
min-entropy with only polylog(n) truly random bits, by lemmas 2.3.7 and Theorem
3 we have good somewhere random mergers, for every m. Thus by corollary 2.3.8

we have good extractors for every m.

Theorem 4 For every constant v <1, ¢ > 27" and every m = m(n) there is an

explicit (m,€)—extractor E : (n) x (polylog(n) - log(L)) — (m).
Proof:

e By lemma 2.3.7, lemma 2.3.12 implies an explicit (n,poly(n) - €) extractor

Ey : (2n) x (polylog(n) - log(1)) — (n — n”).

e There is some constant d (that depends only on v) s.t. for every login <

1

m < n, log(n) - mP < 2 where ¢ is some constant s.t. —4— <1 —1 <1 (e.g.
c Ctiny ¢

¢ = cfct%) Therefore by Theorem 3, for every m there is an explicit poly(n)-e
somewhere random merger M : (m)" x (polylog(n) - log(L)) — (m — 2.

C

e By corollary2.3.8, this implies an explicit (m,poly(n) - €)-extractor E,,

€
poly(n)

(n) x (polylog(n) - log(1)) — (m), for any m. Plugging ¢ = , gives

the theorem.

39

2.4 An Extractor Using Less Truly Random Bits

In this section we build our second extractor.

Theorem 5 For every constant k and v > 0 there is some constant 6 > 0 and
an (n", %) extractor D : (n) X (O(log(n)log®™n)) +— (Qn?)), where log®n =

loglog .. .log n.
—_—
k

The extractor uses two main building blocks: The first shows how to reduce
the number of truly random bits needed for sources having n'/? min-entropy. The
second shows how to use extractors for n'/? min-entropy to achieve extractors for

any n” min-entropy.

Lemma 2.4.1 Let f(n) be an arbitrary function. Assume ¥~ > 0, 36 > 0 s.t.
there is an (m = n7,n=% W) extractor B : (n) x (t = log(n) - f(n)) — (m' = Q(n?)).
Then V4" > 0, 36" > 0 s.t. there is an (n%‘ml,e = 0~V extractor F : (n) x
(1 = Ollog(n) - log(f(n)))) r— (m’ = D).

Lemma 2.4.2 Assume

!

o ¥y >0, 38’ > 0 s.t. there exists an (m = n?' ,n~%) extractor E : (n) x
(1 = Ollog(n) - 20)) v (' = ")),

o Vv > 0, 36" > 0 s.t. there exists an (m = n%"ﬁn,n—ml)) extractor I :
(n) x (t = O(log(n) - f(n))) = (m' = Qn"")).
Then ¥y > 0,36 > 0 s.t. there exists an (m = n&=1T7 =) extractor D :
(n) x (t = O(log(n) - f(n))) = (m' = Qn%)).

60

Using these two lemmas we can prove Theorem 5:
Proof: [of Thm 5]
We prove the equivalent claim:
Claim: For every constant k£ and 4 > 0 there is some constant 6 > 0 and an

(n?,) extractor D : (n) x (O(log(n) - (log"™n)®)) = (Q(n?)), where ¢ is some fixed

constant.
By induction on k. For & = 1 this follows from Theorem 4.

Assume for k. Denote fiy1(n) = log*+Yn. The induction hypothesis says
that ¥y > 0, 36 > 0 s.t. there is an (m = n?,n"%W) extractor £ : (n) x
(t = log(n) - 20Ukt1()) s (m! = Q(n?)). extractor.

By lemma 2.4.1, V' > 0, 36’ > 0 s.t. there is an (n'/?*", e = n=%1)) extractor
F i (n) x (t = O(log(n) - frs1(n))) = (m’ = Qn")).
All the requirements of lemma 2.4.2 are met, and therefore, using lemma 2.4.2

repeatedly a constant number of times, we get the desired extractor. (]

2.4.1 A Better Extractor For Sources Having n'/**? Min-

entropy

In this section we prove lemma 2.4.1. We show that combining the extractor of
Theorem 4 with the [NZ93] block extractor, we can extract randomness from sources
having nzt min-entropy using less random bits. The idea behind the construction
is the following: since the given source X has H..(X) > n%"ﬁ/, we can use the
[NZ93] block extraction to extract d = O(log(f(n))) blocks that together form a

Q(1)

block-wise source with each block containing some n min-entropy. Then, by

61

investing O(log(n)) bits, we can extract some log(n) - 2% = log(n) - f(n) random
bits. Finally, we can use these bits in the extractor given by the hypothesis of the

lemma, to extract n*(") quasi-random bits.
Proof: [of lemma 2.4.1]

Consider the following algorithm:
ALGORITHM 2.4.1 Fiz d = O(log(f(n))), | = n'/%.

Choose y1,...,yq € {0,1}00s() “and 4 € {0, 1}1090),
Given © € X

1. Extract d blocks by = BC(x,y1),...,bq = BC(x,yq), where BC is the block

extraction operator of lemma 2.2.8.

2. compute z = BE(by...by,y), where BE is the function extracting randomness

from block-wise sources, from lemma 2.2.7.

3. Finally, let the output be E(by,z), where E is the extractor given in the hy-
pothesis.
To prove correctness, notice that,

Claim: Fix yy,...,yq arbitrarily. The probability that there exists an 1 <7 <
dyst. Ho(X | Bi=b,...,B;=b) < n1/2t7/2 {5 less than e.

Proof: The total number of bits in by ...¥5; is at most d-1 << n'/2- log(n). Denote
Bad = {bjo...0b; | Pr(b...b) <277}

Then, Pr(Bad) < |Bad| - 9=t o), Also, for any by ...b; ¢ Bad, and

any x:

PT(X:$|B1:Z)1,,BZ:Z)Z)

IA

62

2_n1/2+7

- 2—n1/2+7/2

<< 2_711/2+v/2

and therefore for most prefixes, Hoo (X | By = b1,...,Bi=b;) > n'/24t7/2 as required.
]

Therefore, using the block extractor of lemma 2.2.8 we get:

Claim: B = Bjo...0Byisa (d,n/? n"%M) block-wise source.

Proof: For almost every prefix by,...,bi_1, Hoo(X | By = b1,...,B; = b)) >
n'/2t7/2 Therefore, by lemma 2.2.8, for almost every prefix by, ..., bi_1, (B; | By =
bi,...,Bi—1 = bj_1) is close to a distribution with at least n/3 min-entropy.]
Finally,
Claim: B; x Z is n=% close to By x U
Proof: For most prefixes by, (B X ... x By | By = b1) is a block-wise source.

Therefore, by lemma 2.2.7, (Z | By = by) is close to uniform. Hence, the claim

follows by lemma 2.2.6. L]

Notice that Z is distributed over log(n) - 29 = O(log(n) - f(n)) bits, therefore
applying the extractor E., we get Q(n‘S/) quasi random bits. L]

2.4.2 An Extractor For n” Min-entropy.

. : L
Here we prove lemma 2.4.2. We show how given an extractor for sources with n¥*”

1

min-entropy, we can build an extractor for sources with n&11?

min-entropy. The
idea is to extract d blocks. If all the blocks took their “fair share” of randomness,

then they form a block-wise source, and we can treat them as before. If they do not

63

form a block-wise source, then it must be the case that one of the blocks “stole all
the randomness” present in the source. But then this block is much more condensed,

and we can extract randomness from it.

1

ALGORITHM 2.4.2 Fiz d = O(f(n)) and | = n'""1.
Choose TlyevosTq uniformly
from {0,1}00eam)) ! " yniformly from {0,1}C0s(I) and v uniformly from
{0, 1}0(log(n),

Compute:

o b, = BC(xa,r;) fori = 1,...,d, where BC is the block extraction operator of
lemma 2.2.8.

o b, = F(by,r') fori =1,..,d—1, where F is given in the hypothesis of the

lemma.

® bél = E(bl, BE(Z)Q, ceey bd, T”)).
Let the output be F(byo...ob),r").

Proof: [of lemma 2.4.2]:

Let us denote B = (By,...,By) and B’ = (B;, ..., B}) (where B; (B!) is the

K3

random variable with the value b; (8.)). We will soon prove that:

Claim 2.4.1 B’ is a (d,m = n®M n=¥Y) somewhere random source.

