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Abstract

We study the role of polynomials over the finite field GF (2n) in constructing

and attacking various weak notions of pseudorandomness.

First, we consider the construction of weak pseudorandom generators using

GF (2n)-polynomials. We study the generator of [Nisan, STOC’90], that fools

space-bounded nonuniform distinguishers, whose standard instantiation can be

seen as a GF (2n)-polynomial map. Among other results, we show that its

resilience to (nonuniform) space-bounded machines is sensitive to the order of

its output bits, and rule out some natural generalizations of the generator.

We also consider GF (2n)-polynomial-based generators that have small bias,

meaning that they fool all (bit-)linear tests. We present a simple construction

of a small-bias generator (called the geometric generator), which is similar (but

not identical) to the powering construction presented by [Alon et al., RS&A’92].

A variant of this generator has shorter seed than the classical constructions

of Alon et al., if the reciprocal of the bias required is polylogarithmic in the

output length. We also use a variant of the geometric generator to construct a

separation between small-bias and fooling small space that has good parameters,

giving an exponential-stretch generator with exponentially small bias that is

O(1)-space distinguishable (by a nonuniform machine).

Second, we study how GF (2n)-polynomials can be used to distinguish var-

ious distributions from random ones. We provide a full picture of how vari-

ous notions of GF (2n)-linear distinguishers relate to standard linear (that is,

GF (2)-linear) tests, and derive a reduction from having small-bias to fooling

GF (2n)-linear tests. In fact, this reduction is used to prove the small bias of

the geometric generator mentioned above. We also conduct a study of GF (2n)-

bilinear and GF (2n)-quadratic forms, and in specific characterize the sets of

GF (2)-bilinear forms that can be computed exactly, or approximated to various

rates, by GF (2n)-bilinear forms. Higher-degree polynomials are also studied,

and specifically we consider a recent result of [Viola, CCC’08] that showed that

the sum of d independent instances of a small-bias generator fools polynomials

of degree at most d. We show the tightness of this result with respect to the

number of instances required, showing an explicit degree-d+ 1 polynomial that

distinguishes this construction from random with constant gap.
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Chapter 1

Introduction

1.1 Background

1.1.1 Pseudorandomness

Randomness plays an important role in many fields of computer science, includ-

ing (but not limited to) algorithm design, complexity theory and cryptography.

The randomness complexity of an algorithm, measuring the amount of ran-

dom coins it requires, is thus considered an important resource. The notion

of derandomization captures the attempt to reduce the randomness complex-

ity of an algorithm, without significantly affecting its input/output behavior.

As a generic method to do this, a distribution is considered pseudorandom if

it cannot be told apart from a truly random distribution (on strings of simi-

lar length). When saying “cannot be told apart”, we implicitly fix both a set

of limitations on (often, the complexity of) the potential algorithms trying to

identify the distribution they are given, and a notion of “telling apart” (e.g.,

behaving differently with significant probability, called the distinguishing gap).

Another issue of importance is the complexity required to sample the pseu-

dorandom distribution. An (efficient) algorithm that uses a short seed of truly

random bits to sample this distribution is called a pseudorandom generator.

The archtypical case is that of an efficient generator that fools all efficient

distinguishers up to a negligible distinguishing gap, that is, a polynomial-time

generator, sampling a pseudorandom distribution that cannot be told apart

from random by any polynomial-time distinguisher with distinguishing gap
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lower bounded by the reciprocal of a positive polynomial. This notion, called a

general-purpose pseudorandom generator, can be used to reduce the randomness

complexity of every efficient algorithm, but always requires some computational

hardness assumptions, which are captured by the notion of a one-way function.

For background on pseudorandomness, see e.g. Chapter 8 of [Gol08].

1.1.2 Weak pseudorandomness

Despite the appeal of the general-purpose notion above, it is often fruitful to

consider other limitations on the class of potential distinguishers. Many interest-

ing results about such weak notions of pseudorandomness arise from considering

space-complexity, or algebraic assumptions about the very functions trying to

distinguish a given distribution from truly random bits. Given such assumptions

on the algorithm we try to fool, it is sometimes possible to construct pseudoran-

dom generators without any computational hardness assumptions, and obtain

superior parameters. For example, even the notion of fooling linear tests, called

small bias, studied by [NN] and with simple constructions presented in [AGHP],

has found many important applications in various areas of computer science

(e.g., [NN, BSSVW]). Higher degree polynomials of the output bits have also

been considered as distinguishers, e.g. by [LVW, Bog, BV, Vio].

1.1.3 Using GF (2n)-polynomials

While the basic definitions refer to distributions over bits, several constructions

of various weak notions of pseudorandomness rely either directly or indirectly

on constructions that take place in a finite field of order 2n, denoted GF (2n).

As an example, we note that the generator of Nisan ([Nis]) that fools space-

bounded distinguishers works with blocks of n bits, and when instantiated with

the standard implementation of a universal hash function as an affine GF (2n)-

linear function, each output block is the result of applying a GF (2n)-multilinear

polynomial to the GF (2n)-elements represented by the seed blocks. Another

example, where GF (2n) is used more directly, is the third small-bias generator

of [AGHP], in which a random GF (2n)-element is raised to different powers,

with an output bit produced by an inner product of the representation of the

resulting GF (2n)-element with a (seed-determined) vector in {0, 1}n. In fact,

this construction is related to the “geometric generator” (considered in this
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work), producing the representation of a random GF (2n)-geometric series.

In addition to using GF (2n)-polynomials to construct weak pseudorandom

generators, such polynomials can also be considered as distinguishers (of pseu-

dorandom distributions from truly random distributions). This turns out to

be useful since fooling various forms of GF (2n)-polynomial tests is often re-

lated to resisting various statistical tests of bits: among others, linear tests,

bit-polynomial tests, and tests that can be implemented in small space. A

methodology for proving weak pseudorandomness thus amounts to proving re-

sistance to various GF (2n)-polynomial-based tests and relating such tests to

binary tests.

Given the apparent popularity of using GF (2n), and specifically different

forms of GF (2n)-polynomials, to obtain various weak pseudorandorm genera-

tors, we study in this work several aspects of the role of GF (2n)-polynomials in

achieving this: both as a tool for constructing pseudorandom generators, or as

a tool for distinguishing between different distributions.

1.2 Overview and organization of the thesis

Here we provide a brief overview of the entire work. A more elaborate overview

precedes each of the chapters. Highlights of some of our important results appear

in the following section.

In Chapter 2 we present the preliminaries relevant to the entire work. We

define the weak notions of pseudorandomness that we study, and describe the

standard representation scheme of GF (2n) and its properties which we use.

In Chapter 3 we consider constructions of weak pseudorandom generators

based on GF (2n)-polynomials. We start with a bound on the stretch of any

GF (2n)-polynomial of bounded degree that is a small bias generator (which is

the weakest of the notions we consider). We then consider the Nisan generator

that fools space-bounded distinguishers, and possible variants, with respect to

the aforementioned bound (and while referring to the implementation of its

hash functions by affine GF (2n)-functions). We continue by presenting the

“geometric generator”, a simple GF (2n)-based small-bias generator, and present

a variant that almost matches the bound on the stretch that we showed. We

end the chapter with a variant of the geometric generator (with exponential

stretch and bias) that separates small-bias from fooling small-space. The same
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technique also shows that the resilience of the Nisan generator to small-space

distinguishers is sensitive to the order of its output bits.

In Chapter 4 we turn the table around and consider using GF (2n)-polynomials

as distinguishers between distributions. Specifically, we compare their distin-

guishing power to the power of GF (2)-polynomials of the same degree. After

a discussion of different ways in which GF (2n)-polynomials can be viewed as

distinguishing between distributions, we study linear tests (degree 1 polyno-

mials), and present a full picture of the relationships between different types

of GF (2n)-linear tests and GF (2)-linear tests. Studying higher degree tests is

done by a reduction from the results of Chapter 5, but here we only have par-

tial results. We end the chapter by proving the tightness of a theorem of Viola,

which states that the sum of d small-bias generators fools GF (2)-polynomials of

degree d, by presenting an explicit polynomial of degree d+1 that distinguishes

an instantiation of this construction. This polynomial is derived using previous

results of this chapter.

In Chapter 5 we compare the power of GF (2n)-polynomials to that of GF (2)-

polynomials for computing and approximating functions, over inputs drawn

from the uniform distribution. Focusing mostly on degree 2, we study when a

GF (2)-polynomial can be either calculated exactly or approximated to various

levels by a GF (2n)-polynomial. Most of the results in this chapter refer to

bilinear forms, and specifically we present a GF (2)-bilinear form that cannot

be approximated significantly better than guessing from any GF (2n)-bilinear

form. Partial results regarding quadratic forms are also presented.

Prior publications of parts of the thesis. Section 4.3 and a version of

Section 4.2 for the linear case d = 1, as well as the resulting Section 3.4, were

published in [Tzu]. Section 4.5, which was done in joint work with Shachar

Lovett, was published in [LT].
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1.3 Highlights

We present some highlights of the thesis.

1.3.1 Separating small-bias from fooling small-space

Any generator that fools all nonuniform small-space distinguishers (defined in

Definition 3.3) necessarily has small bias (meaning that it fools linear tests,

as in Definition 2.1). However, the other direction does not hold: there exist

small-bias distributions that can be distinguished from random by a nonuniform

constant-space distinguisher. While existing separations had very poor param-

eters (see [Eve]), we present (in Section 3.5), a construction of an exponential-

stretch and exponentially-small-bias generator that can be distinguished from

random by a nonuniform constant-space machine.

1.3.2 Order-sensitivity of Nisan’s generator

The generator of Nisan ([Nis]) fools all nonuniform distinguishers that use less

memory than some given space bound. An interesting corollary to our work is

Corollary 3.18 stating that, for a natural instantiation of the Nisan generator,

there exists some reordering of its output bits that produces a generator that

can be distinguished from random in (nonuniform) constant space. Thus, the

resilience of Nisan’s generator to space-bounded distinguishers is sensitive to

the order of its output bits.

1.3.3 Disqualifying a variant of Nisan’s generator

The generator of [Nis], fooling nonuniform space-bounded machines, is based on

applying randomly selected hash functions to a randomly selected seed element.

Different subsets of these functions are applied to the same element several times,

in the same fixed order, producing the output blocks of the generator. A natural

question that arises asks whether using the same functions in different orders

will still yield a small-space-fooling construction, thus potentially improving

the stretch of the generator. In Subsection 3.3.4 we answer this question in the

negative, disqualifying a natural extension of the Nisan generator.
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1.3.4 Using GF (2n) to construct small-bias generators

We present a methodology for constructing small-bias generators (defined in

Definition 2.1), showing (in Corollary 4.6) that it suffices that a generator

fool all GF (2n)-linear tests (Definition 4.1). This methodology is used in Sec-

tion 3.4, where a simple construction of a small-bias generator is presented.

This construction, called “the geometric generator”, outputs a random GF (2n)-

geometric series, that is, the ` blocks ã ∙ b̃i, for i = 0, . . . , `−1 and ã, b̃ uniformly

selected from GF (2n). A variant of this generator, presented in Subsection

3.4.3, uses more input variables, to obtain a seed shorter than the construc-

tions of [AGHP], when the desired bias is not too small compared to the output

length.

1.3.5 An explicit lower bound for fooling polynomials by

the sum of small-bias generators

The result of Viola ([Vio]) shows that the sum of d independent instances of

a small-bias generator (fooling all linear tests, as in Definition 2.1), fools all

polynomials of degree at most d (see [Vio] for definition of fooling). In Section

4.5 we show that this result is tight with respect to the number of small-bias

generators summed, presenting an explicit degree-d+ 1 polynomial that distin-

guishes from random the sum of d instances of a small-bias generator of our

choice.

1.3.6 Approximating GF (2)-bilinear forms from GF (2n)-

bilinear forms

In Section 5.3 we study which GF (2)-bilinear forms (described by M(x, y) =

xTMy for some n × n matrix M) can be approximated to various rates from

the (only nondegenerate) GF (2n)-bilinear form; that is, the approximator is

allowed to be an arbitrary function of the multiple of the two elements x̃ and ỹ

represented by the two vectors x, y ∈ {0, 1}n. We provide a full characterization

of the GF (2)-bilinear form according to possible approximation rates ranging

from “close to 1” to “very close to 12”.
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Chapter 2

Preliminaries

2.1 Weak notions of pseudorandomness

We define here the notions of pseudorandomness that are used throughout the

entire work, and refer to the relevant section for notions that are chapter-specific.

The weakest notion of pseudorandomness that we consider is the notion of

small bias, introduced by [NN]:

Definition 2.1 (Small-biased distribution). For ` ∈ N, ε > 0, a distribution D

over {0, 1}` is called ε-biased if for every nonzero α ∈ {0, 1}`:
∣
∣
∣
∣ Prx∼D

[〈α, x〉 = 0]−
1

2

∣
∣
∣
∣ ≤ ε,

where 〈α, x〉 denotes the inner product
∑
i αixi (over GF (2)).

We prefer to view distributions as the outputs of pseudorandom generators:

Definition 2.2 (Small-bias generator). For k, ` ∈ N, ε > 0, a mapping G :

{0, 1}k → {0, 1}` is called an ε-bias generator of stretch `(k), if the distribution

induced by G(s) for s selected uniformly in {0, 1}k is ε-biased.

Remark. When discussing pseudorandom generators, it is common to also

consider the complexity of the generator itself (as opposed to the complexity of

potential distinguishers). We do not include this in the definition of a small-bias

generator, since in Chapter 3 we will consider a specific class of constructions
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anyway, whereas in Chapter 4 the complexity of the generator is not our focus.

A basic notion for comparing distributions is the notion of statistical distance.

It will be especially useful to us when we work with distributions over sets larger

than {0, 1}, and specifically the elements of GF (2n).

Definition 2.3 (Statistical distance). For ε > 0, two distributions X,Y are

said to be ε-close (in statistical distance) if for every event E,

∣
∣
∣Pr
X
[E]− Pr

Y
[E]
∣
∣
∣ ≤ ε.

Conversely, if there exists an event such that |PrX [E]− PrY [E]| ≥ ε, then X

and Y are said to be ε-far (in statistical distance).

Chapter-specific notions of pseudorandomness. The generalization of

the notion of small-bias to that of resisting higher degree polynomials (over

bits) was initiated by [LVW] (in fact, they considered the larger class of depth-2

boolean circuits), and further studied in [Bog] (although there, only super-

constant sized fields were considered). It is studied in Chapter 4, with the

relevant definitions in Section 4.2.

Section 4.2 also defines the various notions of GF (2n)-tests (as opposed to

the bit-based tests above), where Section 4.3 discusses the case of linear tests.

Fooling space-bounded distinguishers is discussed in Chapter 3, and defined

in Subsection 3.3.1, among with the generalized notion of block-automata.

2.2 Representation of GF (2n)

2.2.1 Basic Notations

We present our notations and conventions regarding the representation scheme

of the finite field of order 2n, called GF (2n).

Notation 2.4. For a vector a ∈ {0, 1}n, we will denote by ã the GF (2n) element

represented by a. When writing an expression in GF (2n) elements (denoted by

a tilde), the arithmetic will usually be that of GF (2n); otherwise (when elements

are without a tilde), we treat them as vectors in {0, 1}n and use the arithmetic

of the vector space (over GF (2)).
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Notation 2.5 (The polynomials c(x) and pa(x)). We will use the standard

representation of GF (2n) as the quotient GF (2)[x]/ 〈c(x)〉, fixing an irreducible

polynomial c(x) ∈ GF (2)[x] of degree n (where 〈c(x)〉 is the ideal generated by

c(x) in the ring GF (2)[x]). An element ã ∈ GF (2n), represented by the bit

string a = a0a1...an−1, corresponds to pa(x) =
∑n−1
i=0 aix

i ∈ GF (2)[x]/ 〈c(x)〉.

For details on this representation, see any standard algebra textbook (e.g., [BM]).

Notation 2.6 (The matrix C). Denote by C the companion matrix of c(x), with

ones under the diagonal and the coefficients c0, ..., cn−1 in the right column:

C =










0 0 . . . c0

1 0 . . . c1
...
. . .

. . .
...

0 . . . 1 cn−1










Note that for an element b̃ ∈ GF (2n) represented by b ∈ {0, 1}n, the vector

C ∙ b corresponds to multiplying pb by the fixed polynomial x (represented by

the bit-string e1 = 010...0) and reducing the result modulo c(x), that is, C ∙ b

represents the multiplication ẽ1 ∙ b̃.

Notation 2.7 (The matrix Ma). For a ∈ {0, 1}n, let Ma = pa(C). This is

the linear operator that performs multiplication by ã on elements viewed as n-

dimensional vectors over GF (2). That is, for every b̃ ∈ GF (2n), represented by

the vector b ∈ {0, 1}n, the binary representation of the element ã ∙ b̃ is Ma ∙b. To

see this, write pa(C) ∙ b =
∑
i aiC

ib, and note that this vector represents the re-

duction of
∑
i aipb(x)∙x

i =
∑
i,j aibjx

i+j modulo c(x), which indeed corresponds

to multiplying b̃ by ã in the field GF (2n).

An alternate formulation of the multiplication-by-ã matrix Ma, used and

studied in Subsection 3.5.2, is the multiplicationMa = R∙La of the two matrices

defined in the next two paragraphs.

Notation 2.8 (The matrix La). The 2n − 1 × n matrix La corresponds to

multiplying a polynomial in GF (2)[x] by pa(x), without reducing modulo the

irreducible polynomial c(x) used to represent the field. The matrix La is often
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referred to as the convolution matrix. Explicitly,

La =























a0 0 0 . . . 0

a1 a0 0 . . . 0
...

. . .
...

an−2 . . . a1 a0 0

an−1 an−2 . . . a1 a0

0 an−1 . . . a2 a1
...

. . .

0 . . . 0 an−1 an−2

0 . . . 0 0 an−1























,

i.e., [La]ij = ai−j if j ≤ i < j + n and 0 otherwise.

Notation 2.9 (The matrix R). The n × 2n − 1 matrix R reduces GF (2)-

polynomials (of degree at most 2n − 1) modulo c(x). The j-th column of R

is the coefficients vector of the polynomial xj reduced modulo c(x).

2.2.2 Basic Properties

The distributivity of GF (2n) implies that the matrix Ma should be linear in the

vector a. This indeed follows from each of the above definitions of Ma.

Proposition 2.10. Every a, b ∈ {0, 1}n satisfy Ma +Mb =Ma+b.

The following lemma says that the i-th bit of the representation of ã ∙ b̃

can be written as the inner product of Q ∙ a and b, where Q is a fixed matrix

over GF (2). The statement generalizes to any fixed linear combination in the

representation of ã ∙ b̃, denoted γ (where the aforementioned case corresponds

to γ = ei).

Lemma 2.11 (The matrix Qγ). For every fixed linear combination γ ∈ {0, 1}n,

there exists a matrix Qγ ∈ {0, 1}n×n such that for every two vectors u, v ∈

{0, 1}n:

〈γ,Mu ∙ v〉 = 〈Qγ ∙ u, v〉,

Moreover, Qγ is invertible whenever γ is nonzero.
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Remark. By commutativity of multiplication in GF (2n), it always holds that

Muv = Mvu, and thus 〈u,Qγ ∙ v〉 = 〈v,Qγ ∙ u〉. We will sometimes refer to

Lemma 2.11 as asserting 〈γ,Mu ∙ v〉 = 〈u,Qγ ∙ v〉. Using uTQγv = 〈u,Qγv〉 =

〈v,Qγu〉 = vTQγu = uTQTγ v for every u, v ∈ {0, 1}
n, we conclude that the

matrix Qγ is symmetric.

We present a simple nonconstructive proof for Lemma 2.11; a constructive

proof giving an explicit expression for Qγ is given in Subsection 4.3.3.

Proof (nonconstructive). Fixing γ, the value 〈γ,Mu ∙ v〉 is a bilinear form in

the bits of u and v since the bits of Ma are linear in the bits of a (Proposition

2.10). Thus, 〈γ,Mu ∙ v〉 can be represented as vTQγu for some n × n matrix

Qγ . For the moreover part, let d satisfy 〈γ, d〉 = 1 (e.g., if the i-th bit of γ

is 1, set d = ei). Then, for every nonzero u ∈ {0, 1}n, setting vu to represent

ũ−1d̃ ∈ GF (2n) (i.e., vu =M−1u d), we get 〈Qγ ∙ u, vu〉 = 〈γ,Mu ∙ vu〉 = 〈γ, d〉 =

1 and so Qγ ∙ u cannot be the zero vector. This implies that the kernel of Qγ is

trivial.

We also show that the matrix Qγ is linear in the vector γ (as is the case for

the matrix Ma in the vector a):

Proposition 2.12. Every γ1, γ2 ∈ {0, 1}n satisfy Qγ1 +Qγ2 = Qγ1+γ2 .

