Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR23-110 | 25th July 2023 15:29

Asymptotically-Good RLCCs with $(\log{n})^{2+o(1)}$ Queries

RSS-Feed

Abstract:

Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they constructed $n$-bit RLCCs with $O(\log^{69}n)$ queries. This significant advancement relies on a clever reduction to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs.

With regards to lower bounds, Gur and Lachish (SICOMP 2021) proved that any asymptotically-good RLCC must make at least $\widetilde{\Omega}(\sqrt{\log n})$ queries. Hence emerges the intriguing question regarding the identity of the least value $\frac1{2} \le e \le 69$ for which asymptotically-good RLCCs with query complexity $(\log n)^{e+o(1)}$ exist.

In this work, we make substantial progress in narrowing the gap by devising asymptotically-good RLCCs with a query complexity of $(\log n)^{2+o(1)}$. The key insight driving our work lies in recognizing that the strong guarantee of local testability overshoots the requirements for the Kumar-Mon reduction. Consequently, we can replace the LTCs by "vanilla" expander codes which indeed have the necessary property: local testability in the vicinity of the code.



ISSN 1433-8092 | Imprint