Q(1)

Hence, by lemma 2.3.2, B" is n™"*!-close to some B” that is distributed over

N = md variables and has H..(B"”) > m. Thus, B” is very “condensed”, i.e.

64

H.(B") > m >> N??3. Thus, by the hypothesis, F(B’,7") is n=*"-close to the

uniform distribution. L]

Proof: [of claim 2.4.1]

First we define the selector function. Given b € B we look for a prefix ¢ s.t.
the min-entropy of (X | By = bu) has dropped significantly. If such an ¢ exists,
and assume g is the first such ¢, then it means that the g block “stole” a lot of
randomness, and we let f(b) = io. If no such ¢ exists, we expect B to be a block-wise

source, and we let f(b) = d.

Now we have to quantify what “dropped significantly” means. Initially,
Ho(X) > nFTH . Let us denote Lo = T If no block stole randomness,
at the end we expect Hoo(X | By g = bp,q) to be at least £2. So let us define, for
i=1,...,d—1, p; = po — ﬁ,uo, and for b € B let the selector function f(b) be:

v Af Hoo(X | By = b)) < i,
f(b) = and this first happens at ¢

d otherwise
Now we “fix” the selector function to avoid some rare bad cases:
DEFINITION 2.4.1 b is bad in either of the following two cases:

o f(b)=1v€[l.d—1] and Prob(f =1 | Bp,i—1) = bp,i-11) < e

o f(b) =d and there is some 1 <o < d s.t. Prob(f =d | Bp—1 = bp—1) < &.
where e = e = n~ %W and ¢;_y = 4e¢;, fori=2,...,d.

Define

65

0 b is bad

Y (b) =
®) f(b) otherwise

We are going to prove several lemmas. First,
Lemma 2.4.3 Pr(Y =0) < de+ Y;¢
Second, we will show that

Claim 2.4.2 Forany 1 <i<d—1: Hu(B; | Y =i) > nwt3,

. _k 1, Kk k+17xy 1, k+1 .
Therefore, Hoo(B;|Y =) > nm1% 51 % 2 = [s+7% 2 and by assumption, from

Q1)

such sources F' extracts randomness. Hence, (B! | Y = i) is n=*V-close to uniform.

Finally, we will show that:

Claim 2.4.3 (B |Y =d) is a (d,n"?, n=%) block-wise source.

Therefore, with the conditioning that ¥ = d, Byo BE(Bjio...o By, r") is

n= close to By x Ulog(n)-22a)- Hence, using the extractor E, (By | Y = d) is n~%M
close to uniform.

Putting it together, B is a (d,n®*M), n=Y) somewhere random source. (]

So now we have to prove the above three claims. The proof does not involve any

new idea, and is a straight-forward check that indeed all the necessary things hold.

We first need a technical claim which we prove in appendix A.5:

Claim 2.4.4 For any 0 <1 < d:

66

1. For any by ;_1] that can be extended to some b with Y (b) = i:
Pr(Y =1 | Bpi—y =bp,i—yy) = Pr(f =1t | Bu—) = bpi—1y) > ¢
2. For any by ;1) that can be extended to some b with Y (b) = d:
Pr(Y =d | B, = bpica) = cio1 — S ¢ 2 ¢
We prove claim 2.4.3 in appendix A.5. Let us now prove claim 2.4.2:

Proof: [of claim 2.4.2]

Let 1 <2 <d—1. Fix any prefix by; ;_q) that can be extended to some by with
Y (by) = i. Take any b with that prefix and Y'(b) = ¢.

Since Y (b) = 1,

Hoo (X | By = bpa) < i
Therefore there is some zg s.t.
Prob(X =g | By =bug) > 27"
Since Y (b) > ¢ — 1,

Hoo(X | B[l,i—l] = b[l,i—l]) < fti-1

Therefore:

270t > Prob(X =0 | Bui-1 = bpi-1))
> Pr(X =x0 | Bi =b; and By ;_y) = by i) Pr(Bi = b; | By = bpi-1)
> 27M - Pr(B; =b; | By = bpi-1y)

67

Therefore for any b with the prefix by ;_q) and Y(b) =1,

=
©

N
Q

PT(BZ =b; | B[l,i—l] = b[l,i—l]) <L QM= — 9~

Also, by claim 2.4.4, Prob(Y =1 | By i_1) = bpi—1))

v
™

Therefore,

Prob(By=b; | Bpii—11=bp1,i—1]) -k
Prob(Y=1 | B[l,i—l]:b[l,i—l])

PT(BZ = bz | B[l,i—l] = b[l,i—l] and Y = Z) S

1 X
2

Since this holds for any prefix by ;_1], Heo(B; | Y = 1) > £5—=0O(log(n)) > nFT T

as required. L]

Finally, let us prove claim 2.4.3:
Proof: [of claim 2.4.3]

Fix an ¢ € [l..d]. We need to show that for any prefix by 1, (B; | Y =
d and By i_1 = by 1) is n~*M _close to a distribution W with H., (W) > n"/2,

Fix any by ;_q) that can be extended to some by with Y (by) = d. Since Y (bg) = d,
no block so far “stole” too much entropy, i.e., if we denote 7 = (X | B =

bri,i—1] and Y = d), then:

Hoo(X | B[l,i—l] = b[l,i—l]) > it

i.e.

for any =, PT(X =z | B[l,i—l] — b[l,i—l]) < Qi

Also, by claim 2.4.4, Prob(Y =d | Bu-1] = bpi—1]) > €.

Therefore,

Prob(X = x| By i—1) = bpi—1)) L
Prob(X = B :bi— dY =d) < : : < — 2T He
ol © | Bion = b am)< Prob(Y =d | By i1 = bpi-1y) —

o | o=

63

Hence, Hoo(7) > pi—1 — O(log(n)) = Qpi—1), which formally states that after
the first ¢« — 1 blocks of b there is still a lot of min-entropy in X.

v

By lemma 2.2.8, BC(Z,r;) = (B; | Bui—y = bp,i—1y and Y = d) is O(I7%1)) =
n~% close to a distribution W, with H. (W) = % QL) > (”—FW'”WM)

log(n) n polylog(n)
Q(n/?).

[

69

2.5 Applications

Extractors have many applications in computer science (see [Nis96] for a survey).
Here we list only those applications that benefited from our new constructions. Most
of the results are achieved by plugging in our new extractor instead of the previous

ones.

2.5.1 «a-Expanding Graphs

Definition 2.5.1 [Pip87] An undirected graph is a—expanding if any two disjoint

sets of vertices of size at least a are joined by an edge.

The obvious lower bound on the degree of an a—expanding graph is % The
previous upper bound was O(% . 2109(”)1/2+O(1))[WZ93, S794]. In [WZ93], Wigderson
and Zuckerman suggest a simple construction of a—expanding graphs which they
improve using a recursive construction. Using the extractor we developed in section

2.3 we can use their simple construction and get:

Corollary 2.5.1 (following [WZ93]) For every N and 1 < a < N, there is an

efficiently constructible a—expanding graph with N wvertices, and mazimum degree

O(X gpolyloglog(N))

For completeness, we give the proof:

Proof: (based on [WZ93]) Let V be a set with N = 2" vertices. We use an (k, £)-

6

extractor F : (n) x (t) = (k), with ¢ = poly(log(n)), and denote K = 28T = 2.

e First build a bipartite graph G' = (VW' E') where V' = V = {0,1}",
W' ={0,1}* and (z,y) € &/ < Fr € {0,1}! s.t. y = F(z,7).

70

Notice that in G’ any two subsets of V' of size K = 2* have a common neighbor

in W',

e Denote BAD = {w € W | deg(w) > 6d,.,} where dg,, = % is the average
degree of vertices in W. It is clear that |[BAD| < K|

e From G’ build G = (V| E) as follows: V =V’ and (vy,vq) € E iff vy, 05 have a
common neighbor in W\ BAD.