Proof. For every two vectors u, v ∈ {0, 1}n:

〈u, (Qγ1 +Qγ2)v〉 = 〈u,Qγ1v〉+ 〈u,Qγ2v〉

= 〈γ1,Muv〉+ 〈γ2,Muv〉

= 〈γ1 + γ2,Muv〉

= 〈u,Qγ1+γ2v〉 ,

where the second and last equality are due to Lemma 2.11. Letting u and v

range over all basis vectors ei and ej , we get that the matrices Qγ1 +Qγ2 and

Qγ1+γ2 are equal.

The squaring operation over GF (2n), that is, ã 7→ ã2, is a {0, 1}n-linear

operation in the bits of the vector a representing ã, since (ã + b̃)2 = ã2 + b̃2.

(In fact, this mapping of GF (2n) is called the Frobenius automorphism.) The

transformation over {0, 1}n can thus be described by a matrix S. We write S

explicitly:
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Notation 2.13 (The matrix S). The matrix S, describing the squaring transfor-

mation over the representation of GF (2n) elements, can be written as R∙E where

E is the 2n− 1× n matrix with 1 in the (2i+1, i)-th entry for i = 0, . . . , n− 1,

and zeroes in the other entries, and R is the matrix defined in Notation 2.9.

Note that for a vector a representing the GF (2n)-element corresponding to the

polynomial pa(x) =
∑
i aix

i, the vector Ea corresponds to the degree ≤ 2n − 1

polynomial
∑
i aix

2i+1, which is exactly pa(x)
2, so the vector Sa = R ∙ Ea

corresponds to the polynomial pa(x)
2 reduced modulo c(x), that is, Sa indeed

represents the GF (2n)-element ã2.

2.3 Block-generators and GF (2n)-generators

We will often consider generators that work over GF (2n). Specifically, in Chap-

ter 3 we consider such GF (2n)-generators as GF (2n)-polynomials maps:

Definition 2.14. We say that a map G̃ : GF (2n)k → GF (2n)` is GF (2n)-

polynomial of individual degree d if each of the ` output elements can be written

as a polynomial over GF (2n) of individual degree at most d in each of the k

input elements.

Having fixed a representation of GF (2n) by {0, 1}n, we will often work with

the binary generators that represent GF (2n)-generators:

Definition 2.15 (Binary version). Fix n, k, ` ∈ N. For a mapping G̃ : GF (2n)k →

GF (2n)`, its binary version is the block-generator G : {0, 1}n∙k → {0, 1}n∙`, pars-

ing its input to k blocks x1, . . . , xk ∈ {0, 1}n, and outputting the concatenation

of the ` vectors representing the ` output elements of G̃ applied to the k elements

x̃1, . . . , x̃k.

Throughout this work, we will sometimes omit the explicit term binary ver-

sion, and just refer to G as the binary version of a previously defined generator

G̃, or vice versa.

Abusing the term in Definition 2.14, for a GF (2n)-polynomial map G̃ :

GF (2n)k → GF (2n)` we sometimes refer to its binary version, G : {0, 1}k∙n →

{0, 1}`∙n as a GF (2n)-polynomial map as well.
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The general concept of a (binary) generator that parses its input to n-bit

blocks, works on logical units in {0, 1}n, and outputs the concatenation of n-bit

output blocks, is called a block-generator :

Definition 2.16 (Block-generator). For n, k, ` ∈ N, a generator G : {0, 1}n∙k →

{0, 1}n∙` is called a block-generator with block-length n and block-stretch `.

2.4 Using a larger prime field

Many of our results hold also when using a prime field other than GF (2). When

of specific interest, we will sometimes write this explicitly in the text. We present

here some generalizations of the above definitions, over the prime field GF (q)

for q a prime number.

The GF (q) analogue of Definition 2.1 is (see, e.g., [Eve] or [GW]):

Definition 2.17. For ` ∈ N, ε > 0 and a prime q, a distribution X over GF (q)`

is called ε-biased if for every nonzero α ∈ GF (q)`:

∥
∥
∥Ex∼X [e

〈x,α〉∙2πi/q]
∥
∥
∥ ≤ ε,

where here 〈α, x〉 denotes the inner product
∑
i αi ∙ xi over GF (q), and the

multiplication by 2πi/q is then done over the complex field C.

This notion can be related to the notion of statistical distance (from the uni-

form distribution over GF (q)). Standard arguments (e.g. [Gol95] or Appendix

B in [BV]) give that an ε-biased (over GF (q)) distribution is
√
q − 1 ∙ ε/2-close

to the uniform distribution (in statistical distance).

The notion of bias can also be defined over other (nonprime) fields; we refer

the interested reader to [Eve].

We remark that the matrix S defined in Notation 2.13 is GF (2)-specific; in

GF (q) the mapping ã 7→ ãp is GF (q)n-linear only for p a multiple of q (see any

algebra textbook, e.g. [BM]).
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Chapter 3

GF (2n)-Polynomials as

Weak Pseudorandom

Generators

3.1 Introduction

3.1.1 Motivation

As opposed to the case of pseudorandomness against all efficient distinguish-

ers, explicit and unconditional constructions are known for many weak notions

of pseudorandomness. Among other such notions, pseudorandomness against

space-bounded distinguishers is achieved by the generator of [Nis]; and small-

biased distributions were constructed in [NN], and then more simply in [AGHP].

While the basic definitions refer to distributions over bits, many of the con-

structions benefit from parsing their input to blocks, and provide guarantees

regarding block-based distinguishers. Specifically, considering each seed-block

of n bits as the representation of an element in GF (2n), and outputting the

representation of some GF (2n)-based function of the seed, has found use in sev-

eral of the above constructions. It is often beneficial to write these functions as

GF (2n)-polynomials, either because they have a simple form as a polynomial,

of because they have bounded degree. We present two such examples, which

will be studied more extensively within this chapter.
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The first example is the generator of [Nis], which when instantiated with the

standard construction of a universal hash function as an affine GF (2n)-linear

function, has each output block representing a GF (2n)-multilinear polynomial

of the (elements represented by the) seed blocks (see section 3.3 for details).

The second example is the powering construction of [AGHP], which is based

on the GF (2n)-linear test resistance of a random geometric series (ã ∙ b̃i)i over

GF (2n), although there ã is set to 1, and instead each output bit is the inner

product of the representation of b̃i with some fixed random vector in {0, 1}n.

Actually, one contribution of this chapter is showing that the “pure” geometric

generator has small-bias.

Given the apparent usefulness of GF (2n)-polynomials in this context, we

undertake in this chapter a study of various aspects of using GF (2n)-polynomials

to construct weak pseudorandom generators.

3.1.2 Overview

After defining the generators and distinguishers relevant to this chapter in Sub-

section 3.3.1, we begin by presenting in Section 3.2 an upper bound on the

stretch of any small-bias generator that, when parsing its input and output to

blocks, can have its output blocks presented as GF (2n)-polynomials of bounded

degree in its input blocks. We mention that this section uses the results of

Section 4.3, which relate indistinguishablility by GF (2n)-linear tests to small

bias.

Indeed, this bound also applies to a stronger notion of pseudorandomness

that fools nonuniform space-bounded distinguishers. In Section 3.3 we show that

a natural instantiation of the well known Nisan generator ([Nis]) that does fool

nonuniform space-bounded distinguishers can be described as a member of the

aforementioned class of generators, and more specifically the class of GF (2n)-

multilinear polynomials, and has essentially optimal stretch within this class.

Specifically, in Subsection 3.3.4 we rule out a seemingly natural improvement

of the Nisan generator, which is based on reusing the same hash functions in

different orders.

Since the bound presented in Section 3.2 increases with the degree of the

polynomials, a natural suggestion for a small-bias generator consists of using

high degree polynomials. In Section 3.4, we show that indeed a random ge-

ometric series over GF (2n) has small bias, using again the connection estab-
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lished in Section 4.3. On the other hand, this generator is distinguishable by

a strengthened version of a space-bounded distinguisher, namely a nonuniform

block-automaton, which the Nisan generator does fool. This provides a very

natural separation between these two classes of distinguishers.

We also derive in Section 3.5 a variant of the geometric generator that still

has small bias and large stretch, but is distinguishable by a (standard) nonuni-

form constant-space machine. Indeed, this provides another natural separation,

which is finer. Using the same technique, we also show that the Nisan genera-

tor’s resilience to (nonuniform) space-bounded distinguishers is sensitive to the

order of the output bits.

3.2 A bound on the stretch of GF (2n)-polynomial

small-bias generators

In this section we prove a bound ` ≤ (d + 1)k on small-bias generators (as in

Definition 2.1, i.e., fooling bit-linear tests) that are GF (2n)-polynomial maps of

individual degree d (as in Defintion 2.14) with block-stretch k 7→ `.

To prove a bound on the stretch of GF (2n)-polynomial maps that are small-

bias generators, we present a generator-specific nontrivial GF (2)-linear relation

that must be satisfied by the output bits of (the binary version of) this generator

if its stretch is too big. We will do this by first finding a GF (2n)-linear relation

that must be satisfied by the generator, and then use the results of Section 4.3

to derive a GF (2)-linear relation in the output bits of the binary version.

We note that in Section 7 of [MST], the case n = 1 is studied and a bound

` ≤ O(kd) is proven for small-bias generators whose output bits are polynomials

of (total) degree at most d, using an argument similar to the one in our Theorem

3.1. In contrast, our focus here is on the general case of n ≥ 1.1 (We mention

that the rest of [MST] studies a more restricted class of small-bias generators,

in which each output bit depends on at most d input bits.)

1Note that since each bit of the binary version of a GF (2n)-polynomial in k variables of

individual degree at most d is a GF (2)-polynomial in kn variables of total degree at most kd

(by the simple Lemma 4.4), we can derive for any n an upper bound ` ∙ n = O((kn)kd). This

bound is inferior to that of Theorem 3.1.
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3.2.1 A linear dependency over GF (2n)

Theorem 3.1. Let G̃ : GF (2n)k → GF (2n)` be a GF (2n)-polynomial map of

individual degree d. If ` > (d + 1)k, then there is a nontrivial GF (2n)-linear

combination that takes value zero on every output of G̃.

Since a nontrivial GF (2n)-linear combination is distributed uniformly over

GF (2n) when applied to uniformly distributed elements, this linear tests distin-

guishes G̃ from random with gap 1− 2−n, and thus G̃ does not α-fool GF (2n)-

linear tests for any α < 1− 2−n (see Definition 4.1).

Proof. We treat each of the ` polynomials describing the output blocks of G̃ as

a GF (2n)-linear combination of monomials. The generator G̃ can be described

by a GF (2n)-matrix with ` rows and (d+1)k columns, where the (i, j)-th entry

is the coefficient of the j-th monomial (among the (d+1)k possible monomials of

individual degree at most d in each of the k input elements2) in the polynomial

describing the i-th output element. Since the hypothesis assigns this matrix

more rows (representing output blocks) than columns (representing possible

monomials), a linear dependency between its rows is implied. Thus, we have

obtained a nontrivial GF (2n)-linear combination of the output elements of G̃

that always sums to zero.

Remark. In Subsection 3.4.3 we show, for any d, k and n, aGF (2n)-polynomial

generator of individual degree d with stretch ` = (d + 1)k−1, that `
2n -fools

GF (2n)-linear tests. This leaves a multiplicative gap of d+1 between the lower

and upper bounds.

3.2.2 A linear dependency over bits

In Section 4.3 we relate linear dependencies over GF (2n) and linear dependen-

cies of the bits representing the GF (2n)-elements. Specifically, by combining

Theorem 3.1 with Lemma 4.4 (which is the “easy direction” of that relation),

we obtain:

2We note that this bound can be decreased by one: since a (nontrivial) GF (2n)-linear

combination that always sums to a constant element of GF (2n) (not necessarily zero) also

leads to a distinguisher with the same gap 1 − 2−n, the constant monomial should not be

included in the matrix, reducing the bound to (d+ 1)k − 1.
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Corollary 3.2. Consider any GF (2n)-polynomial map G̃ : GF (2n)k → GF (2n)`

of individual degree d, and let G : {0, 1}kn → {0, 1}`n be its binary version. If

` > (d+1)k, then there is a nontrivial GF (2)-linear combination that takes value

zero on the output of G. Thus, G is not an ε-bias generator for any ε < 1
2 .

Remark. The bound of Corollary 3.2 can be (insignificantly) improved to ` ≤

(d+1)k− (bd/2c+ 1)k, using the linear dependence between the representation

of a GF (2n)-element x̃ and its square x̃2. This is shown in Appendix A.1.

3.3 The Nisan generator

The generator presented in [Nis], to which we refer as the Nisan generator, is

shown to fool all nonuniform machines that use at most cn space, for some

universal constant c > 0, and more generally, all block automata (see the fol-

lowing Subsection 3.3.1 for the definitions of the distinguisher classes). An

output sequence is produced by choosing an element x ∈ {0, 1}n and k′ func-

tions h1, . . . , hk′ from a 2-universal family of hash functions over {0, 1}n, and

outputting the image of x under all possible compositions of any of the 2k
′
sub-

sets of the hash functions, in a fixed order (for a definition of universal hash

functions, see, e.g., [Nis] or Section D.2 of [Gol08]). Specifically, if we identify

the 2k
′
output blocks with bit-strings σ in {0, 1}k

′
, then the σ-th output block

will be hσ11 ◦ h
σ2
2 ◦ . . . ◦ h

σk′
k′ (x).

We will use a standard implementation of universal hashing, described in

Subsection 3.3.3, to get an instantiation of the Nisan generator that can be

seen as a GF (2n)-polynomial generator of individual degree 1. Moreover, the

resulting generator will be a member of a smaller class of generators, which we

describe in Subsection 3.3.5 as the “seed-and-hash” class, and have essentially

optimal stretch within this class (for individual degree 1). We also show, in

Subsection 3.3.4, that a natural extension of the Nisan generator, in which the

hash functions h1, . . . , hk′ are applied to x in different orders, does not have

small bias (and thus does not fool space-bounded distinguishers).

3.3.1 Definitions of the distinguisher classes

The generator of [Nis] is designed to fool nonuniform space bounded machines.

These are modeled as nonuniform Turing Machines (with space-complexity guar-
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antees) with unidirectional access to their random tape (thus having to record

every past coin toss, if needed for future use).

Since we are interested in the distinguishing capabilities of such machines

with respect to their random tape, we model our distinguishers (that take the

pseudorandom bits in their input tape) as machines that have unidirectional

access to their input:

Definition 3.3 (Space-bounded distinguishers). A nonuniform space-s(`) distin-

guisher is a nonuniform Turing Machine that on input of length ` uses at most

s(`) bits of storage and runs in time at most 2s(`), with unidirectional access to

its input tape (that is, the reading head can only move right).

In fact, the Nisan generator is shown to fool the following stronger type of

distinguishers:

Definition 3.4. A block automaton with block-length n is an automaton over

the alphabet Σ = {0, 1}n, with at most 2cn states for some universal constant c.

If we set n = 1 in Definition 3.4, we get a model equivalent to that of

Definition 3.3, with s(`) = c. Since a block automaton with block-length n is

also a block-automaton with block-length kn for every k ∈ N, every nonuniform

space-cn distinguisher is also a block-automaton with any block-length n, so

Definition 3.3 is indeed stronger than Definition 3.4 (and thus fooling all block-

automata implies fooling all nonuniform space-cn distinguishers).

3.3.2 Overview of the analysis of Nisan’s generator

Although not of direct use to us, we describe briefly the ideas of the proof that

the Nisan generator fools block-automata. This proof motivates our interest in

this class of distinguishers.

The proof of resilience to block-automata is based on the idea that for

almost every hash function h, the distribution of the pair (x, h(x)) for x se-

lected uniformly from {0, 1}n behaves similarly to a uniformly selected pair

(x, y) ∈ {0, 1}n × {0, 1}n, with respect to hitting arbitrary subsets of {0, 1}n.

Considering for each state of the automaton the subsets of {0, 1}n that bring

the automaton to this state, the automaton cannot distinguish the pair (x, h(x))

from (x, y). The application rules of the hash functions can be seen as a recursive

use of this idea, where in each step an output consisting of two independently
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and identically distributed parts z1, . . . , zt and z
′
1, . . . , z

′
t is replaced by the out-

put z1, . . . , zt, h(z1), . . . , h(zt) for a newly selected hash function h. Each step

reduces the randomness required by a factor of 2, with an additive cost of se-

lecting one hash function, eventually giving an exponential improvement of the

seed length.

3.3.3 A GF (2n)-polynomial generator

The Nisan generator uses as a primitive a collection of universal hash functions

over {0, 1}n. A standard implementation of such a collection is the collec-

tion of all affine functions over GF (2n): a function h is specified by two ele-

ments ã, b̃ ∈ GF (2n), and sends a vector x ∈ {0, 1}n, representing the element

x̃ ∈ GF (2n), to the representation of the element ã ∙ x̃+ b̃ (in the arithmetic of

GF (2n)). For details, see, e.g., Section D.2 of [Gol08]. The usage of this stan-

dard implementation instantiates the Nisan generator as a GF (2n)-polynomial

map; moreover, the individual degree in each input element is 1 (i.e., it is

GF (2n)-multilinear):

Claim 3.5. For every integer r ≥ 0 and index-vector j̄ ∈ [k′]r,

hj1hj2 ...hjr (x̃) = x̃ ∙
r∏

i=1

ãji +

r∑

s=1

b̃js ∙
s−1∏

i=1

ãji ,

where hj(x̃) = ãj ∙ x̃+ b̃j.

(Recall that for every function T (i), for p > q, the empty product
∏q
i=p T (i)

is defined as 1, while the empty sum
∑q
i=p T (i) is defined as 0.)

Proof. We prove this by induction on r. For r = 0 the claim is trivial. Now

consider any r ≥ 1. Using the induction hypothesis on hj2 , . . . , hjr (x̃), we get:

x̃ ∙
r∏

i=1

ãji +
r∑

s=1

b̃js ∙
s−1∏

i=1

ãji = x̃ ∙
r∏

i=1

ãji +
r∑

s=2

b̃js ∙
s−1∏

i=1

ãji + b̃j1 ∙
0∏

i=1

ãji

= ãj1 ∙

(

x̃ ∙
r∏

i=2

ãji +
r∑

s=2

b̃js ∙
s−1∏

i=2

ãji

)

+ b̃j1 ∙ 1

= ãj1 ∙ hj2 ...hjr (x̃) + b̃j1

= hj1hj2 ...hjr (x̃).
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By Theorem 3.1, the best block-stretch that a small-bias GF (2n)-polynomial

generator of individual degree 1 in k output blocks (with block size n) can

have is ` = 2k, whereas the above instantiation of the Nisan generator (fooling

nonuniform space-bounded machines, which is a stronger notion than having

small-bias) has block-stretch ` = 2k
′
= 2

k−1
2 , establishing:

Proposition 3.6. There exists a GF (2n)-polynomial map of individual degree

1 with block-stretch `(k) = 2
k−1
2 that fools block-automata (with block-size n).

3.3.4 The permutations variant

We consider a natural idea for modifying the Nisan generator in order to improve

its stretch: after choosing a seed element x, and k′ pairwise-independent hash

functions, instead of producing output blocks by applying different subsets of

the hash functions in one fixed order (i.e., for every σ ∈ {0, 1}k
′
, output hσ11 ◦

hσ22 ◦ . . . ◦ h
σk′
k′ (x)), we produce output by applying all the hash functions in

different orders (i.e., for every permutation π : [k′]→ [k′], output hπ(1) ◦ hπ(2) ◦

. . . ◦ hπ(k′)(x)). This potentially suggests a substantially better block-stretch:

k′! instead of 2k
′
.

However, instantiating the generator as above with the standard implemen-

tation of pairwise independent hash functions as GF (2n)-affine functions, this

generator is again a GF (2n)-multilinear map (by Claim 3.5) and is thus ruled

out immediately by the stretch bound of Theorem 3.1, because its block stretch

is k′! = (k−12 )! = ω(2
k). This establishes nonconstructively:

Corollary 3.7. For large enough k′, the permutations variant of the Nisan

generator with k′ hash functions is not a small bias generator (and certainly

does not fool nonuniform small-space machines).

That is, we get nonconstructively that for large enough k′ (in fact, for

k′ ≥ 20) there exists a GF (2n)-linear combination of the output elements of

the permutations variant that always sums to zero. We will now improve

the result by showing an explicit linear dependency, for any k′ ≥ 4. If y1 =

h1h2(z), y2 = h2h1(z) and y3 = h1h2(z
′), y4 = h2h1(z

′) are four output blocks of

the generator3, for two arbitrary expressions z, z′ (e.g. z = h3h4h5...hk′(x), z
′ =

3Or, in fact, of any seed-and-hash generator; see Subsection 3.3.5.
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h4h3h5...hk′(x)), then

(ỹ1 − ỹ2)− (ỹ3 − ỹ4) = (ã1(ã2z̃ + b̃2) + b̃1 − ã2(ã1z̃ + b̃1)− b̃2)

−(ã1(ã2z̃
′ + b̃2) + b̃1 − ã2(ã1z̃

′ + b̃1)− b̃2)

= ((ã1 − 1)b̃2 − (ã2 − 1)b̃1)− ((ã1 − 1)b̃2 − (ã2 − 1)b̃1)

= 0

(recall that the hash functions are implemented as hi(x̃) = ãi ∙ x̃+ b̃i).

In fact, if for some fixed permutation π : [m] → [m] we have four output

blocks y1 = hj1hj2 ...hjm(z), y2 = hjπ(1)hjπ(2) ...hjπ(m)(z) and y3 = hj1hj2 ...hjm(z
′), y4 =

hjπ(1)hjπ(2) ...hjπ(m)(z
′), then both differences y1−y2 and y3−y4 are independent

of z (or z′)4 and must be the same, giving a linear combination (y1−y2)− (y3−

y4) = 0.

3.3.5 Seed-and-hash variants

When presenting the Nisan generator as a GF (2n)-polynomial map (of indi-

vidual degree 1), as well as the permutations variant, we used the structure of

choosing one seed element x ∈ {0, 1}n and k′ functions from a collection of uni-

versal hash functions, and outputting various applications of the different hash

functions to x, in some arbitrary order; this is a GF (2n)-polynomial map if we

use the standard implementation of a universal hash function as a GF (2n)-affine

function.

While the permutations variant turned out to have too long a stretch, other

variants of the Nisan generator, using different strategies of applying the hash

functions to the seed element x, can still potentially improve the block-stretch

from ` = 2
k−1
2 up to the bound ` = 2k of Theorem 3.1.5 We consider this

class of variants, based on choosing a seed element x and k′ hash functions

h1, . . . , hk′ , and outputting the results of applying the functions h1, . . . , hk′ to x

in some strategy. That is, each output index in [`] is mapped to a (potentially

long) tuple of indices in [k′], where the output block whose index is mapped to

the index-vector ī = (i1, . . . , it) ∈ [k′]t is produced by hi1 ◦ . . . ◦ hit(x). We call

this class the “seed-and-hash” class. Indeed, for the standard implementation of

4By claim 3.5, the only term dependent on z (or z′) is z ∙
∏k′
i=1 ãπ(i), which is independent

of the ordering π by commutativity. Hence the difference is independent of z (or z′).
5Or almost to (d+ 1)k; see Appendix A.1 for a slightly improved bound.
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universal hashing that we used, these generators yield simply-described GF (2n)-

polynomial maps. While so far we allowed each hash function to be applied only

once in the expression of each output block, resulting in a GF (2n)-multilinear

polynomial, if we now bound by d the number of times each hash function can

be used for a single output block, we get a GF (2n)-polynomial map of individual

degree d (by Claim 3.5).

Inspecting the proof of Theorem 3.1, its bound can be improved on the

seed-and-hash class, since the number of possible monomials is now smaller. By

Claim 3.5, all monomials are a multiplication of some of the ãi’s (each raised

to a power at most d) times either x̃ or some b̃j , and thus the total number of

possible monomials is (d+1)k
′
∙ (k′ +1). For d = 1, we get that the best block-

stretch possible is 2k
′
∙ (k′ + 1) = 2k

′(1+o(1)), giving that the Nisan generator

(with block-stretch 2k
′
) is essentially optimal within this class.

3.4 The geometric generator

The bound of Theorem 3.1 suggests that a small-bias generator with good

stretch might be obtained by letting the output blocks be described by poly-

nomials of potentially high degree. As a first attempt, one may consider the

sequence ã, ã2, ã3, . . . for a randomly chosen ã ∈ GF (2n); however, recalling

that the bits representing ã2 and the bits representing ã are linearly dependent

(see Notation 2.13, where the squaring matrix S is defined), this cannot be a

small-bias generator. We thus consider a generator that on seed two elements

ã, b̃ ∈ GF (2n), outputs the geometric series (ã ∙ b̃i)`i=0. This generator is similar,

though not identical, to a known generator from [AGHP], called the powering

generator.

3.4.1 Small bias

Not violating the bound of Theorem 3.1, this generator is not disqualified from

having small-bias. We show that this is indeed the case, using the definitions

and results from Section 4.3. We note that this generator was considered in

[ASS], where it was implicitly proven to have small bias (see further discussion

in Section 4.3).

Proposition 3.8 (The geometric generator). For n, ` ∈ N, the generator G̃ :
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GF (2n)2 → GF (2n)`+1 defined by g̃i(ã, b̃) = ã ∙ b̃i for i = 0, . . . , `, called the

geometric generator, `2n -fools GF (2
n)-linear tests (as in Definition 4.1).

Proof. Fix any nontrivialGF (2n)-linear combination c̄ = (c̃0, . . . , c̃`) ∈ GF (2n)`+1,

and consider the expression

〈
c̄, G̃(ã, b̃)

〉
=
∑̀

i=0

c̃i ∙ ã ∙ b̃
i = ã ∙

∑̀

i=0

c̃i ∙ b̃
i

(where here 〈x̄, ȳ〉 denotes the GF (2n)-inner product
∑
i x̃iỹi). When

∑`
i=0 c̃i ∙b̃

i

is nonzero, ã ∙
∑`
i=0 c̃i ∙ b̃

i is uniformly distributed in GF (2n). Thus, for any

fixed c̄ the statistical distance between the distribution induced by the above

expression over uniformly selected ã, b̃ ∈ GF (2n), and the uniform distribution

over GF (2n), is at most Prb̃

[∑`
i=0 c̃i ∙ b̃

i = 0
]
, which is bounded by `

2n , since

the nonzero GF (2n)-polynomial
∑`
i=0 c̃i ∙ x̃

i of degree at most ` can have at

most ` roots (in GF (2n)).

Using Corollary 4.6, we immediately get:

Corollary 3.9. For n, ` ∈ N, the generator G : {0, 1}2n → {0, 1}(`+1)∙n defined

as the binary representation of G̃, is an `
2n -bias generator.

3.4.2 Distinguishable by a nonuniform block-automaton

Since the geometric generator passes the small-bias test, and given its similarity

to the above instantiation of Nisan’s generator, one may hope that the ideas

of the proof of Nisan’s generator would apply here (and establish that it fools

space-bounded distinguishers as well). We show that this is not the case: the

strengthened notion of a block-automaton, which Nisan’s generator is shown to

fool, can distinguish the geometric generator from random, for many values of

n. Specifically, whenever 2n−1 has a small (constant) factor, we will describe a

block-automaton that distinguishes the geometric series from a random sequence

of elements in GF (2n) with a large gap. Note that this happens for infinitely

many n’s: specifically for all even n’s, it holds that 3 divides 2n−1.6 We thereby

assume that 2n − 1 = q ∙ p for some constant q.7

6This is because 2n − 1 = (2n/2 − 1)(2n/2 + 1), and 3 must divide one of them since it

does not divide 2n/2.
7This would give an automaton with a finite number of states. In fact, to comply with

Definition 3.4, we can take any subexponential q = 2o(n).
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Let α be a generator of the cyclic multiplicative group GF (2n)∗ = GF (2n) \ {0}.

For an element x ∈ GF (2n)∗, define its discrete logarithm, logα(x) to be the

unique integer j ∈ {0, . . . , 2n− 2} such that x = αi. Note that since α2
n−1 = 1,

for every two elements x, y ∈ GF (2n)∗ it holds that

logα(x ∙ y) ≡ logα(x) + logα(y) (mod 2
n − 1). (3.1)

The distinguisher is based on the fact that the group GF (2n)∗ contains a

large multiplicative subgroup (when 2n − 1 has a small nontrivial factor):

Proposition 3.10. The set G0 = {x ∈ GF (2n)∗ : logα(x) ≡ 0 (mod q)} is a

multiplicative subgroup of GF (2n)∗ of size 2
n−1
q
= p.

Proof. The claim follows from Equation (3.1) since q divides 2n − 1. The size

of G0 is the number of integers in {0, . . . , 2n−2} divisible by q, which is exactly
2n−1
q
= p.

We now observe that if both seed elements ã and b̃ happen to fall in G0,

an event that occurs with probability ( |G0|
|GF (2n)| )

2 = ( 2
n−1
q∙2n )

2 > 1
q2
− 2−n, then

all the output elements of the geometric generator must fall in G0, an event

that happens with probability
(
|G0|

|GF (2n)|

)`
< q−` for a random sequence of `

elements.

Recognizing whether a block represents an element in G0 may require large

space, but as a block automaton, allowed to compute arbitrary functions when

processing a block, our distinguisher can do it. We therefore define the distin-

guisher to first check whether the first two blocks, supposedly ã and ã ∙ b̃, are in

G0. If not, the distinguisher flips a coin and answers randomly; otherwise, the

distinguisher checks the next output block and answers “pseudorandom” if and

only if it is also in G0. By the discussion above, the distinguishing gap obtained

is at least

Pr
y0,y1
[y0, y1 ∈ G0] ∙ (1− Pr

y2
[y2 ∈ G0]) > (

1

q2
− 2−n) ∙ (1−

1

q
+ 2−n)

≥
q − 1
q3
− 2−n

≥ Ω(1).
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Remark. If we check that all the remaining `−2 output blocks are in G0, we

get the better (but still just constant) distinguishing gap

(
1

q2
− 2−n) ∙ (1− q−`+2) ≥

1

q2
− (2−n + q−`) ≥ Ω(1).

We have thus established:

Theorem 3.11. For ` ≥ 3 and infinitely many n’s, the geometric generator

over GF (2n) with block-stretch ` can be distinguished with constant gap by a

block-automaton (with block-size n).

We have obtained a separation between the notion of a small-bias generator

and the notion of fooling block-automata. Our separation generator has ex-

ponential stretch and bias, showing that small-bias generators that have good

parameters may be distinguished by a simple block-automaton with a good gap.

Separating small-bias from fooling nonuniform space-space machines, which are

weaker than block-automata, is considered in Section 3.5.

Large distinguishing gap. We improve the above distinguishing gap by not-

ing that the subgroup G0 is just a specific case of a more general phenomenon,

namely that multiplying two elements is equivalent to adding their discrete logs.

For i ∈ {0, . . . , q−1}, define the set Gi as {x ∈ GF (2n)∗ : loga(x) ≡ i (mod q)}.

Then, each Gi is of size p =
2n−1
q
, and by Equation (3.1) we get:

Proposition 3.12. For i1, i2 ∈ {0, . . . , q − 1}, let i3 = i1 + i2 mod q. Then for

every x ∈ Gi1 and y ∈ Gi3 , it holds that x ∙ y ∈ Gi3 .

If we first determine the sets Gi1 and Gi2 that contain the first two output

elements (supposedly ã and ã ∙ b̃), which can indeed be done and remembered

by a block-automaton since there are only q = O(1) sets Gi, we can predict the

discreet log of the j-th output element, using Equation (3.1):

logα(ã ∙ b̃
j) ≡ logα(ã) + j ∙ logα(b̃) ≡ i1 + j ∙ (i2 − i1) (mod q). (3.2)

Accordingly, our distinguisher will first check if any of the first two blocks

is zero. If so (an event that has probability at most 2 ∙ 2−n for both a random

output of the generator and a truly random sequence of elements), it will just

check that all other elements are zero, which is guaranteed for all outputs of

the generator but happens with probability 2−n∙(`−2) on a random sequence.
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Otherwise, the distinguisher will remember i1 = logα(g̃0) and i2 = logα(g̃1) and

verify, for j = 2 . . . ` that the j-th output block is nonzero and that its discreet

log agrees with Equation (3.2). Since only p = 2n−1
q
elements in GF (2n) are

accepted, this happens for each block with probability at most 2
n−1
q∙2n <

1
q
in

a random sequence (whereas every output of the geometric generator satisfies

Equation (3.2)). Thus a random sequence (that does not start with zeroes) is

accepted with probability at most q−`+2, and the total distinguishing gap we

obtain is at least

2 ∙ 2−n ∙ (1− 2−n∙(`−2)) + (1− 2 ∙ 2−n) ∙ (1− q−(`−2)) ≥ 1− q−(`−2) − 2−n+1

= 1− exp(−Ω(n))− exp(−Ω(`)).

3.4.3 Using more variables

We describe a generalization of the geometric generator (as in Proposition 3.8).

Consider the generator that on input k elements ã, b̃1, . . . , b̃k−1 ∈ GF (2n) out-

puts all elements ã ∙M(b̃1, . . . , b̃k−1) for M ranging over all monomials of total

degree at most t. Note that GF (2n)-linear tests are still fooled (with proba-

bility 1 − t
2n ), as a multivariate polynomial of total degree at most t can still

have at most t roots. We stretch n ∙ k bits to n ∙
(
t+k−1
k−1

)
bits,8 which is larger

than n ∙ ( t+k−1
k−1 )

k−1 ≥ 2(k−1)(log t−log(k−1)) bits. Thus, for a bias of ε = t
2n , to

get m = 2(k−1)(log t−log(k−1)) = 2(k−1)(n−log(1/ε)−log(k−1)) output bits, we need

a seed of length at most k
k−1 logm+ k log(1/ε)+ k log(k− 1). (For comparison,

recall that the original generator corresponds to the special case k = 2, which

has seed length 2 logm+ 2 log(1/ε).)

Theorem 3.13. For every ε ∈ (0, 1) and integers m > 0 and k ≥ 2, the k-

variate geometric generator with ε-bias and m output bits requires a seed of

length at most k
k−1 logm+ k log(1/ε) + k log(k − 1) bits.

Tightness of Theorem 3.1. If we bound the individual degree of each seed

element (rather than the total degree) by d, we obtain a block-stretch of k 7→

(d + 1)k−1. As a member of the class of GF (2n)-polynomial generators, this

almost matches the bound (d+ 1)k of Theorem 3.1.

8The number of monomials in k− 1 variables b1, . . . , bk−1 of total degree exactly t can be

thought of as the number of ways to choose t elements to multiply from the k − 1 different

elements b1, . . . , bk−1, ignoring order, which is
(t+k−2
k−2

)
. If we want all monomials of total

degree at most t, we add the constant 1 as a k-th variable, to get
(t+k−1
k−1

)
.
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Optimizing the seed length. The expression k
k−1 logm+ k log(1/ε) is min-

imized when k =
√

logm
log(1/ε) + 1. Clearly, if logm ≤ log(1/ε), then the minimal

k = 2 (which is the original geometric generator) yields the shortest seed. How-

ever, when logm is significantly greater than log(1/ε), it is clear that a larger

k would give a shorter seed (since the expression k
k−1 decreases as k increases).

Since k must be an integer (and at least 2), we set k =
⌈√

logm
log(1/ε) + 1

⌉
, and get

a seed of length at most

⌈√
logm
log(1/ε) + 1

⌉

⌈√
logm
log(1/ε)

⌉ ∙logm+

⌈√
logm

log(1/ε)
+ 1

⌉

∙log(1/ε)+

⌈√
logm

log(1/ε)
+ 1

⌉

log

⌈√
logm

log(1/ε)

⌉

,

bounded by



1 +
1

√
logm
log(1/ε)



 logm+

(√
logm

log(1/ε)
+ 2

)

log(1/ε) + Õ(
√
logm),

which can be simplified to

logm+ 2
√
logm ∙ log(1/ε) + 2 log(1/ε) + Õ(

√
logm).

We have established

Corollary 3.14. For every ε ∈ (0, 1) and m ∈ N there exists an explicit ε-bias

generator that generates m output bits with a seed of length at most logm +

2
√
logm ∙ log(1/ε)+2 log(1/ε)+Õ(

√
logm). Specifically, if ε ≥ 2− poly log logm ≥

2−Õ(
√
logm), this is logm+ Õ(

√
logm).

Comparison to other generators. The standard explicit constructions of

[AGHP] use a seed of length 2 logm+2 log(1/ε), which is longer than the above

if m is significantly greater than 1/ε (explicitly, if
√
logm > 2

√
log(1/ε) +

poly log logm, i.e. m1−o(1) > ε−4). We note that a construction of [NN] achieves

a shorter seed when m is significantly greater than 1/ε: they obtain logm +

O(log(1/ε)); however, our construction is simpler and more natural (as are the

constructions of [AGHP]).

Note that if the output length m is exponential in a “security parameter” n

(for example, but not necessarily, the field size), then ε ≥ 2− poly log logm, means

ε ≥ 2− poly log n. For instance, to get 2n bits with bias 1/ poly(n), we only need

n+ Õ(
√
n) bits of seed, as opposed to 2n bits in the original construction.
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3.4.4 Using a larger prime field

The construction of the geometric generator and its proof work similarly if

we replace the prime field GF (2) by the larger GF (q), for some prime q. The

distribution of any linear combination in the `+1 output blocks of the geometric

generator is `
qn
-close to uniform (over GF (q)) in statistical distance. The results

of Section 4.3, including Corollary 4.6, also extend to GF (q), giving a generator

that fools GF (q)-linear tests. To get m elements of GF (q) that ε-fool GF (q)-

linear tests, we need a seed of about 2 logqm + 2 logq(1/ε) =
2
log q (logm +

log(1/ε)) elements of GF (q). These can be described by 2 logm + 2 log(1/ε)

bits. For more about using a larger prime field, see Subsection 2.4.

3.5 A small-bias generator of large stretch that

is O(1)-space distinguishable

While psedurandomness against nonuniform machines of small space implies

fooling GF (2)-linear tests (for any positive space bound), it is interesting to

note that this is indeed a strictly stronger notion. A known separation result,

having small-bias but distinguishable in constant space, is described in [Eve]:

the uniform distribution over the set of bit sequences with number of ones that

is divisible by 3, has small bias - but can clearly be identified by an O(1)-space

machine that counts ones. However, this yields a pseudorandom generator of

very poor stretch (even when ignoring the complexity of sampling the distribu-

tion): to generate m bits, m − log2(3) bits of seed are required (to choose one

of about 2m/3 bit strings).

In Subsection 3.4.2 we have shown that the geometric generator (see Proposi-

tion 3.8), which has small bias and exponential stretch, can be distinguished by a

stronger notion of a distinguisher, namely a block-automaton. In this section we

show a construction with similar bias and stretch, and present a constant-space

nonuniform machine that distinguishes it from truly random bits.

The construction is based on a generic transformation that amounts to re-

ordering the output bits of a generator, such that, under a suitable assumption

(regarding the irreducible polynomial used to represent the field GF (2n)), allows

to verify simple GF (2n)-algebraic dependencies of the output elements of the

original generator, in constant space. Clearly, such a reordering preserves bias
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and stretch. Note that performing standard arithmetic operations in GF (2n),

such as multiplication, requires Ω(n) space, so in general even simple algebraic

relations cannot be verified in small space.

The aforementioned transformation can be used on any GF (2n)-based gen-

erator whose output blocks satisfy such algebraic relations, and in specific, as

we will show, on both the geometric generator (from Section 3.4) and the Nisan

generator ([Nis], described in Section 3.3). We also note that since the trans-

formation is based on reordering the output bits, its application to the Nisan

generator shows that its resilience to nonuniform space-bounded distinguishers

depends on the output-bits order.

3.5.1 Bilinear dependencies

Small-bias generators can have no linear dependencies that are satisfied by all

(or most) of their outputs. This applies both over GF (2), and over GF (2n)

by Corollary 4.6. However, dependencies of degree 2, and specifically bilinear

dependencies, often arise from the construction. To obtain a separation between

small-bias and fooling small-space machines, we will develop a method to be

able to verify (some) GF (2)-bilinear dependencies in small space. To achieve

this, we will reorder the bits representing GF (2n)-elements that participate in

a GF (2n)-bilinear dependency, which implies (by Lemma 4.4) a GF (2)-bilinear

dependency, so that we can verify this dependency in small (in fact, constant)

space, under a reasonable assumption regarding the representation of GF (2n).

Decomposing a bilinear dependency. Assume that we want to verify a

GF (2)-bilinear dependency of two n-bit output blocks a and b. That is, for

some bit-matrix T , we want calculate 〈a, Tb〉. Expanding the expression as

〈a, Tb〉 =
∑
i,j Tijaibj , we can group the n

2 terms to at most n sums of disjoint

paris aibj . That is, 〈a, Tb〉 can be written as a sum of at most n “simple inner

products of a and b”, where a simple inner product of a and b is some GF (2)-

bilinear combination in the bits of the vectors a and b, in which each bit ai or

bi only appears once. For example, 〈a, b〉, or 〈a, Pb〉 for any permutation matrix

P , are simple inner products.

Being allowed to only read the bits of a and b once, from left to right, it

is easy to see that we cannot even compute one simple inner product without

remembering all the bits of a that participate in this inner product.
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Reordering the bits. Despite the impossibility of computing an inner prod-

uct when going over the bits of a and then the bits of b, if we were to go over

the bits in any order we choose, still reading every bit only once, we can com-

pute one single simple inner product by going over the bits in the order they

appear in the expression. As a motivating example, consider the simple inner

product 〈a, b〉. While it cannot be computed when going over all the bits of

a first, it can be computed in constant space if the bits are interleaved, as in

a0b0a2b2 . . . an−1bn−1. Any other simple inner product can be reordered in a

similar manner, to allow computation in small space.