Call an X CV “big” if | X| > K. Since F'is a disperser, for any big X, |[['(X)| >
2. K. Since |[BAD| < §-K we have that [[(X)N(W\Bad)| > (2—2)-K >1-K. It
follows that for every two big sets X and Y, T'(X)NT(Y)N(W\ Bad) # . Therefore,
there is an edge going from X to Y in G, and therefore G is K—expanding. The

maximal degree of a vertex in GG is at most 1" - 6d,,;, = O(% -T?).
O]

[Pip87, WZ93] showed that constructing good explicit a—expanding graphs has

applications to other problems. Plugging in our new extractor we get:

Corollary 2.5.2 (following [Pip87], see [WZ93] lemma 5) There are explicit al-
gorithms for sorting in k rounds using O(nl"'% - grolyloglog()y - comparisons, and for

. . . 1+—1— .
selecting in k rounds using O(n ' 2F=1 . 2volloglog()y comparisons.

Corollary 2.5.3 (following [AKSS89], see [WZ93] lemma 6) There are explicit al-
gorithms to find all relations except O(a - nlog(n)) among n elements, in one round

. 2 .
and using O(™- - potvleglos(n)) comparisons.

In both cases our new construction replaces the term 20°0°n with the term

2polyloglog(n)

71

2.5.2 Superconcentrators of Small Depth

Definition 2.5.2 G = ((A,C, B), E) is a superconcentrator if G is a layered graph
with input vertices A, output vertices B, and for any sets X C A)Y C B of size k,

there are at least k vertex-disjoint paths from X to Y.

Much research was done on finding small explicit superconcentrators of small
depth (see [WZ93] for references). Again, using our new extractor with the ideas

used in previous constructions we manage to reduce the size of a depth 2 supercon-

centrator from O(N - 2109(N)1/2+O(1)) to O(N - 2p°lylogl°9(N)).

Lemma 2.5.4 (following [WZ93]) For every N there is an efficiently constructible

depth 2 superconcentrator over N vertices with size O(N - 2polvieslog(N)),

Proof: (following the simple idea in [WZ93])

We are going to use the following lemma:

Lemma 2.5.5 [Mes84] G = ((A,C, B), E) is a superconcentrator of depth 2 iff for
any 1 <k <n and any sets X C A, Y C B of size k, [I(X)NT(Y)| > k.

We are going to use an (m,1) extractor K, : (n) X (t) — (m +3), with ¢ =
polylog(n,log(L)). We build the superconcentrator as follows:

Input and output layers: The input and output layers A and ' are of sizes N =
2", We identify each input/output vertex with a string in {0, 1}".

The middle layer: We let the middle layer B be the union of n disjoint sets
Bi,....B,, |Bn| = 4 2™t Again, we describe each vertex in B,, as a

string in {0, 1}™%2.

72

Edges going from A to B: Foreveryz € A= {0,1}",1 <m <nandr € {0,1}*
we add an edge going from x to E,,(z,r) € {0,1}"* = B,,.

Edges going from C to B: These are the mirror images of the edges going from
Ato B.

Claim 2.5.1 For any X C A of size 2™ < k < 2™+ |I(X)N B, | > %|Bm|

Proof: Consider the uniform distribution D over X. Clearly, H.,(D) > m.
Hence, d(E(D,U;),Unyz) < L. However, |I'(X) N B,| < %|Bm| implies that

3

d(E(D,Uy),Upas) > % - a contradiction. U]

Therefore, for any X € A and Y C (' of size 2™ < k < 2™t |I(X)NT(Y)N
B,.| > £|By| = k. Hence by lemma 2.5.5, our graph is a superconcentrator. []

[WZ93] showed how to convert a small depth 2 superconcentrator, to a linear-size
superconcentrator with small depth. Plugging in the above result into their lemma,
we achieve a linear-size superconcentrator of polyloglog(N) depth. Notice that the
best previous linear construction had O(log(n)/**°1)) depth, so we achieved an

exponential improvement.

Corollary 2.5.6 (Following [WZ93], lemma 10) For every N there is an explicitly
constructible superconcentrator over N vertices, with linear size and polyloglog(N)

depth.

2.5.3 Deterministic Amplification

L

1
2 n

Our goal now is to convert a BP P algorithm that uses n random bits and has
error, into one that errs with probability at most 27%. We want to achieve this using

as few random bits as possible.

73

This problem, known as the “deterministic amplification” problem, was exten-
sively studied by [KPS85, CG89, 1789, CW89] and many others. Using expanders,
this can be done using only n 4+ O(k) random bits [AKS87, 1789, CW89]. Sipser

[Sip88] noted that the existence of explicit extractors imply stronger amplification.

Theorem: Assume there is an (m =n,e = %) extractor E : (n+ k) X (t) — (n).
If L is accepted by a BPTime(f(n)) algorithm using n random bits and having 3 —+
error, then L is also accepted by a BPTime(f(n)-2") algorithm using n+ k random

bits and having 2% error,

Proof:

New Algorithm : Choose randomly = € A = {0,1}"**. Denote

P({z}) = {z € {0, 1}" [Fpeqonyr 2z = E(w,y)}

For any z € I'({z}) run M with z as the random string, and decide according
to the majority of the results.

Correctness : Denote W C {0,1}" the set of witnesses leading to the wrong
decision. Call an x € A “bad”, if most of its neighbors lie in W. We arrive at
the wrong result iff we choose some bad x, however since E is an extractor,

Pr(z is bad) < 52 2=k,

an+k -

O

Notice that the extractor of section 2.3 gives such a strong amplification but in

quasi-polynomial time.

Corollary 2.5.7 if L is accepted by a BPP algorithm using n random bits and
having %—% error, then L is also accepted by a BPP algorithm using n+ k random

bits and having 2% error,

74

2.5.4 The Hardness of Approximating The Iterated Log of
Max Clique.

Zuckerman [Zuc93] uses extractors to show the hardness of approximating any iter-
ated log of MAX-Clique. In his constructions Zuckerman uses a non-explicit (r, 1/2)
extractor £ : (R)x (t = log(R + 2)) — (r) ® that can be found by choosing a random
bipartite graph with the right degree. Notice how close ¢ is to the lower bound. If we
could explicitly find such extractors, we could replace the random classes in Zuck-
erman’s result with deterministic classes, and in particular this would have shown
that approximating log(MAX-Clique) to within some constant factor is N P-hard.

Unfortunately, we have explicit constructions only for ¢t = polylog(R).

Zuckerman achieves the hardness result by amplifying the [ALM192] PC P proof
system for NP, and using the FGLSS reduction from SAT to MAX — Clique. In
the following we write down the PC P amplification we achieve using the extractor
of section 2.3, and the hardness result we get. We do not describe what a PC'P
proof system is, and how the [FGL*91] reduction works. The interested read is

referred to [FGL191, BGLR93, Zuc93].

Theorem: [ALM*92, AS92] NP C PCP(r = O(log(n)),m = O(1),a = O(1),e =
3)

5)-

The amplification process we use is exactly as the one for amplifying an RP

algorithm with a good extractor. We get:

Lemma 2.5.8 [Zuc91] If there is an (r,L)-extractor I : (r +1) x (1) — (r), then

? 2

PCP(r,m,a,t) C PCP(r +1,2'm,a,27").

s Wy g

3Actually, it is enough to use a disperser, and extractors can be replaced with dispersers through-

out all of this subsection. However, since we did not define what a disperser is, we use extractors.

75

Thus:

Corollary 2.5.9 Foranyl >0, NP C PCP(r = O(log(n))+1,m = 2vetvloslr) 4 —
O(1),e =271).

Now we are going to Plug in this result into Zuckerman’s construction.

DEFINITION 2.5.1 We denote loglog ... logn bylog™ (n). For an integer e we define
—_———

k
Pe,k(n) by

.elog(k)n
P.p(n) = 2% } k2's

Notice that P.; = n® is polynomial, P., = 2/°"" is quasi-polynomial, and in

general P.j(n) is more than quasi-polynomial, but only “quasi more”.
DEFINITION 2.5.2 We denote the size of the largest clique in G by w = w(G).

Corollary 2.5.10 (following [Zuc93]) Let k > 3 be a constant. If for any con-
stant b approzimating log®w to within a factor of b is in U, DTime(P.x(n)), then
Ue NTime(P.x(n)) = U, DTime(P.x(n)) .