Calculating more than one simple inner product (where in general we need

to calculate the sum of n simple inner products) in one pass is trickier; however,

for only two simple inner products we can still find an ordering of the bits that

will allow us to calculate them both, in constant space. Given an inner product

〈a, Tb〉 that can be written as the sum of two simple inner products, we define a

bipartite graph G, with n nodes in each side: the bits of a on one side and the

bits of b on the other. We let G have an edge between ai and bj if the term ai ∙bj

appears in the sum we want to calculate. This is, in fact, the undirected graph

described by T as an adjacency matrix (assuming without loss of generality

that T is upper-triangular). Since 〈a, Tb〉 can be written as the sum of only two

simple inner products, each containing each variable at most once, the degree

of each node in G is at most 2.

We want to calculate the sum, over all edges (ai, bj) in the edge set of G, of

the multiplication ai ∙ bj . We partition the graph to connected components, and

note that, since the graph has maximal degree 2, each component is either a

path or a cycle. The sum of the edges on every path can be calculated by going

over the path adding ai ∙bj in each step, whereas calculating the sum over a cycle

requires, in addition, remembering the value of the first node (chosen arbitrarily

from the cycle). We can thus calculate in small space the sum over each of the

connected components of G (in some arbitrary order) and sum the resulting bits

to get the final result. As an example, the sum (a1b3+a2b2+a3b1)+(a1b2+a2b1)

can be computed by going over the bits in the order a3, b1, a2, b2, a1, b3.

Thus, any inner product that can be written as the sum of two simple inner

products, which are GF (2)-bilinear expressions in which each bit participates

in at most one term, has some reordering of the bits that allows to calculate it

in constant space.
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3.5.2 The first bit of Mab

We will now show how the GF (2)-bilinear dependencies that are implied by

GF (2n)-bilinear dependencies (which are common in GF (2n)-polynomial gen-

erators that are only designed to resist linear tests), can have the above desired

property, that they can be written as the sum of only two simple inner products

(and can thus be verified in small space by a reordering of the bits, as described

above).

We will consider the basic task of calculating (some bit of the representa-

tion of) a multiplication of two GF (2n)-elements. Suppose that, for two output

blocks a, b ∈ {0, 1}n, we wish to calculate the first bit of the vector Mab repre-

senting the GF (2n)-element ã ∙ b̃ (see Notation 2.7), in small space (say, o(n)).

If we just write the expression for 〈e0,Mab〉 = 〈a,Qe0b〉 (where Qe0 is defined

in Lemma 2.11), we get a sum of (potentially) n simple inner products between

the bits of a and b.

We thus take a closer look on the multiplication-by-ã matrix Ma, and show

how, under an assumption regarding the irreducible polynomial used to repre-

sent the field GF (2n), this inner product 〈a,Qe0b〉 can be written as the sum

of only two simple inner products (thus allowing calculation in constant space),

and a few more terms that can also be calculated in small space.

As described in Subsection 2.2, the matrix Ma can be written as R ∙ La,

where La (defined in Notation 2.8) multiplies (representations of) polynomials

in GF (2)[x] by the polynomial pa, and R (Notation 2.9) reduces such represen-

tations modulo the polynomial c(x), which is the irreducible polynomial fixed

in Notation 2.5. Explicitly, [La]ij = ai−j if j ≤ i < j + n and 0 otherwise, so

the i-th entry of La ∙ b is

n−1∑

j=0

[La]ijbj =

min(n−1,i)∑

j=max(0,i−n+1)

ai−jbj ,

which is a simple inner product. To have the final expression for Mab written

as the sum of only two simple inner products, we want to only sum two entries

of La ∙ b when calculating the first bit of R ∙ La ∙ b. Equivalently, we want the

first row of R to only have two bits set.

Furthermore, observe that for i < O(1) or i > 2n − O(1), the i-th bit of

La ∙ b only depends on a constant number of bits of a and b; those bits can be
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stored during a pass on the bits to allow calculation of this i-th bit.9 Hence, to

be able to calculate the first bit of Mab = RLab, it suffices that the first row of

R have at most two bits set that at a superconstant distance from either of the

edges 1 and 2n − 1. Then, we will reorder the bits so these two simple inner

products (resulting from the two middle-bits that are set) can be calculated in

one pass, in which we will also store the O(1) bits required to calculate the O(1)

inner products that depend on O(1) bits, and finally sum everything to get our

wanted result.

Having defined our goal - to have the first row of R only contain two bits

set that are more than a constant away from either of the matrix edges - we

will now present a (reasonable) assumption regarding the irreducible polynomial

c(x) used to represent the field GF (2n), that will guarantee this. This will follow

from an application of the following Lemma:

Lemma 3.15. Let c(x) be the irreducible polynomial used to represent GF (2n),

and let m and k be the second and third highest degrees of c(x). That is, for

k < m < n, write c(x) = xn+xm+xk+p(x) for some polynomial p(x) of degree

smaller than k. Then for exactly two values of 1 ≤ j < min{2n− k, 3n− 2m},

the j-th bit of the first row of R is set.

Proof. The j-th column of R is defined as the representation of the polynomial

xj reduced modulo c(x) (see Notation 2.9). The entry at the first row corre-

sponds to the coefficient of the free term of that polynomial. We will go over

the 2n − 1 columns, considering which bits can be set. We will partition the

index range {1, . . . ,min{2n− k, 3n− 2m}} to parts, showing that only the n-th

and 2n−m-th bits are set.

For 0 < j < n, the first bit of the j-th column of R is never set, since the

polynomial xj = xj mod c(x) has no free coefficient. The n-th column is exactly

the representation of c(x) without the coefficient of xn, which always has the first

bit set (since c(x) is irreducible and thus not divisible by x). By the hypothesis

of the lemma, this polynomial c(x)−xn is xm+xk+ p(x), which has degree m.

Since this is the reduction of xn modulo c(x), all polynomials xn+t mod c(x) for

1 ≤ t < n−m can be written as xn ∙xt mod c(x) = (xm+xk+p(x))xt mod c(x).

Since (xm + xk + p(x))xt has degree m + t < n, this polynomial is unaffected

by the reduction modulo c(x). Since this polynomial is divisible by xt (with

9In fact, even i < o(n) or i > 2n − o(n) would do, if we are interested in an o(n)-space

distinguisher.
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t > 0), its free coefficient is zero. Thus, for n < j < 2n − m, the first bit in

the representation of xj , which is the j-th entry of the first row of R, is not set.

When j = 2n−m we get

xj = xn ∙ xn−m

≡ xn + xk+n−m + p(x) ∙ xn−m (mod c(x))

≡ xm + xk+n−m + xk + p(x)(xn−m + 1) (mod c(x)),

which has degree at most d = max{m, k + n −m}. This polynomial necessar-

ily has the free coefficient set. However, for 1 ≤ t < n − d, the polynomial

x2n−m+t mod c(x) can again be written as the above expression times xt, which

is a polynomial of degree smaller than n and thus needs not be reduced modulo

c(x). This means that the free coefficient in of the reduction of xj modulo c(x)

is 0 for 2n−m < j < 2n−m+ n− d = min{3n− 2m, 2n− k}.

In summary, we got that for 1 < j < min{3n− 2m, 2n− k}, the first bit of

the j-th column of R is set only for j = n and j = 2n−m.

Lemma 3.15 gives us that if c(x) = xn+xm+xk+p(x) as above, for k = O(1)

and m < n
2 + O(1), then there are only two bits set in the first row of R that

are more than O(1)-far from either edge of the matrix (indices 0 and 2n − 1).

Specifically, all trinomials c(x) = xn+xm+1 for m < n/2+O(1) satisfy.10 We

note that infinitely many such irreducible trinomials are known to exist (see,

e.g., Theorem 1.1.28 of [Lin]), so this assumption is indeed reasonable. We have

thus obtained:

Theorem 3.16. For any irreducible trinomial c(x) = xn + xm + 1 with m <

n/2+O(1) used to represent GF (2n), the expression 〈e0,Mab〉, for a, b ∈ {0, 1}n,

can be written as the sum f two simple inner products in the bits of a and b,

plus O(1) terms that depend on O(1) bits of a and b.

3.5.3 Bilinear dependencies in known generators

Theorem 3.16 implies that if some generator has three output blocks a, b, c that

always satisfy ã ∙ b̃ = c̃, then a generator resulting from some permutation of

its output bits can be distinguished from random with gap 1/2 by calculating

10In fact, since the reciprocal of an irreducible trinomial xn+xm+1, namely xn+xn−m+1,

is known to also be irreducible, we can assume without loss of generality that any irreducible

trinomial has m ≤ n
2
. For details, see any standard algebra textbook, e.g. [BM].
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the first bit of Mab, and comparing to the first bit of c. The same methods can

be used more generally, if a, b and c are not written directly in the output of

the generator, but can be deduced in small space from its output, such that the

sets of output bits required to compute each bit aj , bj or c0 are all disjoint. We

demonstrate this on the two constructions discussed in this chapter.

The geometric generator. Let g0, g1, g2 denote the first three output blocks

of the geometric generator (in fact, we can take any three consecutive blocks).

By definition, it must hold that g̃0 ∙ g̃2 = g̃12 (over GF (2n)). Over {0, 1}n,

this can be written as Mg0g2 = Sg1, where S is the squaring matrix defined

in Notation 2.13. If the representation of GF (2n) satisfies the hypothesis of

Theorem 3.16, then by reordering the bits of g0 and g2 as in Subsection 3.5.2,

we can calculate the first bit of Mg0g2. Separately, we would just go over the

bits of g1 and calculate the linear combination 〈e0, Sg1〉, finally comparing the

two (which on random input, are equal only with probability 12 ).

Since reordering the output bits preserves the bias (and stretch) of the gen-

erator, we have obtained a generator with the same parameters as the geometric

generator, which means exponentially small bias and exponential stretch, that

is (nonuniformly) distinguishable from random in constant space.

We have thus established:

Theorem 3.17. For infinitely many n ∈ N, for every ` ∈ N, there exists an `
2n -

bias generator G : {0, 1}2n → {0, 1}`∙n that can be distinguished from random

with constant gap by a nonuniform machine that uses O(1) space.

The Nisan generator. Even the Nisan generator itself, fooling all nonuni-

form distinguishers that use o(n) space, has some reordering of its output bits

that makes it O(1)-space distinguishable from random. This shows that pseu-

dorandomness against space-bounded distinguishers is sensitive to the ordering

of the bits (which indeed seems intuitive, as demonstrated previously by the

simple example of calculating the inner product 〈a, b〉).

To show how to apply the above methods to the Nisan generator, we recall

from Section 3.3 that in every iteration of the construction, we introduce a

new pairwise-independent hash function h, and replace every two consecutive

blocks x, y by x, h(x). For our distinguisher, we will require at least eight

output blocks. First, assume that this single iteration is applied to four output
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blocks (two pairs of blocks), so the final output of the generator has the four

blocks (y0, y1, y2, y3) = (x0, h(x0), x1, h(x1)). Assume as usual that we are using

the standard construction of a universal collection of hash functions, namely

the collection of all GF (2n)-affine functions. Then for some ã, b̃ ∈ GF (2n),

we have that (ỹ0, ỹ1, ỹ2, ỹ3) = (x̃0, ã ∙ x̃0 + b̃, x̃1, ã ∙ x̃1 + b̃). This gives that

ỹ1 + ỹ3 = ã ∙ (ỹ0 + ỹ2). Now assume the same function h is applied to the

next four output blocks, (y4, y5, y6, y7) = (x2, h(x2), x3, h(x3)). Similarly to

above, ỹ5 + ỹ7 = ã ∙ (ỹ4 + ỹ6). Finally, this gives the following GF (2n)-bilinear

dependency in the output blocks (y0, y1, y2, y3, y4, y5, y6, y7):

(ỹ1 + ỹ3) ∙ (ỹ4 + ỹ6) = (ỹ0 + ỹ2) ∙ (ỹ5 + ỹ7).

If we interleave the bits of y1 and y3, it is easy to calculate each bit of y1 +

y3. Similarly, we can treat the above dependency as ã ∙ b̃ = c̃ ∙ d̃ for four

vectors a, b, c, d whose bits can be computed from disjoint sets of output bits.

Thus, if the irreducible polynomial c(x) used to represent GF (2n) satisfies the

hypothesis of Theorem 3.16, we can calculate (in constant space) the first bit

of Mab and the first bit of Mcd separately, for some ordering of the output bits

(as explained in Subsection 3.5.2). Finally, we compare the resulting bits to

check if they are equal. The first bit of the expression (ỹ1 + ỹ3) ∙ (ỹ4 + ỹ6) −

(ỹ0+ ỹ2) ∙ (ỹ5+ ỹ7), while always zero for an output of the Nisan generator, has

probability at most 12 + exp(−Ω(n)) to be zero when evaluated on uniformly

chosen (y0, y1, y2, y3, y4, y5, y6, y7), giving a distinguishing gap of
1
2 − neg(n).

We have obtained:

Corollary 3.18. For infinitely many n ∈ N, and for every ` ≥ 8, there exists a

permutation π of the index set {1, . . . , n`} such that the generator resulting from

applying π to an output of the Nisan generator with block-length n and block-

stretch `, using the standard implementation of a collection of hash functions as

the collection of GF (2n)-affine functions, is distinguishable from random by a

nonuniform machine that uses constant space.
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Chapter 4

GF (2n)-Polynomials vs.

GF (2)-Polynomials: as

Distinguishers

4.1 Introduction

We consider polynomials over GF (2n) of bounded degree as distinguishers for

pseudorandom distributions, and compare their distinguishing capabilities to

those of polynomials over GF (2) of the same degree.

4.1.1 Motivation

In addition to the inherent interest in comparing different classes of distin-

guishers, we mention that such a comparison is intructive towards the following

methodology: when aiming at various types of pseudorandomness against bit-

based tests, it is often useful to first prove pseudorandomness against a corre-

sponding class of GF (2n)-based tests, and then use a reduction of distinguishing

capabilities to obtain the desired pseudorandomness guarantees. As an example,

Section 4.3 shows that fooling bit-linear tests reduces to fooling GF (2n)-linear

tests. Indeed, this reduction is used in Section 3.4 to show that the geometric

generator has small bias.

The same idea is used in the other direction in Section 4.5. There, a con-
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struction by Viola, fooling GF (2)-polynomials of degree at most d by summing

d small-bias generators, is shown to be tight with respect to the number of

small-bias generators. Indeed, for the sum of d copies of a small-bias genera-

tor of our choice, we obtain a GF (2)-polynomial distinguisher of degree d + 1.

Interestingly, this is done by presenting a GF (2n)-polynomial distinguisher of

degree d + 1, and then observing its behaviour over the bits representing the

GF (2n)-elements.

4.1.2 Overview

We begin by introducing in Section 4.2 the various classes of distinguishers that

we consider and compare: unlike in the case of GF (2)-polynomials, when using

polynomials over GF (2n) to identify the distribution from which a sequence

was chosen, we need a way to convert the resulting field element to a binary

verdict. We consider three such ways: allowing arbitrary functions, allowing a

specific function, and allowing all linear functions (in the bits representing the

final GF (2n)-element).

In Section 4.3 we consider the case of degree 1, that is, linear tests. Com-

paring GF (2)-linear tests to GF (2n)-linear tests, we present constructively a

generic transformation of the former to the latter. Moreover, in the resulting

GF (2n)-linear test, the final verdict function is linear in the bits representing

the resulting GF (2n)-element, thus showing that GF (2)-linear tests are, in fact,

equivalent to a strict subclass of the GF (2n)-linear tests (in the most generic

notion).

Higher degrees are discussed in Section 4.4, where separating the distinguish-

ing powers of classes is reduced to separating the approximating power of the

classes of functions, over the uniform distribution. A corollary is then derived

from the results of Chapter 5, giving that unlike the case of linear distinguish-

ers, the class of GF (2n)-bilinear distinguishers is not as powerful as the class of

GF (2)-bilinear distinguishers.

Finally, in Section 4.5 we consider a construction of Viola that fools degree-d

polynomials (over bits) by summing d copies of a small-bias distinguisher. We

present an explicit polynomial of degree d + 1 that distinguishes the sum of

d copies of a small-bias generator of our choice. This establishes that Viola’s

result is tight with respect to the number of copies of a small-bias generator

needed to fool polynomials of degree d.
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4.2 The general picture

We consider polynomials over GF (2n) as distinguishers for pseudorandom dis-

tributions, and compare their distinguishing capabilities to that of polynomials

over GF (2). When applying a GF (2n)-polynomial to a sequence of bits, we di-

vide the bits to blocks of length n, treat each block as representing an element of

GF (2n) in some fixed representation scheme, and evaluate the polynomial. The

output of the polynomial is an element of GF (2n); we finally need some function

f : GF (2n) → {0, 1} to decide whether we accept or reject it (i.e., whether we

think this sequence of bits was selected from the pseudorandom distribution or

uniformly). The function f can be alternatively viewed as a set B = f−1(1).

When trying to fool GF (2n)-polynomials, we also need to specify which final

functions f we allow. Letting f be arbitrary means that any GF (2n) polynomial

should be distributed similarly on the pseudorandom distribution and on the

uniform distribution (i.e., the two distributions are statistically close). However,

limiting f to be, say, a linear function (in the bits representing the GF (2n) ele-

ment), or even specifying a specific set B in advance, restricts the distinguishers

and potentially eases the work of fooling them.

When studying the relation between GF (2n)-polynomials (with arbitrary

final function f) and GF (2)-polynomials, we will also consider the above re-

stricted classes of distinguishers.

4.2.1 Formal definitions

We define the above informal notions of the various classes of polynomial tests.

These definitions are motivated (for the linear case d = 1) in Subsection 4.3.1.

We define the notions of fooling for GF (2n)-generators, but will abuse the terms

and refer to the binary version as also fooling GF (2n) polynomials.

Definition 4.1 (ε-fooling GF (2n)-polynomials). For ε > 0 and n, k, `, d ∈ N,

a generator G̃ : GF (2n)k → GF (2n)`+1 is said to ε-fool GF (2n)-polynomials

of degree d if for every polynomial p̃ ∈ GF (2n)[x0, . . . , x`] of degree at most d,

the distributions p̃(G̃(Ũk∙n)) and p̃(Ũ(`+1)∙n) are ε-close in statistical distance,

where Ũm∙n is the uniform distribution over GF (2
n)m. That is, for every set

B ⊆ GF (2n), it holds that
∣
∣
∣
∣ Pr
s̃∈GF (2n)k

[
p̃(G̃(s)) ∈ B

]
− Pr
x̃∈GF (2n)`+1

[p̃(x̃) ∈ B]

∣
∣
∣
∣ ≤ ε. (4.1)
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A weaker definition that only considers a specific set B is:

Definition 4.2 ((ε,B)-fooling GF (2n)-polynomials). For ε > 0, n, k, `, d ∈ N

and B ⊆ GF (2n), a generator G̃ : GF (2n)k → GF (2n)`+1 is said to (ε,B)-fool

GF (2n)-polynomials of degree d if for every GF (2n)-polynomial p̃ ∈ GF (2n)[x0, . . . , x`]

of degree at most d, Equation (4.1) holds.

Indeed, a generator ε-fools GF (2n)-polynomials of degree d if and only if,

for any B ⊆ GF (2n), the generator (ε,B)-fools GF (2n)-polynomials of degree

d. If we consider only all sets B that are linear subspaces of co-dimension 1,

i.e. sets of the form Γ = {ã : 〈γ, a〉 = 0} for some nonzero vector γ ∈ {0, 1}n,

we actually require the n bits representing the resulting field element to fool

GF (2)-linear tests. This case is referred to as ε-linear-fooling :

Definition 4.3 (ε-linear-fooling GF (2n)-polynomials). For ε > 0, n, k, `, d ∈

N, a generator G̃ : GF (2n)k → GF (2n)`+1 is said to ε-linear-fool GF (2n)-

polynomials of degree d if for every nonzero vector γ ∈ {0, 1}n, it holds that G

does (ε,Γ)-fool GF (2n)-polynomials of degree d, where Γ = {ã : 〈γ, a〉 = 0} ⊆

GF (2n).

Remark. Definition 4.3 means, in specific, that for polynomials p̃ whose out-

put is distributed uniformly on uniform input (which is always the case, for ex-

ample, if d = 1 and p̃ is nonconstant), the (binary version) distribution p(G(s)),

for uniformly chosen seed s ∈ {0, 1}kn, is ε-biased. For d = 1, Definition 4.3 is

the formal generalization of ε-bias to GF (2n) (see [Eve]).

Clearly, for n = 1 the above three definitions (with the only nontrivial B =

{1} in Definition 4.2) coincide with the notion of ε-bias (Definition 2.2).

4.2.2 Relations between the different notions of GF (2n)-

polynomial tests, and their relation to GF (2)-polynomials

By definition, it is easier to ε-linear fool GF (2n)-polynomials of degree d than

to ε-fool GF (2n)-polynomials of degree d. This implication is clearly strict, for

example, for the case ` = 1 (that is, considering only one block, thus reducing

the set of tests to its set of allowed final verdict functions).
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Also, the linearity of the representation of GF (2n) (as in Lemma 2.11) gives

that ε-linear fooling GF (2n)-polynomials of degree d is also easier than ε-fooling

GF (2)-polynomials of degree d. This is captured by the following Lemma:

Lemma 4.4. Fix an `-variate polynomial p̃ : GF (2n)` → GF (2n) of degree d,

(letting its binary version p : {0, 1}`∙n → {0, 1}n treat its input as the represen-

tation of ` elements x̃1, . . . , x̃` ∈ GF (2n), and output the vector representing

p̃(x̃1, . . . , x̃`)). Then, each of the n output bits of p is a polynomial of degree at

most d in its ` ∙ n input bits.

Proof. We will show the claim for a polynomial consisting of a single monomial;

the general claim follows from the fact that addition in the field GF (2n) is

exactly bitwise addition in the vector space {0, 1}n. We proceed by induction

on the degree d. For d = 0 the claim is immediate since p̃ is constant. Now fix

d > 0, and assume without loss of generality that p̃(x̃1, . . . , x̃`) = x̃1 ∙ . . . ∙ x̃d

(recall that over bits, each variable cannot have degree higher than 1). By

Lemma 2.11, the representation of p̃(x̃1, . . . , x̃`) is a bilinear expression in the

bits of the two vectors x1 and y1, where ỹ1 = x̃2 ∙ . . . ∙ x̃d. By the induction

hypothesis, every bit of y1 is a polynomial of degree at most d− 1 in the bits of

x2, . . . xd, so each bit of a bilinear form in x̃1 and ỹ1 is a polynomial of degree

at most d in the bits of x1, . . . , xd.

In this chapter we investigate when ε-linear-fooling GF (2n)-polynomials is

strictly weaker than ε-fooling GF (2)-polynomials, and also study the relation

between the (generally incomparable) notions of ε-fooling GF (2n)-polynomials

and ε-fooling GF (2)-polynomials.

4.3 Degree 1: linear tests

We refer to GF (2n)-polynomials of degree 1 as GF (2n)-linear tests, and to ε-

fooling GF (2)-linear tests as being ε-biased.

In this section we will show that for d = 1, the converse of Lemma 4.4 holds

as well:

Theorem 4.5. For ε > 0, n ∈ N, and for any nonzero vector γ ∈ {0, 1}n, every

G that (ε,Γ)-fools GF (2n)-linear tests, where Γ = {ã : 〈γ, a〉 = 0}, is an ε-bias

generator.
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This gives that for a distribution over ` bits, being ε-biased and ε-linear-

fooling GF (2n)-linear tests is equivalent, for every n that divides `.

Since ε-fooling GF (2n)-linear tests implies ε-linear-fooling GF (2n)-linear

tests, Theorem 4.5 also yields:

Corollary 4.6. For ε > 0, n ∈ N, a generator G that ε-fools GF (2n)-linear

tests is also an ε-bias generator.

We note that the converse of Corollary 4.6 does not hold, but it is known that

being ε-biased implies (2n/2 ∙ ε)-fooling GF (2n)-linear tests (see, e.g., [Gol95]).

4.3.1 Motivating the definitions

We use the linear case d = 1 to demonstrate the motivation to our interest in

our definitions (presented in Subsection 4.2.1) and the relations between them.

One concrete motivation to Definitions 4.1 and 4.3, for d = 1, is their role in

the following two-step methodology for constructing natural small-bias genera-

tors based on GF (2n)-sequences: first show that a generator fools GF (2n)-linear

tests (resp., linear-fools GF (2n)-linear tests), and next use Corollary 4.6 (resp.,

Theorem 4.5) to conclude that it has small bias. This is demonstrated in Sub-

section 3.4.1, where the geometric generator is shown to have small bias.

As further motivation for our definitions, we note that [ASS] uses the con-

struction of the geometric generator for obtaining a graph with normalized sec-

ond eigenvalue `
2n . Their argument implicitly shows that any generator that ε-

linear-fools GF (2n)-linear tests1 yields a Cayley graph with normalized second

eigenvalue of 2ε (The case of n = 1 was previously shown in [AR]). Indeed, in

[ASS] this is done directly (and not by using a reduction similar to our Theorem

4.5). However, Theorem 4.5 can be (non-constructively) derived by combining

the above claim (i.e., ε-fooling GF (2n)-linear tests implies (normalized) second

eigenvalue 2ε) with its converse for the case of n = 1. We mention that the

converse for n = 1 was known before, and can be derived for any n by reversing

the argument of [ASS].

1Or even, in fact, (ε,Γ)-fools GF (2n)-linear tests for any nontrivial Γ ⊆ GF (2n) which is

a linear subspace over {0, 1} of co-dimension 1 (i.e., Γ = {ã : 〈γ, a〉 = 0} for some nonzero

γ ∈ {0, 1}n).
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4.3.2 Proof of Theorem 4.5

Theorem 4.5 says that for every Γ = {ã : 〈γ, a〉 = 0}, where γ ∈ {0, 1}n

is nonzero, (ε,Γ)-fooling GF (2n)-linear tests is as strong as ε-fooling GF (2)-

linear tests. This will be shown by transforming every GF (2)-linear test to a

GF (2n)-linear test, followed by the final linear function 〈γ, ∙〉.

Proof of Theorem 4.5. Fix a nonzero γ ∈ {0, 1}n, and let G : {0, 1}k∙n →

{0, 1}(`+1)∙n be a generator that (ε,Γ)-fools GF (2n)-linear tests, where Γ =

{ã : 〈γ, a〉 = 0}. Fix an arbitrary linear combination ᾱ ∈ {0, 1}(`+1)n of the

bits of G, and parse it to ` + 1 vectors α0, ..., α` ∈ {0, 1}n. Define a series of

GF (2n) elements b̃0, ..., b̃` ∈ GF (2n), represented by the vectors bi = Q−1γ αi for

i = 0, ..., `, where Qγ is the matrix guaranteed by Lemma 2.11. We get that for

any output of the generator G, denoted (g0, ..., g`) ∈ {0, 1}(`+1)n:

∑̀

i=0

〈αi, gi〉 =
↑

Def. of bi

∑̀

i=0

〈Qγbi, gi〉 =
↑

Lemma 2.11

∑̀

i=0

〈γ,Mbigi〉 =

〈

γ,
∑̀

i=0

Mbigi

〉

.

Recalling the definitions of Γ and Mbi (Notation 2.7), we get that

Pr
s
[〈ᾱ, G(s)〉 = 0] = Pr

s

[
∑̀

i=0

〈αi, gi(s)〉 = 0

]

= Pr
s

[〈

γ,
∑̀

i=0

Mbigi(s)

〉

= 0

]

= Pr
s

[
∑̀

i=0

b̃i ∙ g̃i(s) ∈ Γ

]

. (4.2)

Assuming ᾱ 6= 0(`+1)∙n, there exists an i such that αi 6= 0n and so b̃i, represented

by the vector Q−1γ αi, is nonzero. The right hand side of Equation (4.2) is

bounded by ε since G (ε,Γ)-fools GF (2n)-linear tests, giving the same bound

on the left hand side. This completes the proof.

An interesting corollary to Lemma 2.11 is that any linear combination in the

bits of any vector g can be computed as a prefixed linear combination in the

bits of the representation of b̃ ∙ g̃ for a suitable choice of b̃ ∈ GF (2n):

Corollary 4.7. For every nonzero α, γ ∈ {0, 1}n there exists b ∈ {0, 1}n such

that for every g ∈ {0, 1}n, it holds that 〈α, g〉 = 〈γ,Mb ∙ g〉.
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Proof. Set b = Q−1γ α. By Lemma 2.11, 〈γ,Mb ∙ g〉 = 〈Qγ ∙ b, g〉 = 〈α, g〉.

Corollary 4.7 can be seen as an interpretation for the proof of Theorem

4.5: every inner product 〈αi, gi〉 is calculated as 〈γ,Mbi ∙ gi〉 for the adequate bi

that depends on αi and γ; linearity of the inner products is then used to give
∑`
i=0 〈αi, gi〉 =

〈
γ,
∑`
i=0Mbi ∙ gi

〉
.

4.3.3 A constructive proof of Lemma 2.11

In the proof of Theorem 4.5, we used Lemma 2.11 to transform a GF (2)-linear

test to a GF (2n)-linear test. This gives an existential result, while often we are

interested in knowing exactly how the resulting GF (2n)-linear test looks. In this

subsection we will analyze the representation of GF (2n) more deeply, and show

exactly how the matrices Qγ are obtained. This will give a fully constructive

proof of Theorem 4.5.

Mathematical preliminaries

We begin with some mathematical facts and notations that we need.

As noted earlier, we use vectors and matrices over {0, 1}, and use a tilde

when we want to refer to the GF (2n)-elements represented. However, in this

subsection we sometimes use the larger vector space GF (2n)n, and work with

matrices and vectors over GF (2n). In such cases, we will note this explicitly.

Fact 4.8. The eigenvalues of the matrix C defined in Notation 2.6 (over GF (2n))

are exactly the roots of the polynomial c(x) of notation 2.5. Moreover, if c(x)

has n distinct roots λ0, ..., λn−1 ∈ GF (2n), it is diagonalizable as C = V −1 ∙

diag(λ0, ..., λn−1) ∙ V , with diag(λ0, ..., λn−1) denoting the diagonal matrix with

λi in the (i, i)-th entry, and V being the Vandermonde matrix defined as [V ]ij =

λji , for i, j = 0, ..., n− 1.

(Note: the entries of V defined above are in GF (2n). Although the matrices

in the expression for C have entries in GF (2n), the matrix C is over GF (2).)

Fact 4.8 is a direct corollary of the transposed version of Theorem 6.13 in

[Dym], applying the same arguments to GF (2n) rather than to the complex

field C.

Fact 4.9. Every irreducible polynomial over a finite field has no multiplied roots.
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Fact 4.9 appears as a note in Section XV.6 of [BM], at the end of page 413.

We get a convenient diagonalization of the multiplication matrixMa, defined

in Notation 2.7:

Corollary 4.10. For any ã ∈ GF (2n), it holds that

Ma = V
−1 ∙ diag(pa(λ0), ..., pa(λn−1)) ∙ V.

(Note: although the matrices in the expression have entries in GF (2n), the

matrix Ma is over GF (2).)

Proof. By Fact 4.9, c(x) has distinct roots. We thus write C using Fact 4.8 as

V −1 ∙diag(λ0, ..., λn−1) ∙V . Observe that Ci =
(
V −1 ∙ diag(λ0, ..., λn−1) ∙ V

)i
=

V −1 ∙diag(λi0, ..., λ
i
n−1) ∙V , and for ã ∈ GF (2

n) we have, recalling the Notations

2.7 and 2.5:

Ma = pa(C)

=

n−1∑

i=0

aiC
i

=

n−1∑

i=0

ai ∙ V
−1 ∙ diag(λi0, ..., λ

i
n−1) ∙ V

= V −1

(
n−1∑

i=0

ai ∙ diag(λ
i
0, ..., λ

i
n−1)

)

V

= V −1 ∙ diag(pa(λ0), ..., pa(λn−1)) ∙ V.

Fact 4.11. Every symmetrical multinomial p(x1, ..., xn) over a field F, evaluated

on the roots λ0, ..., λn−1 of any polynomial q(x) over F (the roots possibly in a

larger algebraic extension of F), takes value in F.

Fact 4.11 is Theorem 10 in Section XV.4 of [BM].

Using Fact 4.11, it follows that while the entries of V are in GF (2n), the

entries of V TV (and its inverse) are in GF (2):2

2Actually, Corollary 4.12 does not even require that the polynomial c(x) be irreducible:

any Vandermonde matrix V of the roots of a degree n polynomial would have the entries of

V TV in the base field.
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Corollary 4.12. The entries of V TV are all in GF (2).

Proof. The (i, j)-th entry of V TV is
∑n−1
k=0 V

T
ikVkj =

∑n−1
k=0 λ

i+j
k . For any fixed

i, j this is a symmetric polynomial over GF (2), evaluated on the roots of c(x).

So by Fact 4.11, it takes value in the base field GF (2).

Define U = V −1 ∙ V −1
T
. By Corollary 4.12, the entries of U−1 and U are in

GF (2). These matrices allow to replace MTa by Ma as follows:

Claim 4.13. For every a ∈ {0, 1}n, it holds that MTa = U
−1MaU .

Proof. Using the diagonalization from Corollary 4.10, we haveMa = V
−1 diag(pa(λ1), ..., pa(λn))V

and so

U−1MaU = V TV ∙ V −1 diag(pa(λ0), ..., pa(λn−1))V ∙ V
−1V −1

T

= V T diag(pa(λ0), ..., pa(λn−1))
TV −1

T

= MTa .

A constructive proof of Lemma 2.11

Given the above analysis of the multiplication-by-ã matrix Ma, we can write

every Qγ explicitly:

Proof of Lemma 2.11 (constructive). For U as defined above, given γ ∈

{0, 1}n, we set Qγ = U−1MUγ . We get for every u, v ∈ {0, 1}n:

〈γ,Muv〉 =
〈
MTu γ, v

〉

(by Claim 4.13) =
〈
U−1MuUγ, v

〉

(by commutativity of GF (2n)) =
〈
U−1MUγ ∙ u, v

〉

= 〈Qγ ∙ u, v〉 .

The moreover part follows from the invertibility of U andMUγ when γ 6= 0.

4.4 Higher degrees: a reduction to approxima-

tors

Having fully understood the relations between the different classes of tests for

d = 1 (Definition 4.3 coincides with ε-bias, which is strictly weaker than Def-
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inition 4.1), we study higher degree polynomials. The relations here are more

complex, and for different ranges of parameters the different classes have differ-

ent distinguishing capabilities. To separate the distinguishing capabilities of two

classes of functions, one needs to present two distributions μ, ν and some func-

tion p in one class, and show that every function from the second class cannot

imitate the distinguishing capabilities of p between the distributions μ, ν (this

shows that the first class is not weaker than the second class). Instead of work-

ing with arbitrary generic distributions, we find it more convenient to compare

the behaviour of functions over the uniform distribution. This is also interesting

on its own, and is the focus of Chapter 5. We use the results obtained there to

derive a separation between classes of distinguishers, using a generic reduction

of inapproximability results over the uniform distribution, to separation results

as above, that works for unbiased (on uniform input) functions.

4.4.1 Inapproximability on the uniform distribution suf-

fices for unbiased tests

Let C be a class of tests over a universe Ω. Let U denote the uniform distribution

over Ω. For a test p : Ω → {0, 1} and two distributions μ, ν over Ω, define

Δp(μ, ν) = Prx←μ[p(x) = 1]− Prx←ν [p(x) = 1] = Eμ[p]− Eν [p].

Lemma 4.14. Let p be a test over Ω such that Prx←U [p(x) = 1] =
1
2 + δ (with

δ ≥ 0). If p is such that for every q ∈ C:

Pr
x←U
[p(x) = q(x)] <

1

2
+ ε,

then there exist distributions μ, ν over Ω such that for every q ∈ C:

Δp(μ, ν)−Δq(μ, ν) > 1− 2(ε+ δ).

Proof. Set μ to be the uniform distribution over {x ∈ Ω : p(x) = 1}, and ν to

be the uniform distribution over the complement set {x ∈ Ω : p(x) = 0}. Then

Δp(μ, ν) = 1, but

1

2
+ ε > Pr

x←U
[p(x) = q(x)]

=

(
1

2
+ δ

)

Pr
x←μ
[q(x) = 1] +

(
1

2
− δ

)

Pr
x←ν
[q(x) = 0]

=
1

2
∙

(

Pr
x←μ
[q(x) = 1]− Pr

x←ν
[q(x) = 1]

)

+

(
1

2
− δ

)

+ δ ∙

(

Pr
x←μ
[q(x) = 1] + Pr

x←ν
[q(x) = 1]

)
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≥
1

2
∙Δq(μ, ν) +

1

2
− δ,

giving that Δq(μ, ν) ≤ 2(ε+ δ), thus proving the claim.

The lemma means that if an unbiased p cannot be approximately computed

by a class C (over the uniform distribution), its distinguishing capabilities of

distributions over Ω cannot be emulated by any test from C, i.e., the following

does not hold: for every two distributions μ, ν there exists a test q ∈ C such

that Δp(μ, ν) ≈ Δq(μ, ν).

4.4.2 Inapproximability of bilinear tests

Using Lemma 4.14, we transform the inapproximability result of bilinear func-

tions from Subsection 5.3.3 to a result about bilinear tests. Let T be a ma-

trix of rank n2 . By Proposition 5.14, it cannot be approximated better than
1
2 + 2

−n/6+1/3 from GF (2n)-bilinear forms (where the input variables x and y

are chosen uniformly). That is, for every f : {0, 1}n → {0, 1}:

Pr
x,y
[〈x, Ty〉 = f(Mxy)] ≤

1

2
+ 2−n/6+1/3.

Since Prx,y[〈x, Ty〉 = 0] = 1
2+2

−n/2−1 by Fact 5.6, we get from Lemma 4.14, by

setting p(x, y) = 〈x, Ty〉+1 and C the class of tests resulting from an arbitrary

function composed with B = (x, y) 7→ Mxy (where Mx is defined in Notation

2.7):

Corollary 4.15. There exist two distributions μ, ν over {0, 1}n × {0, 1}n such

that for every f : {0, 1}n → {0, 1}:

Δp(μ, ν)−Δf◦B(μ, ν) ≥ 1− 2 ∙ (2
−n/6+1/3 + 2−n/2−1) > 1− 2−n/6+7/3.

Namely, μ will be the uniform distribution over ker T , and ν the uniform

distribution over its complement.

4.5 A sum of d small-bias generators that is dis-

tinguishable by a degree-d+ 1 polynomial

4.5.1 Background

Viola has shown in [Vio] that the sum of d independent instances of a small-bias

generator fools polynomials of degree d (for sub-logarithmic d), improving over
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[BV] and [Lov]. This result has been shown in [BV] to be essentially tight with

respect to the number of copies needed: using a counting argument, they show

that for fixed bias, any generator with output length ` that fools all degree d+1

polynomials must have seed length (d+1)∙log `−O(1). Thus, for every generator

with shorter seed, there exists a polynomial expression of degree at most d+ 1

that distinguishes a random output of the generator from truly random bits.

For a suitable choice of ε = o(1), the length of d separate seeds for a standard

construction of an ε-bias generator is still small enough, giving that in general

the sum of d small-bias generators does not necessarily fool polynomials of degree

d + 1. This result has two disadvantages: it is nonexplicit, and the bias used

cannot be too small (they require ε ≥ 1/poly(`)).

4.5.2 Our result

In this section we give a tightness result that overcomes these two disadvan-

tages: using a simple small-bias generator of our choice (namely, the geometric

generator from Section 3.4), we show that the sum of d copies of this generator

does not fool an explicit polynomial expression of degree d+1 in its output bits.

Indeed, for a suitable choice of parameters, this generator can have bias that is

exponentially small in `.

While the result of [Vio] refers to polynomials over bits, we will first consider

the geometric generator over GF (2n), and show a degree d+1 polynomial over

GF (2n) that distinguishes d copies of it from random. We will then use the

linearity of the representation of GF (2n) to derive a polynomial over bits, that

has degree d + 1 and distinguishes from random the sum of d copies of the

(binary version of the) geometric generator.

Let G̃ : GF (2n)2d → GF (2n)`+1 be the sum of d copies of the geometric

generator. Namely, for seed (ã1, b̃1, . . . , ãd, b̃d), the i-th output element of G̃ is

g̃i(ã1, b̃1, . . . , ãd, b̃d) =
∑d
j=1 ãj ∙ b̃j

i (using the arithmetic of GF (2n)). For our

purposes, any ` ≥ 2d + 1 would suffice. To get a final bias of ε over bits, we

choose n = log `+ log(1/ε) (and note that ε can indeed be 2−Ω(`) if n = Ω(`)).

4.5.3 Distinguishing over GF (2n)

We present a polynomial D̃ over GF (2n) of the first 2d+ 1 output elements of

G̃, denoted g̃0, ..., g̃2d, that has degree d+ 1, and show that while the output of
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this polynomial is close to uniform on uniform input, it always takes the value

zero when applied to an output of G̃.

The polynomial D̃(g̃0, . . . , g̃2d) will be defined as the determinant of the

following (d+ 1)× (d+ 1) Hankel matrix (with entries in GF (2n)):

A(d)g =










g̃0 g̃1 . . . g̃d

g̃1 g̃2 . . . g̃d+1
...

...
...

g̃d g̃d+1 . . . g̃2d










(that is, the (i, k)-th entry of A
(d)
g is g̃i+k).