The full proof of this corollary appears in appendix A.6.

2.5.5 Simulating BPP Using Weak Random Sources

In section 1.5.1 we saw that any polynomial time, black-box simulation of RP or
BPP, must use a source X with H. (7) > n” for some v > 0. We mentioned that

Srinivasan, Saks and Zhou [SSZ95] showed a polynomial time, black-box simulation

76

of RP using any random source X having H.,(X) > n”, and Srinivasan and Zuck-

erman [S7Z94] showed an n®(°s(") time, black-box simulation of BPP using any

random source X having H..(X) > n7, for v > 1/2.

These constructions use the following simple lemma

Lemma 2.5.11 If for any 6 > 0 there is some n > 0 and an (n°, 1) extractor

E:(n)x (t) — (n"), then for any § > 0, BPP can be simulated in time poly(n,2")
using any source X with Hoo(X) > n’.

Proof:

Black-Box Simulation :

1. Ask for an n7-bit string = from the random source X.

2. For all y € {0,1}", let = = E(x,y), and find the original algorithm’s

answer when z is its random string.

3. Answer according to the majority of the answers.

Correctness :

Since H..(X) > n’, if we uniformly choose y from {0, 1}, then the distribution
Z (over n bits) is quasi-uniform, and the black box simulation answers don’t
differ much than those of the original algorithm running with truly random
bits. Finally, instead of choosing y uniformly, we check all possible values of

y, and answer according to the majority.

O

Plugging in the extractor of section 2.4 into the above lemma we get an almost

polynomial time, black box simulation of BP P:

77

Corollary 2.5.12 For any 6 > 0 and k > 0, BPP can be simulated in time
pOlog™n) using a weak random source X with min entropy at least n°, where

log®)n = loglog ... log n.
k

78

Chapter 3

Non-deterministic Symmetric

LogSpace

In the next section we show our proof that SL = coSL. We develop and use a new
technique for showing closure under complement. The results of this chapter are

joint work with my advisor Noam Nisan, and were published in [NTS95, NT95].

3.1 An Informal Solution

We want to find a many-one LogSpace reduction from the undirected s, non-
connectivity problem, to USTCON, the undirected s,t connectivity problem. l.e,
given ((7, s,t) we want to build (in LogSpace) another undirected problem (G', s, 1)

s.t. s is not connected to # in G iff s’ is connected to ¢t in (.

For the time being let us consider an easier problem: given (G,s,t) we

want to build (Gy,s1,t1),...,(GuySm,tm) s.t. there is some monotone function

79

f o {0,1}™ — {0,1} with the property that s is not connected to ¢ in G iff
f(USTCON(Gl,Sl,tl), .. ,USTCON(Gl,Sm,tm)) =1.

Notice, that if we do not require that f is monotone the problem is trivial - just
let G4 =G, sy =38, t1 =t and let f:{0,1} — {0,1} be the negation function. The
whole essence of the problem is to express the negation operator in a “monotone”
way, or, more precisely, to confine all the non-monotone operations to the LogSpace

construction of the graphs Gj.

So, let us consider the above problem. One thing we can do, is to choose all
vertices that have a bigger neighbor (which can clearly be done by a function of the
required form). This, in a sense, isolates one vertex from each connected component,
and thus upper bounds the number of connected components of the graph. This is

also very much the same like taking the transitive closure of the graph, which can

be easily done if we can solve USTCON.

The other direction is the crux of the construction: We “count” the size of any
spanning forest of (. The counting is done using the simple (and well known)
observation that an edge e = (¢,7) does not belong to the lexicographically first
spanning forest iff ¢ is connected to j in the graph containing only the edges that
appear (in the input) before e. This gives a lower bound to the number of connected
components using the easy property that the number of connected components of ¢

plus the number of edges in a spanning forest of ¢ is exactly the number of vertices

of 4.

The whole essence of the algorithm is, therefore, that we can express the “non-
monotone” property of the size of the spanning forest, by a non-monotone reduction

to a monotone connectivity problem.

Finally, to finish the construction

80

we need to translate f(USTCON(Gy, s1,t1),...,USTCON(G1, $p,tn)) to a single
undirected s, connectivity problem. To do that we show that in our case, not only
f is monotone but also has a small (polynomial in the input length) representation
as a monotone formulae. l.e., f is composed of (not too many) “AND” and “OR”
operations. By showing how to take care of these two basic operations, we show
that, indeed, we can translate f(USTCON(Gy,s1,t1),...,USTCON(GY,$m,tm))

to a single undirected s,t connectivity problem, and the proof is completed.

3.2 SL=coSL

We design a many-one reduction from coUSTCON to USTCON. We start by devel-
oping, in subsection 3.2.1, simple tools for combining reductions. In particular these
tools will allow us to use the AKS sorting networks in order to “count”. At this
point, the main ingredient of the reduction will be the calculation of the number of
connected components in a graph. An upper bound to this number is easily obtained
using transitive closure, while the main idea of the proof is to obtain a lower bound
by computing a spanning forest of the graph, which is done in subsection 3.2.2. In

subsection 3.2.3 everything is put together.

3.2.1 Projections to USTCON.

We will use only the simplest kind of reductions, i.e. LogSpace uniform projection
reductions [SV85]. Moreover, we will only be interested in reductions to USTCON.
In this subsection we define this kind of reduction and we show some of its basic

properties.

81

NoTATION 3.2.1 Given f : {0,1}* — {0,1}* denote by f, : {0,1}" — {0,1}* the
restriction of f to inputs of length n. Denote by f, i the k’th bit function of f,, t.e.
if fu: {07 1}n = {07 1}k(n) then f, = (fn,lv <o 7fn7k(n))'

NOTATION 3.2.2 We represent an n—node undirected graph G using (g) variables
T ={zi;}1<icj<n 5.t xiy is L iff (¢,7) € E(G). If f(¥) operates on graphs , we will
write f(G) meaning that the input to f is a binary vector of length (Z) representing
G.

We say that f:{0,1}* — {0,1}* reduces to USTCON(m) if we can (uniformly
and in LogSpace) label the edges of a graph of size m with {0, 1, z;, =i }1<i<q, s.t.
far(Z) =1 < there is a path from 1 to m in the corresponding graph. Formally,

Definition 3.2.1 We say that f:{0,1}* — {0,1}* reduces to USTCON(m) ,m =
m(n), if there is a uniform family of Space(log(n)) functions {o,} s.t. for all n
and k:

® 0,5 (s a projection, i.e.: o,k is a mapping from {i,) i<ici<m to
{0717xi7_'xi}1§i§n

o Given & define Gzy to be the graph Gz = ({1,...,m}, E) where
E = A(,)) | oux(ig) = 1 or onp(i,j) = @i and z; = 1 or oni(i,j) =

—z; and x; = 0}.

o [oix(¥)=1<= there is a path from 1 to m in Gzy.

If o is restricted to the set {0,1, x;}1<i<n we say that f monotonically reduces to

USTCON (m).

82

Lemma 3.2.1 [f f has uniform monotone formulae of size s(n) then f is mono-

tonically reducible to USTCON(O(s(n))).

Proof: Given a formula ¢ recursively build (G, s,1) as follows:

o If ¢ = x; then build a graph with two vertices s and ¢, and one edge between

them labeled with z;.

o If ¢ = ¢1 A dq, and (G, 54, 1;) the graphs for ¢;, ¢ = 1,2, then identify sy with

t; and define s = s1,t = t,.

o If ¢ = ¢1 V g, and (G, 54, 1;) the graphs for ¢;, ¢ = 1,2, then identify s; with

t; and sy with 75 and define s = 51y = #; and t = s = 5.

[

DEFINITION 3.2.1 Sort : {0,1}" — {0,1}" is the boolean sorting function, i.e. it

moves all the zeroes to the beginning of the string.

Using the AK S sorting networks [AKS83], which belong to NC! | we get:

Corollary 3.2.2 Sort is monotonically reducible to USTCON (poly).

Lemma 3.2.3 [f f monotonically reduces to USTCON(my) and g reduces to
USTCON (my) then f o g reduces to USTCON(m? - m3) , where o is the standard

function composition operator.

Proof: The function f monotonically reduces to a graph with my vertices, where

each edge is labeled with one of {0,1,2;}. In the composition f o g, each z; is

83

replaced by x; = ¢;(/) which can be reduced to a connectivity problem of size ms.
Replace each edge labeled x; with its corresponding connectivity problem. There
can be m} edges, each replaced by a graph with my vertices, hence the new graph

has m? - my vertices. 0

3.2.2 Finding a Spanning Forest.

In this section we show how to build a spanning forest using USTCON. This basic
idea was already noticed by Reif and independently by Cook [Rei82].

Given a graph GG index the edges from 1 to m. We can view the indices as weights
for the edges, and as no two edges have the same weight, we know that there is a
unique minimal spanning forest F'. In our case, where the edges are indexed, this

minimal forest is the lexicographically first spanning forest.

It is well known that the greedy algorithm finds a minimal spanning forest. Let us
recall how the greedy algorithm works in our case. The algorithm builds a spanning
forest I which is initially empty # =). Then the algorithm checks the edges one
by one according to their order, and for each edge e, if e does not close a cycle in F'

then e is added to the forest, i.e. F'= F U {e}.

At first glance the algorithm looks sequential, however, claim 3.2.2 shows that
the greedy algorithm is actually highly parallel. Moreover, all we need to check that
an edge does not participate in the forest, is one st connectivity problem over an

easily obtainable graph.

DEFINITION 3.2.2 For an undirected graph G, denote by LFF(G) the lexicographi-
cally first spanning forest of G. Let

84

SF(G) = {0,115) be:

0 (i,j) € LFF(G)

1 otherwise

SF;;(G) =

Lemma 3.2.4 SF reduces to USTCON(poly)

Proof: Let F' be the lexicographically first spanning forest of G. For e € K
define Gi. to be the subgraph of GG containing only the edges {¢/ € E | index(e’) <
index(e)}.

Claim: e=(i,j) € F < e € E and 1 is not connected to j in G..

Proof: Let e = (i,5) € E. Denote by F,. the forest which the greedy algorithm

built when it was checking e. So e € I' <= e does not close a cycle in F..

(=) e € I and therefore e does not close a cycle in F., but then e does not

close a cycle in the transitive closure of F., and in particular ¢ does not close a cycle

in G..

(«<=) e does not close a cycle in (i, therefore e does not close a cycle in F, and

ee F.]

Therefore SF; ;(G) = —a;; V1 is connected to j in Gy j).

Since —x; ; can be viewed as the connectivity problem over the graph with two
vertices and one edge labeled —z; ;, it follows from lemmas 3.2.1 and 3.2.3 that SF

reduces to USTCON. Notice, however, that the reduction is not monotone.

[

89

3.2.3 Putting It Together.

First, we want to construct a function that takes one representative from each con-
nected component. We define LI;(() to be 0 iff the vertex ¢ has the largest index

in its connected component.

DEFINITION 3.2.3 LI(G) — {0,1}"

0 ¢ has the largest index
LI(G) = in its connected component

1 otherwise

Lemma 3.2.5 LI reduces to USTCON (poly)

Proof:
LI(G) = Vj_;y, (7is connected to j in).
So LI is a simple monotone formula over connectivity problems, and by lemmas
3.2.1 and 3.2.3, LI reduces to USTCON. This is, actually, a monotone reduction.
[]
Using the spanning forest and the LI function we can compute the number of

connected components of G exactly, i.e.: given G we can compute a function NCC;

which is 1 iff there are exactly ¢ connected components in G.

DEFINITION 3.2.4 NCC(G) — {0,1}"

1 there are exactly 1

connected components

NCC{(G) = e
mn

0 otherwise

86

Lemma 3.2.6 NCC reduces to USTCON (poly)

Proof:

Let F' be a spanning forest of (G. It is easy to see that if G has k connected

components then |F| =n — k.

Define:
f(G) = Sort o LI(G)
g(G) = Sort o SF(G).

Then:

LG =1 = k<1

(=1 = n—k<i = k>n—i.
and thus: NCC{(G) = fiz1(G) A gn—iz1(G)

Therefore applying lemmas 3.2.1,3.2.2,3.2.3, 3.2.4, 3.2.5 proves the lemma.

O

Finally we can reduce the non-connectivity problem to the connectivity problem,

thus proving that SL = coSL.

Lemma 3.2.7 coUSTCON reduces to USTCON (poly)

Proof:
Given (G, s,t) define G to be the graph G U {(s,1)}.

Denote by #CC(H) the number of connected components in the undirected
graph H.

87

s is not connected to t in (G <—

#COC(GY)=#CC(G) -1 —

Vico... NCC(G)ANCCi_y(GF).

Therefore applying lemmas 3.2.1,3.2.3,3.2.6 proves the lemma. []

3.3 Extensions

Denote by L<55> the class of languages accepted by Logspace oracle Turing machines
with an oracle from SL. An oracle Turing machine has a work tape and a write-only

query tape (with unlimited length) which is initialized after every query. We get:
Corollary 3.3.1 L<%> = S[.

Proof:

Let Lang be a language in L<°*> computed by an oracle Turing machine M

<SL>

running in L , and fix an input 7 to M.

We build the “configuration” graph G(V, E) of M, by:

o Let V contain all possible configurations.

e (v,w) € F with the label “q is (not) s— connected”, if starting from config-
uration v the next query is ¢, and after the oracle answers that “¢ is (not)

connected” the machine moves to configuration w.

88

Notice that we can ignore the direction of the edges, as backward edges do not
help us. The reason is that from any vertex v, there is only one forward edge leaving
v that can be traversed (i.e. whose label matches the oracle’s answer). Therefore if
we reach v using a “backward edge” w — v, then the only forward edge leaving v

that can be traversed is v — w.

Now we can replace query edges labeled “q is connected” with the s— connec-
tivity problem ¢, and edges labeled “g is not connected” with the s— connectivity
problem obtained using our theorem that SL = coSL, resulting in one, not too
big, s—t connectivity problem. It is also clear that this can be done in LogSpace,

completing the proof.

O

As the symmetric Logspace hierarchy defined in [Rei82] is known to be within
L<5E> this hierarchy collapses to SL.

As can easily be seen, the above argument holds for any undirected graph with
undirected query edges, which is exactly the definition of SL<**> given by [BPS92].
Thus, SL<Y> = SL, and by induction the SL hierarchy defined in [BPS92] collapses
to SL.

89

90

Bibliography

[AES92]

[AGHP92]

[AKL*79]

[AKSS3]

[AKSS7]

N. Alon, P. Erdos, and J. H. Spencer. The Probabilistic Method. John
Wiley and Sons, 1992. This book describes the Probabilistic Method as
developed by Paul Erdos and its applications in Discrete Mathematics

and Theoretical Computer Science.

Alon, Goldreich, Hastad, and Peralta. Simple constructions of almost k-
wise independent random variables. Random Structures & Algorithms,

3, 1992.

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff. Ran-
dom walks, universal sequences and the complexity of maze problems.
In Proceedings of the 20th Annual IEEE Symposium on the Foundations
of Computer Science, 1979.

M. Ajtai, J. Komlos, and E. Szemeredi. An O(nlogn) sorting network.
In Proc. 15th ACM Symposium on Theory of Computing (STOC), pages
1-9, 1983.

Ajtai, Komlos, and Szemeredi. Deterministic simulation in LOGSPACE.
In ACM Symposium on Theory of Computing (STOC), 1987.

91

[AKSS89]

[ALM*92]

[Arm]

[AS92]

[BCD+89]

[BFNWO3]

[BGLR93)

M. Ajtai, J. Komlos, W. Steiger, and E. Szemeredi. Almost sorting in
one round. In Advances in Computer Research, volume 5, pages 117-125,

1989.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and hardness of approximation problems. In Proceedings
of the 33rd Annual IEEE Symposium on the Foundations of Computer
Science, IEEE, pages 14-23, 1992.

R. Armony. Private Communication.

S. Arora and S. Safra. Probabilistic checking of proofs; a new charac-
terization of NP. In Proceedings of the 33rd Annual IEEE Symposium
on the Foundations of Computer Science, pages 2—-13, 1992.