Indeed, this is a polynomial over GF (2n) of degree d+1 in the output blocks

of G̃. We first claim that it is close to uniform when applied to uniform input:

Lemma 4.16. Let M be a random m ×m Hankel matrix over a finite field F

(i.e., the Hankel matrix defined by Mik = yi+k for y0, . . . , y2m−2 chosen uni-

formly at random from F). Then, the distribution of the determinant of M is
m−1
|F| -close to uniform (in statistical distance).

Proof. We proceed by induction on m. For m = 1, det(M) is exactly the only

element of M , chosen uniformly from F. Now fix m > 1, and let x = y0 be

the first (top-left) element of M , and ȳ = (y1, . . . , y2m−2) denote the rest of

the elements (on the top row and rightmost column). Denote the submatrix

resulting from removing the first row and column by M ′, and note that it only

contains the elements y2, . . . , y2m−2. We develop the determinant of M by the

first row, and write det(M) = x ∙ det(M ′) + f(ȳ), for some function f of ȳ.

By the induction hypothesis, det(M ′) is distributed m−2|F| -close to uniform, so

Pr[det(M ′) = 0] ≤ 1
|F|+

m−2
|F| =

m−1
|F| . For any fixed nonzero value of det(M

′) 6= 0

and for any fixed value of ȳ, the function det(M) is a (nonconstant) affine

function of the uniformly chosen x, implying that, conditioned on det(M ′) 6= 0,

the determinant of M is distributed uniformly in F. The lemma follows.

Corollary 4.17. For g̃0, . . . , g̃2d chosen uniformly at random from GF (2
n), the

distribution of D̃(g̃0, . . . , g̃2d) is
d
2n -close to uniform (in statistical distance).

On the other hand, the polynomial D̃ is always zero on an output of G̃:

Proposition 4.18. For every seed s̄ = (ã1, b̃1, . . . , ãd, b̃d) ∈ GF (2n)2d, the

expression D̃(G̃(s̄)) evaluates to zero.
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Proof. We will show that the matrix A
(d)
g is singular for every seed, and thus

the polynomial D̃(g̃0, . . . , g̃2d) = det(A
(d)
g ), will always take the value zero when

evaluated on an output of G̃. To show that A
(d)
g is singular for any seed, we

show that its columns are always linearly dependent. More specifically, we

show that for any b̃1, . . . , b̃d ∈ GF (2n) there exist λ̃0, . . . , λ̃d ∈ GF (2n), not

all zero, such that for all 0 ≤ k ≤ d, it holds that
∑d
i=0 λ̃ig̃i+k = 0. Letting

c̄i = (g̃i, . . . , g̃i+d)
T denote the i-th column of A

(d)
g , this means that

∑d
i=0 λ̃ic̄i

is the zero vector of GF (2n)d+1.

Consider the polynomial Λ̃(x) =
∏d
j=1(x− b̃j), the degree d polynomial with

roots b̃1, . . . , b̃d, and set each λ̃i to be the coefficient of x
i in Λ̃(x). Note that

always λ̃d = 1. Then, using the definition of G̃ (i.e., g̃i =
∑
j ãj b̃j

i), we get for

every 0 ≤ k ≤ `− d:

d∑

i=0

λ̃ig̃i+k =

d∑

i=0

λ̃i

d∑

j=1

ãj b̃j
i+k

=

d∑

j=1

ãj b̃j
k ∙

d∑

i=0

λ̃ib̃j
i

=

d∑

j=1

ãj b̃j
k ∙ Λ̃(b̃j),

which is 0 as the b̃j ’s are all roots of Λ̃(x).

We have thus obtained, using the event D̃ = 0 in Definition 2.3:

Theorem 4.19 (D̃ distinguishes G̃ from random). For D̃ the determinant of

A
(d)
g , the distributions D̃(Ũ`+1) and D̃(G̃(Ũ2d)) are (1− d+12n )-far (in statistical

distance), where Ũk denotes the uniform distribution over GF (2
n)k.

4.5.4 Distinguishing over bits

Recall that for G the binary version of G̃, Viola’s result [Vio] guarantees fool-

ing GF (2)-polynomials of degree d. We will show an explicit polynomial of

degree d + 1 that distinguishes a random output of G from a random element

of {0, 1}(`+1)∙n. By combining Theorem 4.19 with Lemma 4.4, we obtain that

D1, the first bit (say) of D, the binary version of the GF (2
n)-polynomial D̃,

distinguishes G from random:
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Theorem 4.20 (D1 distinguishesG from random). The polynomial D1 : {0, 1}(`+1)∙n →

{0, 1} has degree at most d+ 1 (over GF (2)) and satisfies:
∣
∣
∣
∣ Pr
s∈{0,1}2d∙n

[D1(G(s)) = 0]− Pr
x∈{0,1}(`+1)∙n

[D1(x) = 0]

∣
∣
∣
∣ ≥
1

2
−
d

2n
.

Proof. We first note that by Lemma 4.4, the polynomial D1 indeed has degree

at most d+ 1.

By Corollary 4.17, the distribution of D̃(x̃) is d
2n -close to uniform over

GF (2n) when x̃ is chosen uniformly from GF (2n)`+1, and thus (by definition)

the distribution of D(x) is d2n -close to uniform over {0, 1}
n, where x is chosen

uniformly from {0, 1}(`+1)∙n. Specifically, considering the event “first bit is zero”

in Definition 2.3, we have

Pr
x∈{0,1}(`+1)∙n

[D1(x) = 0] ≤
1

2
+
d

2n
.

On the other hand, by Proposition 4.18, D̃(G̃(s̄)) = 0 for every s̄ ∈ GF (2n)2d,

giving that D(G(s)) = 0n for every s ∈ {0, 1}2d∙n, and specifically

Pr
s∈{0,1}2d∙n

[D1(G(s)) = 0] = 1.

The theorem follows.

Remark. While the polynomial D̃ is explicit as a polynomial over GF (2n),

the polynomial D1 can be described using Lemma 2.11, which is proved non-

constructively in Section 2.2. A fully-explicit D1 can be obtained from the

constructive proof of this lemma, presented in Section 4.3.3.

4.5.5 Using larger prime fields

All the above results (including the geometric generator; see Subsection 3.4.4)

generalize naturally to larger prime fields, as does the result of [Vio]. See Section

2.4 for the generalization of the definitions.

Generalizing D1 of Theorem 4.20 to D1
(q), we obtain:

Theorem 4.21. For every prime q, the polynomial D1
(q) : GF (q)(`+1)∙n →

GF (q) has degree at most d+ 1 and satisfies:
∣
∣
∣
∣ Pr
s∈GF (q)2d∙n

[
D1
(q)(G(q)(s)) = 0

]
− Pr
x∈GF (q)(`+1)∙n

[
D1
(q)(x) = 0

]∣∣
∣
∣ ≥ 1−

1

q
−
d

qn
.
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Chapter 5

GF (2n)-Polynomials vs.

GF (2)-Polynomials: as

Approximators

5.1 Introduction

5.1.1 Motivation

We strive to compare the approximating powers of GF (2n)-polynomials of

bounded degree to that of GF (2)-polynomials of the same degree. Apart from

the inherent interest in studying the relations between the computing power of

various classes of functions, a concrete motivation is given in Section 4.4: the

different approximation powers imply different distinguishing capabilities.

In this chapter we mainly focus on the bilinear case, studying which GF (2)-

bilinear forms can be calculated, or approximated, from GF (2n)-bilinear forms.

5.1.2 The general picture

In this chapter we study the relations between the various forms of polynomials

as classes of functions, analogously to the picture presented in Section 4.2:

• The class of `-variate GF (2n)-polynomials of degree at most d, composed

with an arbitrary boolean function f : GF (2n) → {0, 1} (referred to as
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the final function). We denote this class by P(`)d .

• The class of `-variate GF (2n)-polynomials of degree at most d, composed

with a linear (final) function in the bits representing the resulting GF (2n)-

element. We denote it by L(`)d .

• The class of `n-variate GF (2)-polynomials of degree at most d. We denote

it by B(`)d .

Note that n is implicit in all these notions. The classes P(`)d ,L
(`)
d and B

(`)
d

are exactly the classes of distinguishers fooled according to Definitions 4.1, 4.3

and 2.1, respectively.

For every d, n and `, we know that L(`)d ⊂ P
(`)
d by definition, and L

(`)
d ⊆ B

(`)
d

by Lemma 4.4. While Theorem 4.5 shows that the classes L(`)1 and B
(`)
1 coincide

for every n and `, we study their relation for larger d. We believe that then,

this is no longer the case: that is, when d ≥ 2, L(`)d is strictly weaker than

B(`)d . We also strive to separate the classes P
(`)
d from B

(`)
d , by showing that each

has a function that cannot be emulated (either exactly or approximately) by

any function from the other class, for a suitable choice of `. The case ` = 1

immediately has P(1)d strictly stronger than B(1)d ; we will mostly study when

B(`)d can be shown to be not weaker than P(`)d , that is, some function in B
(`)
d

cannot be computed, or approximated, by any function from P(`)d .

Our main focus in this chapter is the case d = 2, and even more specifically,

the case of bilinear forms (that is, multilinear polynomials of total degree at

most 2). We define the bilinear versions of the above classes: the classes P(`)1,1
and L(`)1,1 contain GF (2

n)-quadratic polynomials in which squaring an element is

not allowed (with either arbitrary or linear final functions allowed, respectively).

The class B(`)1,1 consists of GF (2)-quadratic polynomials in which two bits in the

same n-bit block are never multiplied. We will also restrict ourselves to the case

of only two blocks, ` = 2, for most of the chapter.

5.1.3 Overview

Striving to separate the class B(`)d from P(`)d , In Section 5.2 we first consider

perfect emulation of B(`)d by P
(`)
d . We begin with counting arguments to show

nonconstructively that P(`)d and B
(`)
d are separated (for any d ≥ 2 and for large

`). Then, we focus on the case d = 2, ` = 2 and specifically on bilinear forms.

We find exactly which functions in B(2)1,1 can be computed by functions in P
(2)
1,1 .
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Still focusing on bilinear forms, In Section 5.3 (which contains the main

results of this chapter) we consider approximating functions from B(2)1,1 by func-

tions from P(2)1,1 or L
(2)
1,1. We characterize the bilinear functions that can be

approximated to various rates, and present explicit forms (in B(2)1,1) that cannot

be reasonably approximated at all (by bilinear functions from P(2)1,1 ). We extend

the argument to give partial results for quadratic forms (that is, functions in

P(2)2 ).

Section 5.4 ends the chapter with a discussion of a power functions in B(`)2
have over those in P(`)2 : the ability to multiply bits within the same block (that

is, the class P(`)2 is replaced by a larger class, calculating n functions in B
(`)
1,1 at

the same time and taking verdict according to their n outcomes). We show that

for some natural class of polynomials, this does not give additional strength.

5.2 Computing exactly

5.2.1 Counting arguments

For ` = 1, the class P(1)d contains all functions GF (2
n)→ {0, 1} while the classes

L(1)d and B
(1)
d only contain some of those functions. On the other hand, we will

show that for very large `, the class P(`)d contains too few functions to cover the

number of different functions in B(`)d .

The number of `-variate GF (2n)-polynomials of degree at most d is (2n)(
`+d
d )

(see footnote 8 on page 31), which is at most 2n(`+d)
d

. The number of final

functions f : GF (2n) → {0, 1} is 22
n

.1 So for every n, d and `, we get |P(`)d | ≤

2n(`+d)
d+2n .

On the other hand, the number of n`-variate GF (2)-polynomials of degree

at most d is 2(
n`
d ) ≥ 2(

n`
d )
d

. It can be verified that when ` is large enough,

namely, ` > 2max{2n/d, 2d/n1−1/d}, indeed |P(`)d | < |B
(`)
d |.

This gives that for every n and d > 1, for a suitable choice of `, there are

functions in B(`)d that cannot be exactly computed by functions from P
(`)
d .

However, this method requires very large ` and produces a nonexplicit sepa-

rating function. In addition, it does not rule out the possibility of a reasonable

approximation of B(`)d by P
(`)
d .

1Note that we have counted some functions many times. E.g., we can change the value

of the final function f on inputs outside the range of the polynomial chosen, or ignore the

leading coefficient and fix it in f . However, we are interested in an upper bound.
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5.2.2 Bilinear forms

We consider the question of which GF (2)-bilinear functions {0, 1}n×{0, 1}n →

{0, 1} (functions in B(2)1,1) can be computed from a GF (2
n)-bilinear function

GF (2n) × GF (2n) → GF (2n) (composed with the final function, these are

functions in P(2)1,1 ). Specifically, we consider the only nontrivial GF (2
n)-bilinear

function B̃(x̃, ỹ) = x̃∙ỹ, and ask which GF (2)-bilinear functions (x, y) 7→ 〈x, Ty〉

can be computed from it (we interchangeably talk about GF (2)-bilinear forms

and the n × n matrices describing them). We will show that the set of matri-

ces {Qγ}γ∈{0,1}n defined by Lemma 2.11 and specified explicitly in Subsection

4.3.3, is exactly the set of GF (2)-bilinear forms that can be computed from the

multiplication B(x, y) =Mxy.

Definition 5.1. We say that a bilinear form T can be computed from B if there

exists a function f : {0, 1}n → {0, 1} such that for all x, y ∈ {0, 1}n it holds that

f(Mxy) = 〈x, Ty〉.

Proposition 5.2. For all γ ∈ {0, 1}n, the form Qγ can be computed from B.

Proof. Use as f the linear function f(v) = 〈γ, v〉. Then by definition of Qγ

(Lemma 2.11), for all x, y it holds that f(Mxy) = 〈γ,Mxy〉 = 〈x,Qγy〉.

Proposition 5.3. If a form T can be computed from B, then T = Qγ where

γ is the first row of T , namely γ = TT ∙ e0. Moreover, the corresponding final

function f is the linear function f(v) = 〈γ, v〉.

Proof. Using the hypothesis, fix f such that f(Mxy) = 〈x, Ty〉 for all x, y ∈

{0, 1}n. Note that, specifically, for x = e0, we have for every y:

f(y) = f(Me0y) = 〈e0, Ty〉 =
〈
TT e0, y

〉
= 〈γ, y〉 ,

using Me0 = I which follows from e0 representing the unit of GF (2
n).

In addition to having established the moreover part of the claim, we can now

get that, for all x, y ∈ {0, 1}n:

〈x, Ty〉 = f(Mxy) = 〈γ,Mxy〉 = 〈x,Qγy〉 ,

implying that T and Qγ describe the same bilinear form (and thus they are

equal as matrices).

Remark. The above two Propositions 5.2 and 5.3 yield L(2)1,1 = B
(2)
1,1 ∩ P

(2)
1,1 .
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5.3 Approximating bilinear forms

We now consider the possibility of approximating a GF (2)-bilinear form in x and

y from their GF (2n)-multiplication B(x, y) = Mxy. We will show that while

the forms Qγ can be computed exactly (as shown in Subsection 5.2.2), every

form that can be reasonably approximated from B differs from some Qγ by a

matrix of small rank. This is shown by reducing any approximating function to a

linear approximating function. By the contrapositive we derive the existence of

matrices that cannot be approximated from B noticeably better than guessing.

On the other hand, somewhat reasonable approximations are possible for some

matrices other than the Qγ ’s.

Definition 5.4. For a function f : {0, 1}n → {0, 1} and δ ∈ [0, 1], we say that

a bilinear form T is δ-approximated by f ◦B if

Pr
x,y
[f(Mxy) = 〈x, Ty〉] ≥ δ.

5.3.1 Very good approximations

We first show that only the forms Qγ can be approximated really well (i.e.,

better than 78 ):

Theorem 5.5. If a bilinear form T can be δ-approximated by some f ◦ B for

any δ > 7
8 + 2

−n, then there exists γ ∈ {0, 1}n such that T = Qγ .

Proof. First, we modify f so that f(0) = 0, possibly only improving the ap-

proximation rate (since Mxy = 0 implies 〈x, Ty〉 = 0). Since by the hypothesis

δ ≤ Pr
x,y
[f(Mxy) = 〈x, Ty〉] ≤ Pr

x 6=0,y
[f(Mxy) = 〈x, Ty〉] + Pr

x
[x = 0],

we know that Prx 6=0,y[f(Mxy) = 〈x, Ty〉] ≥ δ − 2−n, so there exists some fixed

z 6= 0 such that Pry[f(Mzy) = 〈z, Ty〉] ≥ δ − 2−n. Since z 6= 0, the matrix

Mz is invertible and we set γ = γz = M
−1
z
T
TT z. Using the definition of Qγ

(Lemma 2.11) and f(0) = 0,

Pr
x,y
[f(Mxy) = 〈x,Qγy〉] = Pr

x,y
[f(Mz ∙M

−1
z Mxy) = 〈γ,Mxy〉]

= Pr
x 6=0,y,

v=M−1
z Mx∙y

[f(Mzv) = 〈γ,Mzv〉] ∙ Pr
x
[x 6= 0] + 1 ∙ Pr

x
[x = 0]

= Pr
v∈{0,1}n

[
f(Mzv) =

〈
M−1z

T
TT z,Mzv

〉]
(1− 2−n) + 2−n
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≥ Pr
v

[

f(Mzv) =

〈

z,
(
M−1z

T
TT
)T
Mzv

〉]

− 2−n + 2−n

= Pr
v
[f(Mzv) = 〈z, Tv〉]

≥ δ − 2−n.

We get:

Pr
x,y
[〈x, Ty〉 = 〈x,Qγy〉] ≥ Pr

x,y
[〈x, Ty〉 = f(Mxy) = 〈x,Qγy〉]

= 1− Pr[〈x, Ty〉 6= f(Mxy) ∨ f(Mxy) 6= 〈x,Qγy〉]

≥ 1− Pr
x,y
[〈x, Ty〉 6= f(Mxy)]− Pr

x,y
[f(Mxy) 6= 〈x,Qγy〉]

≥ 1− (1− δ)− (1− δ + 2−n)

= 2δ − 1− 2−n

>
3

4
.

Since the bilinear form T −Qγ is zero on more than 34 of its inputs, it must be

identically zero by the following folklore Fact 5.6, implying T = Qγ .

Fact 5.6 (folklore). For all T , it holds that Prx,y[〈x, Ty〉 = 0] = 1
2+ 2

− rank(T )−1.

Proof. Since Pry[y ∈ kerT ] = 2dimkerT /2n = 2− rank(T ),

Pr
x,y
[〈x, Ty〉 = 0] = Pr

y
[y ∈ kerT ] ∙ 1 + Pr

y
[y /∈ kerT ] ∙ Pr

x,y
[〈x, Ty〉 = 0|Ty 6= 0]

=
1

2
+
1

2
∙ Pr
y
[y ∈ kerT ]

=
1

2
+ 2− rank(T )−1.

Remark. By combining Theorem 5.5 with Proposition 5.2, we get that if a

bilinear form can be approximated to a rate significantly higher than 78 , it can

be computed exactly.

5.3.2 Somewhat good approximations

Despite having disqualified approximations better than 7
8 , there are matrices

other than the Qγ ’s that can be somewhat (i.e.,
3
4 ) approximated:

Proposition 5.7. There exists a bilinear form T /∈ {Qγ}γ that can be 34 -

approximated by some f ◦ B. Moreover, f is linear, that is, there exists γ ∈

{0, 1}n such that f(Mxy) = 〈γ,Mxy〉.
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Proof. Take any γ ∈ {0, 1}n, and any rank-1 matrix E. Set T = Qγ+E. Then

using 〈x, Ty〉 = 〈x,Qγy〉+ 〈x,Ey〉, we get

Pr
x,y
[〈γ,Mxy〉 = 〈x, Ty〉] = Pr

x,y
[〈x,Qγy〉 = 〈x, Ty〉] = Pr

x,y
[〈x,Ey〉 = 0] =

3

4

by Fact 5.6, so f(v) = 〈γ, v〉 composed with B does 34 -approximate T .

However it is clear that such matrices can be approximated from B simply

because they are approximated by a matrix Qγ , which can be computed exactly

from B. We will next show that in fact this is the only way a bilinear form can

be approximated from B, to any approximation rate.

5.3.3 Arbitrary Approximations

We show that the “reason” aGF (2)-bilinear form can be approximated from B is

always the fact that it is close enough to a bilinear form that can be computed

exactly. First, we show that this is straightforward for linear approximating

functions (that is, approximating a function in B(2)1,1 using a function from L
(2)
1,1):

Proposition 5.8. If a matrix T is ( 12 +
ε
2 )-approximated by f ◦ B for a lin-

ear function f , then T = Qγ + E for some γ and some matrix E, such that

rank(E) ≤ log(1/ε).

Proof. Suppose T is ( 12 +
ε
2 )-approximated by f(v) = 〈γ, v〉. Thus, using

f(Mxy) = 〈γ,Mxy〉 = 〈x,Qγy〉, we get:

1

2
+
ε

2
≤ Pr
x,y
[〈x, Ty〉 = f(Mxy)] = Pr

x,y
[〈x, Ty〉 = 〈x,Qγy〉].