A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa.
Two applications of inductive counting for complementation problems.

SIAM Journal on Computing, 18(3):559-578, 1989.

Babai, Fortnow, Nisan, and Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3, 1993.

M. Bellare, 5. Goldwasser, C. Lund, and A. Russell. Efficient probabilis-
tically checkable proofs and applications to approximation. In Proceed-
ings of the 25th Annual ACM Symposium on the Theory of Computing,
ACM, pages 294-304, 1993.

92

[BMS2)]

[BPS92]

[CGSS]

[CG8Y]

[CGIT*85]

[CWSY]

[FGL*91]

M. Blum and S. Micali. How to generate cryptographically strong se-
quences of pseudo random bits. In IFEE Symposium on Foundations of

Computer Science (FOCS), 1982.

Y. Ben-Asher, D. Peleg, and A. Schuster. The complexity of reconfigur-
ing networks models. In Proc. of the Israel Symposium on the Theory of
Computing and Systems, May 1992. To appear Information and Com-

putation.

B. Chor and O. Goldreich. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM Journal

on Computing, 17(2):230-261, 1988.

Chor and Goldreich. On the power of two-point based sampling. Journal
of Complexity, 5, 1989.

B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and
R. Smolensky. The bit extraction problem and t-resilient functions.
In Proceedings of the 26th Annual IEEE Symposium on the Foundations
of Computer Science, pages 396-407, 1985.

A. Cohen and A. Wigderson. Dispersers, deterministic amplification,
and weak random sources. In Proceedings of the 30th Annual I[EFE
Symposium on the Foundations of Computer Science, pages 14-19, 1989.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approxi-
mating clique is almost NP-complete. In Proceedings of the 32nd Annual
IEEFE Symposium on the Foundations of Computer Science, IEEE, pages
2-12, 1991.

93

[GW94]

[HILLI1]

[ILL8Y]

[Imm88]

[INW94]

[17:39]

[KPS85]

[Lev8T]

O. Goldreich and A. Wigderson. Tiny families of functions with random
properties: A quality-size trade-off for hashing. In Proceedings of the
26th Annual ACM Symposium on the Theory of Computing, ACM, pages
574-583, 1994.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
Construction of a pseudo-random generator from any one-way function.
Technical Report TR-91-068, International Computer Science Institute,
Berkeley, CA, December 1991.

R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random generation from
one-way functions. In Proceedings of the 21st Annual ACM Symposium
on the Theory of Computing, ACM, pages 12-24, 1989.

N. Immerman. Nondeterministic space is closed under complementation.

SIAM Journal on Computing, 17, 1988.

Impagliazzo, Nisan, and Wigderson. Pseudorandomness for network

algorithms. In ACM Symposium on Theory of Computing (STOC), 1994.

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
Proceedings of the 30th Annual IEEE Symposium on the Foundations of
Computer Science, IEEE, pages 248-253, 1989.

R. Karp, N. Pippernger, and M. Sipser. A time randomness tradeoff. In
AMS Conference on Probabilistic Computational Complexity, 1985.

Levin. One-way functions and pseudorandom generators. Combinator-

tea, 7, 1987.

94

[LP82]

[LPS36]

[Mar75]

[Mes84]

[MRO5]

[Nis92]

[Nis96]

[NN93]

[NT95]

[NTS95]

Lewis and Papadimitriou. Symmetric space-bounded computation. The-

oretical Computer Science, 19, 1982.

Lubotzky, Phillips, and Sarnak. Explicit expanders and the ramanujan
conjectures. In ACM Symposium on Theory of Computing (STOC),
1986.

G. A. Margulis. Explicit construction of concentrators. Problems of

Information Transmission, 1975.

R. Meshulam. A geometric construction of a superconcentrator of depth

2. Theoretical Computer Science, 32:215-219, 1984.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

N. Nisan. RL C SC. In Proc. 24th ACM Symposium on Theory of
Computing (STOC), pages 619-623, 1992.

N. Nisan. Refining randomness: Why and how. In Annual Conference
on Structure in Complexity Theory, 1996.

Naor and Naor. Small-bias probability spaces: Efficient constructions

and applications. SIAM Journal on Computing, 22, 1993.

N. Nisan and A. Ta-Shma. Symmetric logspace is closed under comple-

ment. In Chicago Journal of Theoretical Computer Science, 1995.

Noam Nisan and Amnon Ta-Shma. Symmetric Logspace is closed under
complement. In Proceedings of the Twenty-Seventh Annual ACM Sym-
posium on Theory of Computing, pages 140-146, Las Vegas, Nevada, 29
May—1 June 1995.

95

[NWSS]

[NZ93]

[Pips7]

[Raz91]

[Rei82]

[Ren70]

[Sip88]

$5795]

[SV85]

N. Nisan and A. Wigderson. Hardness vs. randomness. In Proc. 29th
IEEE Symposium on Foundations of Computer Science (FOCS), pages
2-11, 1988.

N. Nisan and D. Zuckerman. More deterministic simulation in logspace.
In Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing, ACM, pages 235-244, 1993.

N. Pippenger. Sorting and selecting in rounds. SIAM Journal on Com-
puting, 16:1032-1038, 1987.

A. Razborov. Lower bounds for deterministic and nondeterministic
branching programs. In Proceedings of the §th FCT, Lecture Notes in
Computer Science, 529, pages 47-60, New York/Berlin, 1991. Springer-
Verlag.

J. H. Reif. Symmetric complementation. In Proc. 14/th ACM Symposium
on Theory of Computing (STOC), pages 201-214, 1982.

A. Renyi. Probability Theory. North-Holland,Amsterdam, 1970.

Sipser. Expanders, randomness, or time versus space. Journal of Com-

puter and System Sciences, 36, 1988.

M. Saks, A. Srinivasan, and S. Zhou. Explicit dispersers with polylog
degree. In Proceedings of the 26th Annual ACM Symposium on the
Theory of Computing, ACM, 1995.

Skyum and Valiant. A complexity theory based on boolean algebra.
Journal of the ACM, 1985.

96

[SV6]

[S794]

[Sze88]

[TS96]

[Wig94]

[WZ93]

[Yao82]

[Zuc9l]

M. Santha and U. Vazirani. Generating quasi-random sequences from
slightly random sources. J. of Computer and System Sciences, 33:75-87,
1986.

A. Srinivasan and D. Zuckerman. Computing with very weak random
sources. In Proceedings of the 35th Annual IEEE Symposium on the
Foundations of Computer Science, 1994.

Szelepcsenyi. The method of forced enumeration for nondeterministic

automata. Acta Informatica, 26, 1988.

Amnon Ta-Shma. On extracting randomness from weak random sources
(extended abstract). In Proceedings of the Twenty-Fighth Annual ACM
Symposium on Theory of Computing, pages 276-285, Philadelphia,
Pennsylvania, 22-24 May 1996.

Wigderson. The amazing power of pairwise independence. In ACM

Symposium on Theory of Computing (STOC), 1994.

A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue
bound: Explicit construction and applications. In Proceedings of the
25th Annual ACM Symposium on the Theory of Computing, ACM, pages
245-251, 1993.

A.C. Yao. Theory and application of trapdoor functions. In [EFE
Symposium on Foundations of Computer Science (FOCS), 1982.

D. Zuckerman. Simulating BPP using a general weak random source. In
Proceedings of the 32nd Annual IEEE Symposium on the Foundations
of Computer Science, pages 79-89, 1991.

97

[Zuc93] D. Zuckerman. NP-complete problems have a version that’s hard to
approximate. In Proceedings of the §th Structures in Complexity Theory,
IEEE, pages 305-312, 1993.

[Zuc96] D. Zuckerman. Randomness-optimal sampling, extractors, and construc-
tive leader election. In Proceedings of the 258th Annual ACM Symposium
on the Theory of Computing, ACM, 1996.

98

Appendix A

Explicit Extractors

A.1 A Somewhere Random Source Has Large

Min-Entropy

Lemma A.1.1 [f X = Xj0...0X, is an (m,€,n) somewhere random source, then

X is n—close to an (m,¢€,0) somewhere random source X'.

Proof: [of lemma A.1.1]

Let Y be an (m,e€,n) selector for X. Denote p = Prob(Y = 0) < 5. Define the
distribution D by:

N 0 If i =0
D(l, l’) = Prob((Y, X)=(i,x))
1

s otherwise

It is easy to see that D is a distribution. Define the random variable Y’ o X’ as

the result of choosing (7,2) uniformly from D, i.e. Y70 X’ = D. Tt is clear that

99

d(X,X")<dYoX,YoX')=p<n.

Now we want to show that Y’ is an (m,¢,0) selector for X’. It is clear that
Prob(Y’" = 0) = 0. It is not hard to see that for any ¢ > 0 we have: Prob(X' =
x| Y' =14) = Prob(X =z |Y =1).

Therefore, since we know that (X;|Y = ¢) is e—close to Uy, we also know that

(X!|Y" = 1) is € close to U, thus completing the proof.
O]

Lemma A.1.2 Let X = Xj0...0 Xy be an (m,¢€,0)—somewhere random source,

then X is € close to an (m,0,0)-somewhere random source 7.

Proof: [of lemma A.1.2]

Let Y be an (m,e¢,0) selector for X. Fix some ¢ € [l..d]. We know that
d((X; | Y =1),U,) < e. Define a distribution 79 by:

L Prob(X =z | Xi=x;and Y =1) if Prob(X; = z; and Y =1) > 0
Z(i)(:p) _ zim -1 if Prob(X; =a;andY =1i)=0

and for every j #£¢: x; =07

0 otherwise

It is easy to check that Z() is indeed a distribution, and that ZZ»(i) = U,,. Define
Y o Z to be the random variable obtained by choosing : according to Y, then
choosing z according to ZW, ie., forall i > 0, (Z | Y = i) = ZW. Also, denote
X®O = (X | Y =4). Then:

We will soon prove that:

100

Claim A.1.1 d(X®, Z20)) <.

Thus:
IX, 7)< dVoX,Vo7)
Yiso Pr(Y =1d) - d((X | Y =14),(Z | Y =1)) =

Siso Pr(Y =i) - d(XD, 20)) <¢

Hence 7 satisfies the requirements of the lemma.

Proof: [of claim A.1.1]

We need to show that for any A C Ay, |X(i)(A) — Z(i)(A)| < e. It is sufficient
to show this for the set A containing all + € Ax s.t. X@(z) > Z)(z). This can be
easily seen, using the fact that for any « € A: Pr(Z =2 | Z; = a; and Y =1) =

%:PT(X:aﬂXizaiandY:i).

O

Lemma A.1.3 Let X = Xj0...0 Xy be an (m,0,0) somewhere random source,

then Hoo(X) > m.

Proof: Suppose Y is an (m,0,0) selector for X.
Prob(X =) =
Yiep.q) Prob(Y =1i) - Prob(X; =uz; |Y =1) <
Yiep.q) Prob(Y =¢) - 27" =27"

101

Combining lemmas A.1.1, A.1.2 and lemma A.1.3 we get lemma 2.3.2.

A.2 A Lemma For d—Block Mergers

We prove lemma 2.3.5:

Proof: We define random variables Y’, A" o B’ as follows:
e Choose Y/ =1 € S;USy with: Pr(Y/=¢)=Pr(Y =¢|Y € S1US,).
e Choose d' ol € (Ao B | Y =1).

It is easy to prove that:
Claim: Pr(A=d |Y' =4) = Pr(A=d |Y =1i)and Pr(B' =V |Y' =

i) = Pr(B=V|Y =i).

Define
. 1 IfY' €5
7 =
2 Otherwise, i.e. Y’ € 5,

It is not hard to see that:

Claim A.2.1 (A | Z'=1)=(A|YeS)and (B | Z'=2)=(B|Y € 5,).

Hence, 7' is an (m, €,0) selector for A’ o B'.
Therefore by lemma 2.3.2, A’o B’ is ¢—close to some X with H(X) > m.
However, it is not hard to see that:

Claim: A’oB" = (AoB|Y € 51U 95,).

102

Thus, (Ao B | Y € S;US;) = A’o B’ is ¢—close to some X with H.,(X) > m,
thus completing the proof. L]

A.3 Lemmas For Composing Two Extractors
In this section we prove some easy technical lemmas used in section 2.3.2.

Claim A.3.1 For anyi and any wp ;—q), if Probyex(Y(z) =1 | 2y -1 = wpi—1]) >
0, then Probyex(Y (z) =1 | xp,ic1] = wp,i—1]) > €2 — €5.

Proof:

Since wyy ;-1] can be extended to some w with Y (w) =1 # 0, by definition 2.3.2:

Prob(f(x) =14) > € ,and
Prob(f(x) =1 | xpi—1) = wpi—1]) 2> €

However, this implies that for any extension w' of wyy ;_y) with f(w’) = ¢, it holds

that w’ ¢ B; U By. Hence,

Prob(Y(z) =i | p i) = wpi) =

Prob(f(z) =1 | xp,ic1) = wp,i—)) — Prob(f(z) =1 and x € B | 2p,-1) = wp 1)) =
Prob(f(x) =1 | xpi—1) = wp,i—y) — Prob(f(x) =t and x € Bs | xp -1 = wpi—1]) =
€2 — €3

103

The last inequality uses claim A.3.3.
[]

Claim A.3.2 For any i, if Prob,ex(Y(x) = 1¢) > 0, then Prob.ex(Y(z) = 1) >

€1 — €2 — €3.

Proof:

Since there is some w’ s.t. Y (w’) = ¢ # 0, by definition 2.3.2:

Prob(f(z) =1)> &

This implies that for any w’ with f(w’) = ¢, we know that w’ & B;. Hence,

Prob(Y(z) =14) =
Prob(f(z) =14) — Prob(f(z)=1and x € B) >
Prob(f(xz) =1) — Prob(f(z) =1 and x € By) — Prob(f(z) =1t and x € Bs) >

€1 — €3 — €3

The last inequality uses claim A.3.3.

Claim A.3.3

1. For any i: Prob(f(x) =i and x € By) < &

104

2. For any v and wpy ;_q): Prob(f(x) =1 and v € Bs | xp—1) = wyii—1)) < €3
3. For any i: Prob(f(x) =1 and x € Bs) < €3
4. Prob(z € B;) < ne;, fori=1,2,3.

Proof:

1)

If for some wp i—1] Prob(f(x) =i and @ € By | xp 1) = wp,i—1)) > 0 then
there is an extension w of wyy;_q s.t.: f(w) = ¢ and w € By, and therefore,
Prob(f(x) =1 | 2p,-1) = wy—1) < ez Thus, for all wy 1y, Prob(f(z) =
i and © € By | xp 1) = wpi—1)) < €2. Therefore, Prob(f(xz) = ¢ and x €
By) = Yo i Prob(T i—1] = Wh,i-1]) - Prob(f(z) =1 and v € By | api-1) =
Witi—1) < X Prob(xpi—1) = wp,i—1)) - €2 < €.

Wl1,5—1]

If for some wy ;_1] Prob(f(x) =1 and x € Bs | wpi—1] = wpp—1)) > 0 then
there is an extension w of wyy;_q s.t.: f(w) = ¢ and w € Bs, and therefore,
Prob(x; = w; | xp -1 = wpi—1)) < es. In particular, Prob(z € Bs | xp 1 =
wpi—1)) < Prob(x; = w; | xpio) = wp—1)) < es. Thus, for all wy ;_q,

Prob(f(x) =t and x € Bs | 2y _1) = wp,i—1]) < €3

Prob(f(z) =1 and x € Bs) < ¥ Prob(zp,i—1) = wp,i—1]) - Prob(f(z) =

i and x € Bs | xp 21 = wpiz1y) < Yo ica Prob([im1] = W[,i—1]) €3 < €3

Wl1,5—1]

The case 1 = 2 follows (1) since, Prob(z € By) < X7, Prob(z € By and f(x) =
i) < ney. Similarly for ¢« = 3. As for ¢« = 1: if there is an x with f(z) =
i and x € By, then Prob(f(z) =1) < &. Thus, Prob(x € By and f(z) =1) <
é1, and Prob(x € By) < X7 Prob(x € By and f(x) =1) < ne.