Setting E = T −Qγ , we get that 12 +
ε
2 ≤ Prx,y[〈x,Ey〉 = 0] =

1
2 +

1
2 ∙ 2

− rank(E)

(where the equality follows from Fact 5.6), so indeed rank(E) ≤ log(1/ε).

To show a similar claim for an arbitrary final function f , we will prove a

generic reduction to the case of a linear final function. This shows that with

respect to approximating functions from B(2)1,1, the class L
(2)
1,1 is essentially as

powerful as the class P(2)1,1 .

Theorem 5.9. If a bilinear form T can be ( 12 + ε)-approximated by some

function f ◦ B, then it can be ( 12 +
δ
2 )-approximated by a linear function for

δ ≥ ε3

1−ε − 2
−n−2. That is, there exists γ ∈ {0, 1}n such that T is ( 12 +

δ
2 )-

approximated by ` ◦B for `(v) = 〈γ, v〉.
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Remark. More careful analysis can yield δ ≥ ε2

4(log(1/ε)+2) − 2
−n. See Section

A.2 for details.

Proof. Suppose that for some function f , it holds that Prx,y[f(Mxy) = 〈x, Ty〉] ≥
1
2 + ε. Define the advantage of this function for fixed x by

A(x) = Pr
y
[f(Mxy) = 〈x, Ty〉]−

1

2
.

Then, Ex[A(x)] ≥ ε, while for all x it holds that A(x) ≤ 1
2 . Using an averaging

argument, we first lower bound p = Prx[A(x) ≥ ε
2 ]:

ε ≤ Ex[A(x)]

≤ Pr
x

[
A(x) <

ε

2

]
∙
ε

2
+ Pr
x

[
A(x) ≥

ε

2

]
∙
1

2

= (1− p) ∙
ε

2
+ p ∙

1

2
,

giving p ≥ ε
1−ε .

We have shown that p ≥ ε
1−ε of the x’s satisfy Pry[f(Mxy) = 〈x, Ty〉] ≥

1
2+

ε
2 .

For each x 6= 0 denote the vectorM−1x
T
TTx by γx, and the function v 7→ 〈γx, v〉

by `x. Then, for all x 6= 0:

Pr
y
[f(Mxy) = 〈x, Ty〉] = Pr

v=Mx∙y

[
f(v) =

〈
x, T ∙M−1x v

〉]

= Pr
v∈{0,1}n

[
f(v) =

〈
M−1x

T
TTx, v

〉]

= Pr
v
[f(v) = `x(v)].

Thus, for at least p ∙2n−1 nonzero x’s, the function f agrees with the linear

function `x on at least a
1
2 +

ε
2 fraction of their domain.

The following well known fact can be deduced, e.g., from Theorem 15 (part

2) of [GRS]. For self containment, we also prove it in Appendix B.

Fact 5.10. Any function ( 12 +
ε
2 )-agrees with at most

1
ε2
affine functions.

This gives us that the p∙2n−1 different nonzero x’s are matched to at most 1
ε2

distinct linear functions `x, i.e., distinct vectors γx. By an averaging argument,

there exists γ ∈ {0, 1}n that corresponds to at least p∙2
n−1
ε−2

= ε2(p ∙ 2n − 1)

different nonzero x’s, so

δ = Pr
x 6=0
[γx = γ] ≥

ε2(p ∙ 2n − 1)
2n − 1

≥ ε2(p− 2−n) ≥
ε3

1− ε
− 2−n−2
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(where the last inequality used p ≥ ε
1−ε and ε ≤

1
2 ).

Given this γ, we now define the function `(v) = 〈γ, v〉. We finally show that

` ◦B does ( 12 +
δ
2 )-approximate T :

Pr
x,y
[`(Mxy) = 〈x, Ty〉] = Pr[x 6= 0] ∙ Pr

x 6=0
v=Mx∙y

[
`(v) =

〈
x, T ∙M−1x v

〉]
+ Pr[x = 0] ∙ 1

= (1− 2−n) ∙ Pr
x 6=0,v

[〈γ, v〉 = 〈γx, v〉] + 2
−n

≥ Pr
x 6=0,v

[〈γ − γx, v〉 = 0]

= Pr
x 6=0
[γx = γ] ∙ Pr

x 6=0,v
[〈0, v〉 = 0] + Pr

x 6=0
[γx 6= γ] ∙ Pr

x 6=0,v

[
〈γ − γx, v〉 = 0

∣
∣γ 6= γx

]

= δ ∙ 1 + (1− δ) ∙ 12

=
1

2
+
δ

2
. (5.1)

As a corollary we get:

Corollary 5.11. If a matrix T can be ( 12 + ε)-approximated (by any function

f ◦ B) for any ε ≥ 2−
n+1
3 , then T = Qγ + E for some γ and some matrix E

with rank(E) ≤ 3 log(1/ε) + 1.

Proof. By Theorem 5.9, T can be ( 12 +
δ
2 )-approximated by a linear function

for δ ≥ ε3

1−ε − 2
−n−2 > ε3 − ε3/2 = ε3/2. The corollary now follows directly

from Proposition 5.8.

Using Corollary 5.11, we can find GF (2)-bilinear forms that cannot be ap-

proximated from the GF (2n)-bilinear form B̃, thus separating B(2)1,1 from P
(2)
1,1 :

Proposition 5.12. There exists a matrix T that can only be ( 12 + 2
−Ω(n))-

approximated from B.

Proof. By Corollary 5.11, we need only show a matrix T such that for all γ,

the matrix E = Qγ −T has rank Ω(n). First, we use a very rough upper bound

on the number of matrices with bounded rank:2

2The number of subspaces of dimension at most k is at most the number of k spanning

vectors, (2n)k = 2nk. Each subspace of dimension at most k is the range of at most (2k)n =

2nk different matrices, since each column of the matrix must be a vector of the subspace.

Since each matrix of rank at most k has a subspace of dimension at most k as its range, the

number of matrices of rank at most k is at most 2nk ∙ 2nk = 22nk.

65



Fact 5.13. The number of n× n matrices of rank at most k is at most 22nk.

Now we can upper bound (for arbitrary k < n) the number of matrices T

such that there exist γ ∈ {0, 1}n and a matrix E such that T = Qγ + E and

rank(E) ≤ k, by 22nk (number of matrices E) times 2n (number of matrices

Qγ). This number fails to account for the number of all n× n matrices as long

as 2(2k+1)n < 2n
2

, that is, k < n−1
2 . The proposition now follows for any choice

of Ω(n) ≤ k < n−1
2 , e.g., k = b

n
3 c.

We can also prove a constructive version of Proposition 5.12:

Proposition 5.14. For any constant 0 < c ≤ 1
2 and every γ ∈ {0, 1}

n and

matrix E such that c ∙n ≤ rank(E) ≤ (1− c) ∙n, the matrix T = Qγ +E cannot

be approximated from B better than 1
2 + 2

−cn/3+1/3. As a specific case, any

matrix of rank n2 cannot be approximated from B better than
1
2 + 2

−n/6+1/3.

Proof. Fix γ and E as above. While we are given that T differs from Qγ by a

matrix of rank at least cn, for every other γ′ 6= γ,

rank(T −Qγ′) ≥ rank(Qγ −Qγ′)− rank(Qγ − T )

= rank(Qγ−γ′)− rank(−E)

= n− rank(E)

≥ cn,

Using the generic inequality rank(A) ≥ rank(A+B)− rank(B), the linearity of

the matrix Qγ in γ (Proposition 2.12) and the fact that rank(Qγ−γ′) = n when

γ − γ′ is not zero. Thus T differs from every matrix Qγ′ by a matrix of rank at

least cn. Again by Corollary 5.11, the form T cannot be ( 12 + ε)-approximated

from B unless ε < 2−cn/3+1/3.

5.3.4 Quadratic forms

The arguments of Subsection 5.3.3 can be somewhat extended to quadratic

forms. GF (2)-bilinear forms are a special case of GF (2)-quadratic forms, but

to show that one form cannot be approximated we now need to consider GF (2n)

quadratic forms other than B̃(x̃, ỹ) = x̃ ∙ ỹ. The generic GF (2n)-quadratic form

can be written as

p̃(x̃, ỹ) = x̃ ∙ ỹ + ã ∙ x̃+ b̃ ∙ ỹ + c̃ ∙ x̃2 + d̃ ∙ ỹ2
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for four constants ã, b̃, c̃, d̃ ∈ GF (2n), where without loss of generality we re-

moved the leading and free coefficients as they can be accounted for by the

final function f (the case of coefficient 0 to x̃ ∙ ỹ is the bilinear case handled

previously).

Denote as usual by p : {0, 1}n×{0, 1}n → {0, 1}n the respective polynomial

over the bits of the representing vectors: p(x, y) =Mxy+Max+Mby+McSx+

MdSy (where S is the matrix corresponding to the squaring operation, defined

in Notation 2.13).

Definition 5.15. For a matrix T ∈ {0, 1}n×n and two vectors r, s ∈ {0, 1}n,

we say that the affine bilinear form, q(x, y) = 〈x, Ty〉 + 〈r, x〉 + 〈s, y〉 can be

computed from p if there exists a function f : {0, 1}n → {0, 1} such that for all

x, y ∈ {0, 1}n: f(p(x, y)) = q(x, y).

Definition 5.16. For a matrix T ∈ {0, 1}n×n and two vectors r, s ∈ {0, 1}n,

we say that the affine bilinear form, q(x, y) = 〈x, Ty〉+ 〈r, x〉+ 〈s, y〉 is ( 12 + ε)-

approximated by f ◦ p for f : {0, 1}n → {0, 1} if

Pr
x,y
[f(p(x, y)) = q(x, y)] ≥

1

2
+ ε.

Claim 5.17. For every three vectors γ, r, s ∈ {0, 1}n with nonzero γ,3 there

exists a quadratic polynomial p as above such that the affine bilinear form

q(x, y) = 〈x,Qγy〉+ 〈r, x〉+ 〈s, y〉 can be computed from p.

Proof. Take a = Q−1γ r, b = Q
−1
γ s, and set p(x, y) = Mxy +Max +Mby. Use

the function f(v) = 〈γ, v〉. Then for all x, y ∈ {0, 1}n, using the defitinion of

the matrix Qγ (Lemma 2.11):

f(p(x, y)) = 〈γ,Mxy +Max+Mby〉 = 〈x,Qγy〉+ 〈x,Qγa〉+ 〈y,Qγb〉 = q(x, y).

Before extending our negative results, we will first show for convenience that

the constants ã, b̃ in p̃ can be set to zero without limiting the generality. We

substitute the variables x̃ and ỹ by the expressions x̃′ = x̃ + b̃ and ỹ′ = ỹ + ã,

noting that they are distributed uniformly over GF (2n) when x̃ and ỹ are. This

gives the quadratic form

(x̃′ + b̃)(ỹ′ + ã) + ã(x̃′ + b̃) + b̃(ỹ′ + ã) + c̃(x̃′ + b̃)2 + d̃(ỹ + ã)2,

3When γ is the zero vector, the form can be computed by a GF (2n)-linear function. See

Theorem 4.5.
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which opens up to p̃′(x̃′, ỹ′) = x̃′ ∙ ỹ′ + c̃ ∙ x̃′2 + d̃ ∙ ỹ′2 + (ãb̃ + c̃b̃2 + d̃ã2). The

free term ãb̃ + c̃b̃2 + d̃ã2 can (as before) be accounted for by the final function

f . This gives that a form 〈x, Ty〉+ 〈r, x〉+ 〈s, y〉 can be computed (respectively,

approximated) from the polynomial p(x, y) using a function f if and only if

the form 〈x′, Ty′〉+ 〈Ta+ r, x′〉+
〈
TT b+ s, y′

〉
can be computed (respectively,

approximated) from the polynomial p′(x′, y′) using a function f ′ defined as

f ′(v) = f(v+k)+t, where k =Mab+McSb+MdSa and t = 〈b, Ta〉+〈r, b〉+〈s, a〉.

Note also that f ′ is an affine function if and only if f is an affine function.

We now note that Fact 5.6 extends to an inequality for affine bilinear forms:

Fact 5.18. For all matrices T and vectors r, s ∈ {0, 1}n:

Pr
x,y
[〈x, Ty〉+ 〈r, x〉+ 〈s, y〉 = 0] ≤

1

2
+ 2− rank(T )−1.

Proof. Since for every r it holds that Pry[Ty = r] ≤ 2− rank(T ),

Pr
x,y
[〈x, Ty〉+ 〈r, x〉+ 〈s, y〉 = 0] = Pr

y
[Ty = r] ∙ Pr

y:Ty=r
[〈s, y〉 = 0]

+Pr
y
[Ty 6= r] ∙ E

y:Ty 6=r

[
Pr
x
[〈x, Ty + r〉 = 〈s, y〉]

]

≤ Pr
y
[Ty = r] ∙ 1 + (1− Pr

y
[Ty = r]) ∙

1

2

=
1

2
+
1

2
∙ Pr
y
[Ty = r]

≤
1

2
+ 2− rank(T )−1.

Thus, Proposition 5.8 can be extended to GF (2n)-quadratic forms:

Proposition 5.19. If an affine bilinear form q(x, y) = 〈x, Ty〉+ 〈r, x〉+ 〈s, y〉

is ( 12 +
ε
2 )-approximated by f ◦ p for a linear function f and any quadratic form

p(x, y) =Mxy+McSx+MdSy, then T = Qγ +E for some γ and some matrix

E, such that rank(E) ≤ log(1/ε).

Proof. Suppose that for some f(v) = 〈γ, v〉,

Pr
x,y
[f(p(x, y)) = q(x, y)] ≥

1

2
+
ε

2
.
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Then using 〈γ,Mxy〉 = 〈x,Qγy〉 we get:

1

2
+
ε

2
≤ Pr

x,y
[〈γ,Mxy +McSx+MdSy〉 = 〈x, Ty〉+ 〈r, x〉+ 〈s, y〉]

= Pr
x,y
[〈x,Qγy〉+

〈
STMTc γ, x

〉
+
〈
STMTd γ, y

〉
= 〈x, Ty〉+ 〈r, x〉+ 〈s, y〉]

= Pr
x,y
[〈x, (Qγ − T )y〉+

〈
STMTc γ − r, x

〉
+
〈
STMTd γ − s, y

〉
= 0].

Setting E = T −Qγ , r′ = STMTc γ − r and s
′ = STMTd γ − s, we get that

1

2
+
ε

2
≤ Pr
x,y
[〈x,Ey〉+ 〈r′, x〉+ 〈s′, y〉 = 0] ≤

1

2
+
1

2
∙ 2− rank(E)

(by Fact 5.18), so indeed rank(E) ≤ log(1/ε).

However, Theorem 5.9 does not extend to quadratic forms just as easily,

since its proof uses the fact that for every fixed nonzero value of x̃, the range of

the restriction4 p̃|x̃ is the whole field GF (2n) (there, p̃ was called B̃). We can,

however, characterize all polynomials p̃ that do satisfy this requirement:

Claim 5.20. Let p̃(x̃, ỹ) = x̃ ∙ ỹ+ c̃ ∙ x̃2+ d̃ ∙ ỹ2. The restriction p̃|x̃ is invertible

for every fixed x̃ 6= 0, if and only if d̃ = 0.

Proof. First assume that indeed d̃ = 0; then for every fixed nonzero x ∈

GF (2n), the restriction p̃|x̃ is the affine nonconstant map p̃|x̃(ỹ) = x̃ ∙ ỹ+ c̃ ∙ x̃2,

which is invertible.

Now assume that d̃ 6= 0. Then for every nonzero x̃, the restriction p̃|x̃ is not

invertible since the two vectors ỹ1 = 0
n and ỹ2 = d̃

−1 ∙ x̃ are mapped to the

same image:

p̃|x̃(ỹ1) = x̃ ∙0+ c̃ ∙ x̃
2+ d̃ ∙02 = c̃ ∙ x̃2 = x̃ ∙(d̃−1 ∙ x̃)+ c̃ ∙ x̃2+ d̃ ∙(d̃−1 ∙ x̃)2 = p̃|x̃(ỹ2).

Instead of extending Theorem 5.9 to quadratic forms on these polynomials,

and then deriving an analogue of Corollary 5.11 to get inapproximability results,

we will prove directly that a form that can be approximated from a quadratic

4For fixed x̃ ∈ GF (2n), the restriction p̃|x̃ is defined as ỹ 7→ p̃(x̃, ỹ). We also define the

restriction p|x of the binary version of p analogously.
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polynomial p satisfying the condition of Claim 5.20 (with any final function f)

differs from some Qγ by a matrix of low rank:
5

Theorem 5.21. For every n × n matrix T and two vectors r, s ∈ {0, 1}n,

for every constant vector c ∈ {0, 1}n, and for every ε ≥ 2−
n+1
3 , if the form

q(x, y) = 〈x, Ty〉+〈r, x〉+〈s, y〉 can be ( 12+ε)-approximated by f ◦p for p(x, y) =

Mxy +McSx and some function f : {0, 1}n → {0, 1}, then T = Qγ + E for

some γ ∈ {0, 1}n and matrix E such that rank(E) ≤ 3 log(1/ε) + 1.

Clearly, by symmetry the same would hold for any p(x, y) =Mxy +MdSy.

Proof. We proceed similarly to the proof of Theorem 5.9, and begin by using

a standard argument to get that if Prx,y[f(p(x, y)) = q(x, y)] ≥ 1
2 + ε, then

for η ≥ ε
1−ε > ε of the x’s, Pry[f(p|x(y)) = q|x(y)] ≥

1
2 +

ε
2 . For every

nonzero x, Claim 5.20 has that p|x is invertible; explicitly we can write p|−1x (v) =

M−1x (v −McSx). For every nonzero x we define γx = M
−1
x
T
(TTx + s) and

kx =
〈
(McS)

T γx + r, x
〉
; then

Pr
y
[f(p|x(y)) = q|x(y)] = Pr

v=p|x(y)
[f(v) = q|x(p|

−1
x (v))]

= Pr
v∈{0,1}n

[
f(v) =

〈
x, T ∙ p|−1x (v)

〉
+ 〈r, x〉+

〈
s, p|−1x (v)

〉]

= Pr
v

[
f(v) =

〈
x, T ∙M−1x (v −McSx)

〉
+ 〈r, x〉+

〈
s,M−1x (v −McSx)

〉]

= Pr
v

[
f(v) =

〈
M−1x

T
(TTx+ s), v

〉
+
〈
(McS)

T ∙M−1x
T
(TTx+ s) + r, x

〉]

= Pr
v
[f(v) = 〈γx, v〉+ kx].

So, for at least η ∙ 2n − 1 nonzero x’s, f agrees with `x = v 7→ 〈γx, v〉+ kx on at

least 12 +
ε
2 of the space {0, 1}

n. Using Fact 5.10, an averaging argument gives

as before the existence of some (affine) function ` = v 7→ 〈γ, v〉 + k such that

Prx 6=0[`x = `] ≥ ε3

1−ε − 2
−n−2 ≥ ε3 − ε3/2 = ε3/2, using ε ≥ 2−

n+1
3 . Certainly,

Prx 6=0[γx = γ] ≥ Prx 6=0[`x = `] ≥ ε3/2. We analyse the definition of γx, and

observe that for any nonzero x, the condition γ = γx = M
−1
x
T
(TTx + s) is

equivalent to TTx + s = MTx γ. Using the notations of Subsection 4.3.3 and

the explicit definition of Qγ given there, and using Claim 4.13, this condition is

5The reason for this is that extending the proof of Theorem 5.9, as started in the proof

of Theorem 5.21, gives and affine, rather than linear, function ` such that `x = ` with high

probability. Thus the Equation (5.1) in the proof of Theorem 5.9 does not hold (as two

different affine functions ` and `x can disagree on all their domain), giving that ` does not

necessarily approximate T from p.
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equivalent to TTx + s = U−1MxUγ = U
−1MUγx = Qγx. Thus, γx = γ if and

only if (TT −Qγ)x = s. Let ET = TT −Qγ ; since Prx[ETx = s] ≤ 2− rank(E
T )

holds for every s and matrix ET , and since Prx 6=0[γx = γ] ≥ ε3/2, we get that

2− rank(E
T ) ≥ ε3/2 and thus rank(ET ) ≤ 3 log(1/ε) + 1. Setting E = ET

T
, we

get by definition that T = (Qγ + E
T )T = QTγ + E = Qγ + E (by symmetry of

the matrix Qγ , see remark after Lemma 2.11), as wanted.

Reflection. The vector γx was defined (both in the proof of Theorem 5.9 and

in that of Theorem 5.21) so that if f(p(x, y)) = q(x, y) with high probability

(over the choice of y) then f has high agreement with `x = 〈γx, ∙〉 (plus kx in

Theorem 5.21). The argument in both cases is based on analyzing when many

γx’s “collide”, where in the proof of Theorem 5.9 we conclude that a linear

function ` = 〈γ, ∙〉 approximates T , whereas in Theorem 5.21 we show directly

that T = Qγ + E for some E of low rank. We get that the approximability

of a form using the matrix T depends on the size of collisions of the function

γ(x) =M−1x
T
TTx: a good approximation implies an image γ with many preim-

ages x.

By Theorem 5.21 we get that there are functions in B(2)2 (with T differing

from every Qγ by a matrix of high rank, e.g., the matrices T considered in

Propositions 5.12 and 5.14) for which if a function from P(2)2 approximates it

with a noticeable advantage over 12 , then it must use some polynomial p̃(x̃, ỹ) =

x̃ ∙ ỹ + ã ∙ x̃+ b̃ ∙ ỹ + c̃ ∙ x̃2 + d̃ ∙ ỹ2 in which both c̃ and d̃ are nonzero.

5.4 Multi-GF (2)-bilinear functions vs. GF (2)-

quadratic functions

When trying to show that GF (2)-quadratic functions are stronger than GF (2n)-

quadratic functions, we have so far only used GF (2)-bilinear functions. That is,

when dividing the input to ` blocks of n bits (now also considering ` > 2), we

never multiplied two bits from the same block. However, it seems plausible that

this limitation causes a substantial loss of power against GF (2n)-quadratic poly-

nomials, since when looking at the binary version of a GF (2n)-quadratic poly-

nomial, each bit is a GF (2)-bilinear function, i.e. has no multiplication of two
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bits from the same block.6 It thus seems that one can find a GF (2)-quadratic

polynomial that cannot be calculated/approximated by GF (2n)-quadratic poly-

nomials by using the extra power of multiplying bits within the same block.

That is, perhaps the class B(`)2 is stronger that the class P
(`)
2 simply because it

is stronger than the larger class of functions resulting from n separate GF (2)-

bilinear functions (i.e., functions in B(`)1,1), finally mapped to {0, 1} using some

arbitrary function.

In this section we give a partial negative answer: we show that some poly-

nomials, namely the polynomials that are symmetric in the blocks (or can be

transformed to such), can be somewhat approximated, and sometimes even

computed exactly, by GF (2)-bilinear functions with a final function.

5.4.1 Definition of the model

We define the above class of functions formally:

Definition 5.22. We call a function q : {0, 1}`∙n → {0, 1} multi-GF (2)-bilinear

if there exist n functions p1, . . . , pn ∈ B
(`)
1,1 and an arbitrary function f : {0, 1}

n →

{0, 1} such that q = f(p1, . . . , pn). We denote the class of multi-GF (2)-bilinear

functions by M(`)
1,1.

As noted above, P(`)2 ⊆M
(`)
1,1 follows from Lemma 4.4 and from the squaring

operation over GF (2n) being a linear function in the bits of the representation

(see the definition of the matrix S in Notation 2.13).

We will also use a convenient decomposition of functions in B(`)2 , since we

are interested in the difference between multiplications of bits within the same

block and multiplications of bits from different blocks: we parse the n ∙ ` input

bits to blocks x(1), . . . , x(`), and write each q ∈ B(`)2 as

q(x(1), . . . , x(`)) = q∗(x(1), . . . , x(`)) +
∑̀

j=1

qj(x
(j)), (5.2)

where q∗ ∈ B(`)1,1 (i.e., does not multiply bits from the same block) and every qj

is a quadratic function over {0, 1}n. We also write explicitly qj(x) = 〈x,Ejx〉.

6Recall that squaring in GF (2n) is a linear operation over the bits of the representation

(see Notation 2.13).
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Definition 5.23. We say that a GF (2)-quadratic polynomial q is block-symmetric

if, when decomposing q as in Equation (5.2), all the functions qj are equal.

Note that this is a weaker requirement than the polynomial q being really

invariant to permuting the blocks, since we do not require that the GF (2)-

bilinear part q∗ be symmetric as well.

5.4.2 Computing block-symmetric GF (2)-quadratic func-

tions from n+ 1 bilinear functions

While Definition 5.22 only allows n separate GF (2)-bilinear functions, we will

first show how to compute block-symmetric GF (2)-quadratic functions from

n+ 1 separate GF (2)-bilinear functions.

Proposition 5.24. For every block-symmetric GF (2)-quadratic function q :

{0, 1}`∙n → {0, 1}, there exist n+1 GF (2)-bilinear functions p1, . . . , p`, p∗ ∈ B
(`)
1,1

and a function f : {0, 1}n+1 → {0, 1} such that q = f(p1, . . . , pn, p∗).

Proof. Decompose q as in Equation (5.2), and let E be the matrix describ-

ing the common quadratic function (that is, qj(x) = 〈x,Ex〉 for every j ∈

{1, . . . , `}). For i = 1, . . . , n, we set pi(x(1), . . . , x(`)) =
∑`
j=1 x

(j)
i , which is the

sum of the bits in the i-th channel. We also set

p∗(x(1), . . . , x(`)) = q∗(x(1), . . . , x(`)) +
∑

j1 6=j2

〈
x(j1), E ∙ x(j2)

〉
.

Note that while all pi’s are in fact linear, the last function p
∗ is GF (2)-bilinear

since q∗ is GF (2)-bilinear and in the sum we are only taking inner products

between different blocks j1 6= j2. Finally, we define f as follows: on input n+1

bits b1, . . . , bn, b
∗, define the vector b̄ = (b1, . . . , bn) and output b

∗ +
〈
b̄, E ∙ b̄

〉
=

b∗+
∑
i,k Ei,k ∙bi ∙bk. It is left to verify that for all x̄ = (x

(1), . . . , x(`)) ∈ {0, 1}`∙n:

f(p1(x̄), . . . , pn(x̄), p
∗(x̄)) = p∗(x̄) +

∑

i,k

Eik ∙ pi(x̄) ∙ pk(x̄)

= q∗(x̄) +
∑

j1 6=j2

〈
x(j1), E ∙ x(j2)

〉
+
∑

i,k

Eik ∙ pi(x̄) ∙ pk(x̄)

= q∗(x̄) +
∑

j1 6=j2

∑

i,k

Eik ∙ x
(j1)
i ∙ x(j2)k

+
∑

i,k

Eik ∙




∑

j1

x
(j1)
i



 ∙




∑

j2

x
(j2)
k




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= q∗(x̄) +
∑

j

∑

i,k

Eik ∙ x
(j)
i ∙ x

(j)
k

= q∗(x̄) +
∑

j

〈
x(j), E ∙ x(j)

〉

= q(x̄).

5.4.3 Losing one pi

Since we can only afford n functions to comply with Definition 5.22, we need

to get rid of one function pi to accommodate the extra polynomial p
∗. We first

note that if the function 〈x,Ex〉 does not depend on all the bits of x, e.g. it is

invariant to the i-th bit, then the polynomial q can be computed exactly by a

multi-GF (2)-bilinear polynomial (by just not taking pi).

Otherwise, we take some i such that the variable xi appears in a nonlinear

term in 〈x,Ex〉, i.e., some i such that some off-diagonal entry in the i-th row

or column of E is set.7 We assume without loss of generality that i = 1, and

decompose 〈x,Ex〉 to x1 ∙ `(x2, . . . , x`) + g(x2, . . . , x`) where ` is a nonconstant

affine function and g is some quadratic function. We then set E′ to describe the

quadratic function g (that is, fix the first bit to zero, or as a matrix, zero the

first row and column in E). This yields:

Pr
x
[〈x,Ex〉 6= 〈x,E′x〉] = Pr

x1
[x1 = 0] ∙ Pr

x2,...,x`
[0 ∙ `(x2, . . . , x`) + g(x2, . . . , x`) 6= g(x2, . . . , x`)]

+Pr
x1
[x1 = 1] Pr

x2,...,x`
[1 ∙ `(x2, . . . , x`) + g(x2, . . . , x`) 6= g(x2, . . . , x`)]

=
1

2
∙ 0 +

1

2
∙
1

2

=
1

4

(since the nonconstant multivariate affine function ` takes value 1 with proba-

bility exactly 12 ). Since 〈x,Ex〉 can be
3
4 -approximated by 〈x,E

′x〉 that does

not depend on its first bit, we can calculate only p2(x̄), . . . , pn(x̄) and p
∗(x̄), and

set our new f ′ : {0, 1}n → {0, 1} to fix b1 to zero (that is, on input b2, . . . , bn, b∗,

7if no such i exists, 〈x,Ex〉 is linear in x, and q does not multiply bits from the same block.
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output b∗ +
〈
b̄, E′ ∙ b̄

〉
= b∗ +

∑n
i=2

∑n
k=2Eik ∙ bi ∙ bk). Then

Pr
x̄
[q(x̄) 6= f ′(p2(x̄), . . . , pn(x̄), p

∗(x̄))]

= Pr
x̄
[f(p1(x̄), . . . , pn(x̄), p

∗(x̄)) 6= f ′(p2(x̄), . . . , pn(x̄), p
∗(x̄))]

= Pr
b̄=(p1(x̄),...,pn(x̄))

[
〈
b̄, E ∙ b̄)

〉
6=
〈
b̄, E′ ∙ b̄

〉
]

=
1

4
,

since the pi’s are all linear and thus b̄ is uniformly distributed when x̄ is uni-

formly distributed.

We have obtained:

Corollary 5.25. Every block-symmetric q ∈ B(`)2 can be 34 -approximated by a

function in M(`)
1,1.

5.4.4 Different linear combinations of the blocks

Suppose that, in contrast to the case of Definition 5.22, the qj ’s are not all

equal, but can nevertheless be described as the same quadratic form applied

to different linear combinations in the bits of each block. That is, there exists

a matrix E and ` matrices Pj such that for all j, the from qj(x) (from Equa-

tion (5.2)) equals 〈Pjx,E ∙ Pjx〉. Then, the same method above still works: we

define each pi(x̄) as
∑
j e
T
i−1Pjx

(j) and the extra polynomial p∗(x̄) as q∗(x̄) +
∑
j1 6=j2

〈
Pj1x

(j1), E ∙ Pj2x
(j2)
〉
. The same function f will then give f(p1(x̄), . . . , pn(x̄), p

∗(x̄)) =

q(x̄). We can thus still compute q from n + 1 bilinear functions, which means

as before that n functions allow us to either 34 -approximate q, or compute it

exactly if E does not depend on one of the bits.

This generalization covers, in specific, the case that the different Ej ’s de-

scribe isomorphic graphs (only differ in the order of the rows and columns).

This corresponds to each Pj being a permutation matrix.
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Appendix A

Small parameter

improvements

A.1 A better stretch bound for Section 3.2

The bound of Corollary 3.2 can be slightly improved due to the linear depen-

dence between the bits representing an element x̃ and the bits representing x̃2,

presented in Notation 2.13. The proof of Theorem 3.1 bounds the number `

of output blocks by the number (d + 1)k of possible monomials of individual

degree d in k variables, since the rows of the `× (d+ 1)k matrix of coefficients

(in GF (2n)) describing the output blocks, should not be linearly dependent.

When trying to avoid linear dependencies between bits, as in Corollary 3.2,

we can further restrict the matrix. As a motivating example, consider the case

d = 2, k = 1. The bound (d+1)k − 1 of Corollary 3.2 disregarding the constant

monomial (see footnote 2 in page 21), has ` ≤ 2. However, the two possible

nonconstant monomials of degree 2 in one variable x̃, namely, x̃ and x̃2, have

a linear dependency between their representing bits, described by the matrix S

defined in Notation 2.13.

In general, the (bd/2c+1)k monomials m̃(x̃1, . . . , x̃k) of individual degree at

most bd/2c all have their square m̃2(x̃1, . . . , x̃k) of individual degree at most d,

and thus should be removed. Our general improved bound is:

Theorem A.1. Consider any GF (2n)-polynomial map G̃ : GF (2n)k → GF (2n)`

of individual degree d, and let G : {0, 1}kn → {0, 1}`n be its binary version.
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If ` > (d+ 1)k − (bd/2c+ 1)k, then there is a nontrivial GF (2)-linear com-

bination that takes value zero on every output of G. Thus, G is not an ε-bias

generator for any ε < 1
2 .

Proof. Similarly to the proof of Theorem 3.1, we will describe the generator G

by a matrix, with each row describing an output block as a linear combination of

the monomials in the polynomial expression defining it. However, this time we

will not work with the `×((d+1)k−1) matrix1 of GF (2n)-coefficients describing

G̃, but rather with the n`×n((d+1)k− 1) matrix of bits, describing the binary

version G directly. The latter matrix can be obtained from from the former

matrix by replacing each GF (2n)-element ã with with the n × n matrix Ma

(defined in Notation 2.7). Indeed, the (jn + i)-th row of this matrix describes

the (jn + i)-th output bit of G, which is the i-th bit of the representation of

the j-th output block of G̃. This output bit is described as a GF (2)-linear

combination of the n(d + 1)k variables, which are the n bits representing each

of the (d+1)k− 1 possible nonconstant monomials of individual degree at most

d (in the k input variables). In general, a mapping is described by such a bit

matrix in the sense that if the n× n matrix C is the intersection of the n rows

corresponding to the j-th output block with the n columns corresponding to

the n bits of the monomial m̃(x̃1, . . . , x̃k), then the (nj+ i)-th output bit of the

generator will be 〈ei, C ∙m(x1, . . . , xk)〉.

Using this bit-matrix, we will produce a matrix that describes an equiv-

alent generator (that is, describes the same mapping G), but has only n ∙
(
(d+ 1)k − (bd/2c+ 1)k

)
columns. Thus, if ` > (d+1)k−(bd/2c+1)k, this ma-

trix has more rows than columns and must have linear dependent rows, giving

a fixed linear dependence satisfied by the bits of every output of G.

For every nonconstant monomial m̃(x̃1, . . . , x̃k) of individual degree bd/2c,

the monomial m̃2(x̃1, . . . , x̃k) has individual degree at most d (but strictly

greater than the individual degree of m̃(x̃1, . . . , x̃k)). We go over these (bd/2c+

1)k − 1 monomials, in order of increasing (maximal individual) degree, and for

every such monomial m̃(x̃1, . . . , x̃k) we emulate the n columns corresponding to

the bits of m̃(x̃1, . . . , x̃k) by an adequate addition to the columns corresponding

to the bits of m̃2(x̃1, . . . , x̃k): for every n rows corresponding to each output

block of G, intersecting with the above n columns by the n×n matrix B (which

1We have already incorporated the improvement of removing the constant coefficient, pre-

sented by footnote 2 in page 21.
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indeed describes the matrix-coefficient of the monomial m(x1, . . . , xk) in the

expression for this output block), we add the matrix B ∙ S−1 to the matrix in

the intersection of these n rows with the n columns corresponding to the bits

of the monomial m̃2(x̃1, . . . , x̃k), with S being the squaring matrix defined in

Notation 2.13. After we are done with the monomial m̃(x̃1, . . . , x̃k), we remove

the n columns representing its bits from the matrix. Every such step preserves

the mapping described by the matrix, as by definition of the matrix S, the i-th

output bit of G will be, for every two n× n matrices B and C:

〈ei, B ∙m(x1, . . . , xk)〉+
〈
ei, C ∙m

2(x1, . . . , xk)
〉
=
〈
ei, (BS

−1 + C) ∙m2(x1, . . . , xk)
〉
.

Since there are (bd/2c + 1)k − 1 nonconstant monomials of individual degree

at most bd/2c, each leading to the removal of n columns, and since we begin

with a matrix with n ∙ ((d + 1)k − 1) columns - we end up with a matrix with

n ∙
(
(d+ 1)k − (bd/2c+ 1)k

)
columns, as wanted. Thus, a stretch ` satisfying

the hypothesis of the theorem necessarily implies linear dependent rows for the

describing matrix, giving a nontrivial linear dependence between the output bits

of the generator.

A.2 A better approximation rate for Subsection

5.3.3

The reduction of Theorem 5.9 can be made (asymptotically) more efficient:

Theorem A.2. If a bilinear form T can be ( 12 + ε)-approximated by some

function f ◦ B, then it can be ( 12 +
δ
2 )-approximated by a linear function for

δ ≥ ε2

4(log(1/ε)+2) − 2
−n.

Proof. Define as before A(x) = Pry[f(Mxy) = 〈x, Ty〉]− 12 , so that Ex[A(x)] ≥

ε. Set ` = dlog(1/ε)e and partition the x’s to `+ 2 bins, defining

Bi = {x ∈ {0, 1}
n : 2−i−1 < A(x) ≤ 2−i}

for i = 0, . . . , `, and the remaining x’s, C = {x : A(x) ≤ 2−`−1}, and note that
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2−`−1 ≤ ε
2 . Define pi =

∑
x∈Bi

A(x), and write

ε ∙ 2n ≤ Ex[A(x)] ∙ 2
n

=
∑

x∈{0,1}n

A(x)

=
∑̀

i=0

∑

x∈Bi

A(x) +
∑

x∈C

A(x)

≤
∑̀

i=0

pi + 2
n ∙
ε

2
.

We get
∑`
i=0 pi ≥

ε
2 ∙ 2

n, so there must exist some i for which pi ≥ ε
2(`+1) ∙ 2

n.

Since for this i, all x’s in Bi have A(x) ≤ 2−i, and since
∑
x∈Bi

A(x) ≥ ε
2(`+1) ∙2

n,

the set Bi must contain at least b =
ε

2(`+1) ∙2
n+i elements. Possibly excluding 0,

we have that for at least b−1 nonzero x’s, the functions f and `x have agreement

at least 12+2
−i−1. Using Fact 5.10, these x’s match at most 1

(2−i)2 = 2
2i distinct

linear functions. By an averaging argument, there exists some linear function

that is matched by at least b−122i different nonzero x’s, i.e. there exists γ ∈ {0, 1}
n

such that

δ = Pr
x 6=0
[γx = γ] ≥

b− 1
22i
∙
1

2n − 1
≥

ε ∙ 2i

2(`+ 1) ∙ 22i
−22i−n ≥

ε2

4(log(1/ε) + 2)
−2−n,

where the last inequality used 0 ≤ i ≤ ` < log(1/ε) + 1. The rest of the proof

proceeds as before.

This, in turn, improves Corollary 5.11 to

Corollary A.3. If a matrix T can be ( 12 + ε)-approximated (by any function

f ◦ B) for any ε ≥ 2−
n+5
3 , then T = Qγ + E for some γ and some matrix E

with rank(E) ≤ 2 log(1/ε) + 3 + log(log(1/ε) + 2) (which is (2 + o(1)) log(1/ε)

if ε is subconstant).

Proof. By Theorem A.2, T can be ( 12 +
δ
2 )-approximated by a linear function

for δ ≥ ε2

4(log(1/ε)+2) − 2
−n. Since ε ≥ 2−

n+5
3 , we have 2−n ≤ 1

32ε
3 = ε2

8∙(4/ε) ≤
1
2 ∙

ε2

4(log(1/ε)+2) , so δ ≥
ε2

8(log(1/ε)+2) . By Proposition 5.8, T = Qγ + E with

rank(E) ≤ log(1/δ) ≤ 2 log(1/ε) + 3 + log(log(1/ε) + 2).
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Appendix B

Agreement with affine

functions

We prove that for 0 < ε ≤ 1, every function f : {0, 1}n → {0, 1} can ( 12 +
ε
2 )-

agree with at most 1
ε2
affine functions.

We identify functions from {0, 1}n to {0, 1} with vectors in {1,−1}2
n

⊆ R2
n

,

by writing their full truth table, [vf ]i = −1f(b(i)) where b(i) ∈ {0, 1}n is the

binary representation of i. We define the inner product between two functions

f, g as

〈vf , vg〉 = Eb∈{0,1}n [−1
f(b)+g(b)] = 2 ∙ Pr

b∈{0,1}n
[f(b) = g(b)]− 1.

Then, for every function f , we have 〈vf , vf 〉 = 1.

The set L = {uγ}γ∈{0,1}n of linear functions (uγ(x) = 〈γ, x〉) can be shown

to be an orthonormal basis of R2
n

with respect to this inner product. We can

thus write for every f that vf =
∑
γ∈{0,1}n 〈vf , uγ〉 ∙ uγ .

This way we get:

1 = 〈vf , vf 〉 =

〈
∑

γ∈{0,1}n

〈vf , uγ〉 ∙ uγ ,
∑

γ′∈{0,1}n

〈vf , uγ′〉 ∙ uγ′

〉

=
∑

γ,γ′∈{0,1}n

〈vf , uγ〉 ∙ 〈vf , uγ′〉 ∙ 〈uγ , uγ′〉

=
∑

γ∈{0,1}n

〈vf , uγ〉
2
, (B.1)

where the last equality follows from the orthonormality of L.
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Finally, we note that if f has agreement 12 +
ε
2 with k different affine func-

tions, then for k different γ’s, either Prb∈{0,1}n [f(b) = 〈γ, b〉] ≥
1
2 +

ε
2 or

Prb∈{0,1}n [f(b) = 〈γ, b〉] ≤
1
2 −

ε
2 , implying that 〈vf , uγ〉

2 ≥ ε2. By Equation

(B.1), we get k ∙ ε2 ≤ 1, giving k ≤ 1/ε2 as wanted.
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