[

105

A.4 More Bits Using The Same Extractor

In this section we prove lemmas 2.3.6 and 2.3.7.
Proof: [Of lemma 2.3.6]

Denote by A; the random variable with value F(X,R;). Denote by Ap, =
Ajo...0A; the random variable whose value is F(X, Ry)o...0 E(X,R;), and let
li = |Ap gl

DEFINITION A.4.1 We say that ap g is “s-tiny” if Prob(Ap g = ap) < 2li=s

Claim: For any 1 <1i <k, Prob(ap ;s s—tiny) <277,

Proof: Ap; can have at most 2 possible values, and each tiny value has proba-

bility at most 2742, L]
Claim: For any prefix apy ;) that is not s—tiny, Hoo (X | Ay = ap) > M—1li—s
Proof: For any «,

_ 2—M—|—l,‘—|—s

Prob(X = x) 2—M
Prob(X =x | Apg=apg) < <
rob(v | A = apa) < Prob(Ap g =ap,) — 274

Claim: If/,_; <M —m —s ,then Apjis ¢(27° + ¢) quasi-random.
Proof: By induction on 7. For 2 = 1 this follows from the properties of £. Assume
for ¢, and let us prove for ¢ + 1.

Since [; < M —m —s , then for any prefix apy ;) that is not s—tiny, Hoo (X | Ap g =
ap,g) > M —1; —s > m. Therefore, for any non-tiny prefix api, (Aiq1 | Ap =
ap) is € quasi-random. Therefore by lemma 2.2.6, Ap ;147 is 27° 4 ¢ close to the

distribution Ap 4 x U, and by induction Ap ;147 1s (¢ + 1)(27° 4 ¢) quasi-random. [

106

Therefore, if we take k s.t. I, < M —m — s, we invest kt random bits, and we

get km/ bits that are k(27° + €) quasi-random, as required.

Proof: [of lemma 2.3.7]

Define E(xz,ri0...0r) = Ey (x,r)o...0Fy, (z,r), where s = ¢(n), lo = 0,
m; =m—Il;_1—s,and [; = [;_;+ % Denote by A; the random variable F,,, (X, R;),
and let Ap g = Ay o... A Intuitively, [; = [Ap 4], and m; is the amount of min-

entropy left in (X | Ap = ap,) with the safety parameter s = t(n).

Claim: If m; > m then Ap 4 is 1(27° + ¢) quasi-random.
Proof: By induction on 7. For 2 = 1 this follows from the properties of £. Assume
for ¢, and let us prove for ¢ + 1.

For any prefix ap ;) that is not s-tiny, Hoo (X | Ap g = apg) > m—Ili—s =miq >

m. Therefore, for any non-tiny prefix ap g, (A1 | Ap = ap) is € quasi-random.

Therefore by lemma 2.2.6, A ;1q)1s 27° + € close to the distribution Ap ;) x U, and
by induction Ap ;4q7is (¢ 4+ 1)(27° 4 €) quasi-random. U]

How big do we need k to be? Let us denote ¢; = m — [;, i.e., ¢; is the number
of bits still missing. Notice that ¢ = m -1, = m — (li.1 + %) = Gi_q —
fT(”é) = @¢_1 — % Therefore, if =+ > ¢(n), then ¢; < (1 — #(n))qi_l. Thus,
after O(f(n)log(n)) steps, either ¢;_q1 < 2t(n), or else m; < m. In the first case,

¢i-1 < 2t(n), and we can fill all the 2¢(n) missing bits with a truly random string.
In the second case, m; < m, i.e., ¢i-1 < m+ s, so if we add s = #(n) truly random

bits, there are only m missing bits as required.

Therefore it is sufficient to take k& = O(f(n)log(n)), and let the final extractor
be FE(x,r) oy, where y is of length 2¢(n) and is truly random.

107

A.5 Lemmas For The Second Extractor

In this section we prove some easy technical lemmas used in section 2.4. Let us start

with the proof of claim 2.4.4:

Proof: [of claim 2.4.4]

proof of (1) :
Since by ;_1) can be extended to some b with Y'(b) = ¢, any extension b’ of

b i—1) with f(b') = ¢ is not bad. Therefore,
Pr(Y =i | By = bpi-ng) = Pr(f =i | By = bpi-)
Also, since b is not bad:
Pr(f =1i| Bu-y = bpi—1y) > ¢
and this completes the proof of (1).

proof of (2) :

Pr(Y =d | Buiay=bpi-1) = Pr(f=d| Bpia=bpia) -
PT(f = d cmd Y = 0 | B[l,i—l] = b[l,i—l])

d
> €1 — Z]‘:Z' €5

The last inequality is from claim A.5.1.

108

[

Now we state our last lemma, from which claim 2.4.3 also easily follows. First

we give a definition:

DEFINITION A.5.1 For b s.t. f(b) = d and Y (b) = 0 define Y F(b) to be the first
¢ € [1,d] s.t. Prob(f =d | Byi—1) = bpiz1y) < €, i.e., YF(b) indicates the reason
why b is bad.

Claim A.5.1

1. Forany 1 <:<d—1 and any by ;_1:

Pry(f=1¢ ANY =0| Bpi— = b[l,i—l]) <e

2. For any by ;_q) that can be extended to b with Y (b) = d:

Prb(f =d NYF :j | B[l,i—l] = b[l,i—l]) < €y

3. For any by ;1) that can be extended to some b with Y (b) = d:

Pr(f = d and Y = 0 | B[l,i—l] = b[l,i—l]) S Z;l:Z 6]‘
Proof: [of claim A.5.1]
proof of (1) given by ;—1, f=1¢ A Y =0 implies that Pry(f =1 | Bp,i—1] = bpi—1)) < €,
which proves what we require.
proof of (2) First of all it is clear that Pry(f =d A YF = j | By -1 = b j—17) < ¢;.

109

Now,

Pri(f=d N YF =j| Bp-1 = bp,i-1))
by Pr(Bpij—1y = b jn|Bpi—a) = by i) - Pro(f = d ANY F = j | By joa) = b j-1))
Yoy Pr(Brj—n = b1 | Bui—1 = bpi-y) -6 < ¢

proof of (3) Since by ;_q] can be extended to some b with Y (b) = d, it must hold that
YF(b) > i

Therefore,

IA

PT(f = d cmd Y = 0 | B[l,i—l] = b[l,i—l])

S, Pr(f=dand YF =j | By =bui-y) < S0 ¢

The last inequality is by (2).

A.6 The Hardness of Approximating The Iter-
ated Log of Max Clique.

The proof is based on a result by [AS92, ALM*92] characterizing NP as the set all
languages having a “small” PC P proof system, and a result by [FGL*91]showing
how to translate this into hardness of approximating MAX-Clique.

First, we describe the [FGLT91] result concerning the hardness of approximating

MAX-Clique:

110

IA

Fact A.6.1 [FGL191] Given a language L € PCP(r,m,a,¢) and some input x €

0,11, we can easily build a graph with 27t™* vertices s.t.:
{0,137, y grap

w(G){QT ifv el

€27 ifedl
Now we prove corollary 2.5.10:

Proof: [of corollary 2.5.10]

Given a language L € NP (actually, we should start with L € Time(P.x(n)),
but for simplicity we prove for L. € NP) and an input « € {0,1}":

Take I s.t. log*=D1 =2-log®™n. Use fact A.6.1 to translate the PC'P system of
lemma 2.5.8 into a graph . We know that:

2" if € L
o(C) = if @
2" =poly(n) ifa gl
and that the size of G is |G| = 2007,

Notice that:

log®(2') > 1og®(2) = log* (1) = 200g®(n) il € I

0d™ (w =
log"™ (w(()) { log(k)(pOZy(n)) < log(k)(n) + O(1) ifted L

Thus, if we can approximate log®(w(G)) to within 1, we can solve L in

DT@me(ZO(m)) HOWGVGI’7 QO(m) = 22pozylog(l7r> =2 S Pc7k(n)) for some

22cloglog(l)

constant c.]

111

